Instances For
Instances For
Instances For
Erase entry for binderName
from namedArgs
.
Instances For
Default application elaborator #
- ellipsis : Bool
true
if..
was used - explicit : Bool
true
if@
modifier was used - resultIsOutParamSupport : Bool
If the result type of an application is the
outParam
of some local instance, then special support may be needed because type class resolution interacts poorly with coercions in this kind of situation. This flag enables the special support.The idea is quite simple, if the result type is the
outParam
of some local instance, we simply executesynthesizeSyntheticMVarsUsingDefault
. We added this feature to make sure examples as follows are correctly elaborated.class GetElem (Cont : Type u) (Idx : Type v) (Elem : outParam (Type w)) where getElem (xs : Cont) (i : Idx) : Elem export GetElem (getElem) instance : GetElem (Array α) Nat α where getElem xs i := xs.get ⟨i, sorry⟩ opaque f : Option Bool → Bool opaque g : Bool → Bool def bad (xs : Array Bool) : Bool := let x := getElem xs 0 f x && g x
Without the special support, Lean fails at
g x
sayingx
has typeOption Bool
but is expected to have typeBool
. From the user's point of view this is a bug, sincelet x := getElem xs 0
clearly constrainsx
to beBool
, but we only obtain this information after we apply theOfNat
default instance for0
.Before converging to this solution, we have tried to create a "coercion placeholder" when
resultIsOutParamSupport = true
, but it did not work well in practice. For example, it failed in the example above.
Instances For
- f : Lean.Expr
- fType : Lean.Expr
- args : List Lean.Elab.Term.Arg
Remaining regular arguments.
- namedArgs : List Lean.Elab.Term.NamedArg
remaining named arguments to be processed.
When named arguments are provided and explicit arguments occurring before them are missing, the elaborator eta-expands the declaration. For example,
def f (x y : Nat) := x + y #check f (y := 5) -- fun x => f x 5
etaArgs
stores the fresh free variables for implementing the eta-expansion. When..
is used, eta-expansion is disabled, and missing arguments are treated as_
.- toSetErrorCtx : Array Lean.MVarId
Metavariables that we need to set the error context using the application being built.
- instMVars : Array Lean.MVarId
Metavariables for the instance implicit arguments that have already been processed.
- propagateExpected : Bool
The following field is used to implement the
propagateExpectedType
heuristic. It is set totrue
true whenexpectedType
still has to be propagated. - resultTypeOutParam? : Option Lean.MVarId
If the result type may be the
outParam
of some local instance. See comment atContext.resultIsOutParamSupport
Auxiliary structure for elaborating the application f args namedArgs
.
Instances For
Try to synthesize metavariables are instMVars
using type class resolution.
The ones that cannot be synthesized yet are registered.
Instances For
Remove named argument with name binderName
from namedArgs
.
Instances For
Elaborate function application arguments.
Eliminator-like function application elaborator #
- elimInfo : Lean.Meta.ElimInfo
- expectedType : Lean.Expr
Position of additional arguments that should be elaborated eagerly because they can contribute to the motive inference procedure. For example, in the following theorem the argument
h : a = b
should be elaborated eagerly because it containsb
which occurs inmotive b
.theorem Eq.subst' {α} {motive : α → Prop} {a b : α} (h : a = b) : motive a → motive b
Context of the elab_as_elim
elaboration procedure.
Instances For
- f : Lean.Expr
The resultant expression being built.
- fType : Lean.Expr
`f : fType
- namedArgs : List Lean.Elab.Term.NamedArg
User-provided named arguments that still have to be processed.
- args : List Lean.Elab.Term.Arg
User-provided arguments that still have to be processed.
Discriminants processed so far.
- instMVars : Array Lean.MVarId
Instance implicit arguments collected so far.
- idx : Nat
Position of the next argument to be processed. We use it to decide whether the argument is the motive or a discriminant.
Store the metavariable used to represent the motive that will be computed at
finalize
.
State of the elab_as_elim
elaboration procedure.
Instances For
Infer the motive
using the expected type by kabstract
ing the discriminants.
Instances For
If the eliminator is over-applied, we "revert" the extra arguments.
Instances For
Construct the resulting application after all discriminants have bee elaborated, and we have consumed as many given arguments as possible.
Instances For
Return the next argument to be processed.
The result is .none
if it is an implicit argument which was not provided using a named argument.
The result is .undef
if args
is empty and namedArgs
does contain an entry for binderName
.
Instances For
Set the motive
field in the state.
Instances For
Push the given expression into the discrs
field in the state.
Instances For
Save information for producing error messages.
Instances For
Create an implicit argument using the given BinderInfo
.
Instances For
Main loop of the elimAsElab
procedure.
Function application elaboration #
Elaborate a f
-application using namedArgs
and args
as the arguments.
expectedType?
the expected type if available. It is used to propagate typing information only. This method does not ensure the result has this type.explicit = true
when notation@
is used, and implicit arguments are assumed to be provided atnamedArgs
andargs
.ellipsis = true
when notation..
is used. That is, we add_
for missing arguments.resultIsOutParamSupport
is used to control whether special support is used when processing applications of functions that return output parameter of some local instance. Example:
The result typeGetElem.getElem : {Cont : Type u_1} → {Idx : Type u_2} → {elem : Type u_3} → {dom : cont → idx → Prop} → [self : GetElem cont idx elem dom] → (xs : cont) → (i : idx) → dom xs i → elem
elem
is the output parameter of the local instanceself
. When this parameter is set totrue
, we executesynthesizeSyntheticMVarsUsingDefault
. For additional details, see comment atElabAppArgs.resultIsOutParam
.
Instances For
Return some info
if we should elaborate as an eliminator.
Instances For
Collect extra argument positions that must be elaborated eagerly when using elab_as_elim
.
The idea is that the contribute to motive inference. See comment at ElamElim.Context.extraArgsPos
.
Instances For
- projFn: Lake.Name → Lake.Name → Lake.Name → Lean.Elab.Term.LValResolution
- projIdx: Lake.Name → Nat → Lean.Elab.Term.LValResolution
- const: Lake.Name → Lake.Name → Lake.Name → Lean.Elab.Term.LValResolution
- localRec: Lake.Name → Lake.Name → Lean.Expr → Lean.Elab.Term.LValResolution
Auxiliary inductive datatype that represents the resolution of an LVal
.
Instances For
Instances For
Interaction between errToSorry
and observing
. #
-
The method
elabTerm
catches exceptions, logs them, and returns a synthetic sorry (IFctx.errToSorry
== true). -
When we elaborate choice nodes (and overloaded identifiers), we track multiple results using the
observing x
combinator. Theobserving x
executesx
and returns aTermElabResult
.
observing
x does not check for synthetic sorry's, just an exception. Thus, it may think x
worked when it didn't
if a synthetic sorry was introduced. We decided that checking for synthetic sorrys at observing
is not a good solution
because it would not be clear to decide what the "main" error message for the alternative is. When the result contains
a synthetic sorry
, it is not clear which error message corresponds to the sorry
. Moreover, while executing x
, many
error messages may have been logged. Recall that we need an error per alternative at mergeFailures
.
Thus, we decided to set errToSorry
to false
whenever processing choice nodes and overloaded symbols.
Important: we rely on the property that after errToSorry
is set to
false, no elaboration function executed by x
will reset it to
true
.