See file DiscrTree.lean
for the actual implementation and documentation.
- const: {simpleReduce : Bool} → Lake.Name → Nat → Lean.Meta.DiscrTree.Key simpleReduce
- fvar: {simpleReduce : Bool} → Lean.FVarId → Nat → Lean.Meta.DiscrTree.Key simpleReduce
- lit: {simpleReduce : Bool} → Lean.Literal → Lean.Meta.DiscrTree.Key simpleReduce
- star: {simpleReduce : Bool} → Lean.Meta.DiscrTree.Key simpleReduce
- other: {simpleReduce : Bool} → Lean.Meta.DiscrTree.Key simpleReduce
- arrow: {simpleReduce : Bool} → Lean.Meta.DiscrTree.Key simpleReduce
- proj: {simpleReduce : Bool} → Lake.Name → Nat → Nat → Lean.Meta.DiscrTree.Key simpleReduce
Discrimination tree key. See DiscrTree
Instances For
instance
Lean.Meta.DiscrTree.instBEqKey :
{simpleReduce : Bool} → BEq (Lean.Meta.DiscrTree.Key simpleReduce)
instance
Lean.Meta.DiscrTree.instReprKey :
{simpleReduce : Bool} → Repr (Lean.Meta.DiscrTree.Key simpleReduce)
- node: {α : Type} → {simpleReduce : Bool} → Array α → Array (Lean.Meta.DiscrTree.Key simpleReduce × Lean.Meta.DiscrTree.Trie α simpleReduce) → Lean.Meta.DiscrTree.Trie α simpleReduce
Discrimination tree trie. See DiscrTree
.
Instances For
- root : Lean.PersistentHashMap (Lean.Meta.DiscrTree.Key simpleReduce) (Lean.Meta.DiscrTree.Trie α simpleReduce)
Discrimination trees. It is an index from terms to values of type α
.
If simpleReduce := true
, then only simple reduction are performed while
indexing/retrieving terms. For example, iota
reduction is not performed.
We use simpleReduce := false
in the type class resolution module,
and simpleReduce := true
in simp
.
Motivations:
- In
simp
, we want to havesimp
theorem such as
@[simp] theorem liftOn_mk (a : α) (f : α → γ) (h : ∀ a₁ a₂, r a₁ a₂ → f a₁ = f a₂) :
Quot.liftOn (Quot.mk r a) f h = f a := rfl
If we enable iota
, then the lhs is reduced to f a
.
- During type class resolution, we often want to reduce types using even
iota
. Example:
inductive Ty where
| int
| bool
@[reducible] def Ty.interp (ty : Ty) : Type :=
Ty.casesOn (motive := fun _ => Type) ty Int Bool
def test {a b c : Ty} (f : a.interp → b.interp → c.interp) (x : a.interp) (y : b.interp) : c.interp :=
f x y
def f (a b : Ty.bool.interp) : Ty.bool.interp :=
-- We want to synthesize `BEq Ty.bool.interp` here, and it will fail
-- if we do not reduce `Ty.bool.interp` to `Bool`.
test (.==.) a b