instance
Lean.instInhabitedRBTree
{α : Type u_1}
{p : α → α → Ordering}
:
Inhabited (Lean.RBTree α p)
@[inline]
Instances For
instance
Lean.instEmptyCollectionRBTree
(α : Type u)
(cmp : α → α → Ordering)
:
EmptyCollection (Lean.RBTree α cmp)
@[inline]
Instances For
@[inline]
def
Lean.RBTree.depth
{α : Type u}
{cmp : α → α → Ordering}
(f : Nat → Nat → Nat)
(t : Lean.RBTree α cmp)
:
Instances For
@[inline]
def
Lean.RBTree.fold
{α : Type u}
{β : Type v}
{cmp : α → α → Ordering}
(f : β → α → β)
(init : β)
(t : Lean.RBTree α cmp)
:
β
Instances For
@[inline]
def
Lean.RBTree.revFold
{α : Type u}
{β : Type v}
{cmp : α → α → Ordering}
(f : β → α → β)
(init : β)
(t : Lean.RBTree α cmp)
:
β
Instances For
@[inline]
def
Lean.RBTree.foldM
{α : Type u}
{β : Type v}
{cmp : α → α → Ordering}
{m : Type v → Type w}
[Monad m]
(f : β → α → m β)
(init : β)
(t : Lean.RBTree α cmp)
:
m β
Instances For
@[inline]
def
Lean.RBTree.forM
{α : Type u}
{cmp : α → α → Ordering}
{m : Type v → Type w}
[Monad m]
(f : α → m PUnit)
(t : Lean.RBTree α cmp)
:
m PUnit
Instances For
@[inline]
def
Lean.RBTree.forIn
{α : Type u}
{cmp : α → α → Ordering}
{m : Type u_1 → Type u_2}
{σ : Type u_1}
[Monad m]
(t : Lean.RBTree α cmp)
(init : σ)
(f : α → σ → m (ForInStep σ))
:
m σ
Instances For
instance
Lean.RBTree.instForInRBTree
{α : Type u}
{cmp : α → α → Ordering}
{m : Type u_1 → Type u_2}
:
ForIn m (Lean.RBTree α cmp) α
@[inline]
Instances For
@[specialize #[]]
Instances For
@[specialize #[]]
Instances For
@[inline]
Instances For
@[inline]
Instances For
instance
Lean.RBTree.instReprRBTree
{α : Type u}
{cmp : α → α → Ordering}
[Repr α]
:
Repr (Lean.RBTree α cmp)
@[inline]
def
Lean.RBTree.insert
{α : Type u}
{cmp : α → α → Ordering}
(t : Lean.RBTree α cmp)
(a : α)
:
Lean.RBTree α cmp
Instances For
@[inline]
def
Lean.RBTree.erase
{α : Type u}
{cmp : α → α → Ordering}
(t : Lean.RBTree α cmp)
(a : α)
:
Lean.RBTree α cmp
Instances For
@[specialize #[]]
Equations
- Lean.RBTree.ofList [] = Lean.mkRBTree α cmp
- Lean.RBTree.ofList (x_1 :: xs) = Lean.RBTree.insert (Lean.RBTree.ofList xs) x_1
Instances For
@[inline]
def
Lean.RBTree.find?
{α : Type u}
{cmp : α → α → Ordering}
(t : Lean.RBTree α cmp)
(a : α)
:
Option α
Instances For
@[inline]
Instances For
Instances For
Instances For
@[inline]
Instances For
@[inline]
Instances For
def
Lean.RBTree.subset
{α : Type u}
{cmp : α → α → Ordering}
(t₁ : Lean.RBTree α cmp)
(t₂ : Lean.RBTree α cmp)
:
Instances For
def
Lean.RBTree.seteq
{α : Type u}
{cmp : α → α → Ordering}
(t₁ : Lean.RBTree α cmp)
(t₂ : Lean.RBTree α cmp)
:
Instances For
def
Lean.RBTree.union
{α : Type u}
{cmp : α → α → Ordering}
(t₁ : Lean.RBTree α cmp)
(t₂ : Lean.RBTree α cmp)
:
Lean.RBTree α cmp
Instances For
def
Lean.RBTree.diff
{α : Type u}
{cmp : α → α → Ordering}
(t₁ : Lean.RBTree α cmp)
(t₂ : Lean.RBTree α cmp)
:
Lean.RBTree α cmp