
Number Theory/Cryptography (part 1 of CSC 282)
http://www.cs.rochester.edu/~stefanko/Teaching/11CS282

1 Schedule

The homework is due Sep 8
Graded homework will be available at noon Sep 9, noon.
EXAM #1 will be on Tuesday, Sep. 13.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

B: Addition (p.11, DSV).
B: Multiplication (p.15, DSV).
B: Division (p.15, DSV).
B: Modular exponentiation (p.19, DSV).
B: Euclid’s algorithm (p.20, DSV).
I: Extended Euclid’s algorithm (p.21, DSV).
A: Primality testing (p.25, DSV).
A: Generating random primes (p.28, DSV).
A: RSA (p.33, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

• Modular arithmetic, Fermat’s little theorem.
Theorem: Let p be a prime and let a be an integer such that gcd(a, p) = 1. Then ap−1 ≡ 1 (mod p).

Theorem: Let p be a prime and let a be an integer. Then ap ≡ a (mod p).

Simple (computational) questions:

• Compute ab mod c. (c will be a prime smaller than 20.)

• Trace the execution of Euclid’s gcd algorithm.

• Compute the multiplicative inverse of a modulo b.

• Apply Fermat’s little theorem in a computation (see problems 1.1, 1.4, 1.5, below).

Example problems (solve, but do NOT turn in):

1.1 Compute 380 mod 5.

1.2 Compute gcd(30, 81). Compute gcd(55, 34). Use Euclid’s gcd algorithm. Show all steps.

1.3 Compute the multiplicative inverse of 26 modulo 677.

1.4 Is 4200 − 9100 divisible by 35? Use Fermat’s little theorem to prove your answer.

1.5 What is 33100
mod5? (as usual, abc

is a raised to the bc-th power).
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1.6 Prove that for every integer x, either x2 ≡ 0 (mod 4) or x2 ≡ 1 (mod 4).

1.7 Let p, q be two different primes. Let x, y be such that x ≡ y (mod p) and x ≡ y (mod q). Prove that x ≡
y (mod pq).

4 Basic Homework - solve and turn in

1.8 (due Sep 8) Solve the following system of congruences:

x ≡ 20 (mod 21),
x ≡ 21 (mod 22),
x ≡ 22 (mod 23).

That is, find x ∈ {0, . . . , 10625} that satisfies all 3 congruences above. (Hint: Chinese remainder theorem.)

1.9 (due Sep 8) Let p be a prime and let a, b be two integers such that a2 ≡ b2 (mod p). Prove that either
a ≡ b (mod p) or a ≡ −b (mod p). (Hint: you will need to use the following fact about primes and divisibility. If p
is a prime and p | cd then p | c or p | d.)

1.10 (due Sep 8) For each of the following—prove or disprove (clearly state which of the two are you doing):

• For all x ∈ Z such that gcd(x, 19) = 1 we have x18 ≡ 1 (mod 19).

• For all x ∈ Z such that gcd(x, 21) = 1 we have x18 ≡ 1 (mod 21).

• For all x ∈ Z we have x37 ≡ x (mod 37).

• For all x ∈ Z we have x37 ≡ x (mod 35).

5 Advanced Homework solve and turn in

Please, make sure that the basic homework and the advanced homework are on separate sheets of paper.

1.11 (due Sep 8) Let p be a prime such that p ≡ 3 (mod 4). We would like to have an algorithm which on input
x computes the square root of x, that is, y such that y2 ≡ x (mod p). Show that we can let y := x(p+1)/4 (mod p).

1.12 (due Sep 8) Let x, y be unknown positive integers. Let A = xy and B = x + y. Give a polynomial-time
algorithm which on input A,B computes x, y. Clearly state and analyze the running time of your algorithm.

1.13 (due Sep 8) Professor A designed a black-box which on input a computes a2 in time O(log a). We would like
to use the black-box to multiply numbers, i. e., on input a, b we want to compute ab. We want our algorithm to run
in time O(log(ab)).

a) Give such an algorithm.

b) Suppose now, that instead of x 7→ x2 black-box, we have x 7→ x3 black-box. Show how we can use the new
black-box to multiply numbers a, b in time O(log(ab)).

c) Suppose now, that instead of x 7→ x2 black-box, we have x 7→ x4 black-box. Show how we can use the new
black-box to multiply numbers a, b in time O(log(ab)).

In parts a), b), c) you can assume that we can add two numbers c, d in O(log(cd))-time. You can also assume that
for any constant f we can divide d by f in O(log d)-time.

1.14 (due Sep 8) Fibonnaci numbers are defined as follows: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.
Give a polynomial-time algorithm which on input n and M outputs (Fn mod M). (Note that the input length is
Θ(log n + log M), and your algorithm has to run in time polynomial in the input length).
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6 Additional problems from the book (do NOT turn in)

Try to solve the following problems. A few of them will be on the quiz.

• 1.1, 1.4, 1.5, 1.10, 1.11, 1.14, 1.15, 1.19, 1.20, 1.22, 1.23, 1.25, 1.26, 1.31, 1.32, 1.37, 1.39.

3



7 Additional problems (do NOT turn in)

Solve the problems below; use the answer key below to check your answers.

Definitions: Z = {. . . ,−2,−1, 0, 1, 2, . . . } denotes the set of integers, N = {1, 2, 3, . . . } denotes the set of natural
numbers (which we define to be positive integers). For a, b ∈ Z we say a divides b (notation: a | b) if there exists
c ∈ Z such that b = ac. For a, b, m ∈ Z we say a is congruent to b modulo m (notation: a ≡ b (mod m)) if
m | (a − b). We say that a natural number n is a prime if there are exactly 2 natural numbers that divide n (they
are 1 and n, with n 6= 1). For a natural number m we let Z∗m = {a ∈ {1, . . . ,m− 1} | gcd(a,m) = 1}, that is, Z∗

m are
the numbers from {1, . . . ,m− 1} that are co-prime with m.

1. If p, q are different primes then gcd(p, q) = 1. TRUE - FALSE

2. If 2 | (a + b) then a ≡ b (mod 2). TRUE - FALSE

3. If p is a prime and p | (a + b) then a ≡ b (mod p). TRUE - FALSE

4. If m | (a− b) then a ≡ b (mod m). TRUE - FALSE

5. If ab ≡ 1 mod c then gcd(a, c) = 1. TRUE - FALSE

6. If ab ≡ 1 mod c then gcd(a, b) = 1. TRUE - FALSE

7. If a | b and b | c then a | c. TRUE - FALSE

8. If a | bc then a | b or a | c. TRUE - FALSE

9. If p is a prime, p | (b + c), and p | (b− c) then p | c. TRUE - FALSE

10. If gcd(a, c) = 1 and gcd(b, c) = 1 then gcd(ab, c) = 1. TRUE - FALSE
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11. If gcd(a, c) = 1 and gcd(b, c) = 1 then gcd(a + b, c) = 1. TRUE - FALSE

12. If gcd(a, b) = 1 and gcd(c, d) = 1 then gcd(ac, bd) = 1. TRUE - FALSE

13. If p is a prime and p | a2 then p | a. TRUE - FALSE

14. If p is an odd prime then 3(p−1)/2 ≡ 1 (mod p). TRUE - FALSE

15. If p is an odd prime then 4(p−1)/2 ≡ 1 (mod p). TRUE - FALSE

16. If p is an odd prime, p | (b + c), and p | (b2 + c2) then p | c. TRUE - FALSE

17. If a | c and b | c then ab |c. TRUE - FALSE

18. Let p be a prime. If ak ≡ 1 (mod p) and bk ≡ 1 (mod p) then (ab)k ≡ 1 (mod p).
TRUE - FALSE

19. Let m ≥ 2. If ak ≡ 1 (mod m) and bk ≡ 1 (mod m) then (ab)k ≡ 1 (mod m).
TRUE - FALSE

20. Let m ≥ 2. If for all a ∈ {1, . . . ,m− 1} we have am−1 ≡ 1 (mod m) then m is a prime.
TRUE - FALSE

21. Let m ≥ 2. If for all a ∈ Z∗m we have am−1 ≡ 1 (mod m) then m is a prime.
TRUE - FALSE
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22. Let p be a prime. If a ≡ 1 (mod p− 1) and gcd(p, b) = 1 then ba ≡ b (mod p).
TRUE - FALSE

23. Let p be a prime. If a ≡ 1 (mod p− 1) and gcd(p, b) = 1 then ab ≡ a (mod p).
TRUE - FALSE

24. Let p be a prime. If a ≡ 1 (mod p) and gcd(p− 1, b) = 1 then ba ≡ b (mod p).
TRUE - FALSE

25. Let p be a prime. If a ≡ 1 (mod p) and gcd(p− 1, b) = 1 then ab ≡ a (mod p).
TRUE - FALSE

26. If 2 | (a + b) then a2 ≡ b2 (mod 2). TRUE - FALSE

27. Assume a, b, c ∈ N. If ab ≡ 1 (mod c) then gcd(a, c) = 1. TRUE - FALSE

28. Assume a, b, c ∈ N. If ab ≡ 1 (mod c) then gcd(b, c) = 1. TRUE - FALSE

29. If p is an odd prime then 4(p+1)/2 ≡ 4 (mod p). TRUE - FALSE

30. If gcd(a + b, c) = 1 and gcd(b, c) = 1 then gcd(a, c) = 1. TRUE - FALSE

31. Let p be a prime, a ∈ {2, . . . , p− 1}, and b ∈ N. If ab ≡ a (mod p) then gcd(b, p− 1) = 1.
TRUE - FALSE
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Solutions.

1. If p, q are different primes then gcd(p, q) = 1. TRUE - FALSE

(WHY: w.l.o.g. p < q; assume, for the sake of contradiction, that gcd(p, q) = a > 1; then a | q, yet a 6= 1 and
a 6= q (since a ≤ p < q), contradicting the assumption that q is a prime.)

2. If 2 | (a + b) then a ≡ b (mod 2). TRUE - FALSE

(WHY: if 2 | (a + b) then either both a, b are even or both a, b are odd; in both cases a ≡ b (mod 2).)

3. If p is a prime and p | (a + b) then a ≡ b (mod p). TRUE - FALSE

(WHY: p = 3, a = 1, b = 2 is a counterexample.)

4. If m | (a− b) then a ≡ b (mod m). TRUE - FALSE

(WHY: definition of a ≡ b (mod m).)

5. If ab ≡ 1 mod c then gcd(a, c) = 1. TRUE - FALSE

(WHY: assume, for the sake of contradiction, that gcd(a, c) = t > 1; then t | a and t | (1− ab), hence t | 1, and
hence t = 1, a contradiction (we used the fact that t |A and t |B implies t | (A + B) (used with A = ab and
B = 1− ab).)

6. If ab ≡ 1 mod c then gcd(a, b) = 1. TRUE - FALSE

(WHY: p = 7, a = 2, b = 4 is a counterexample.)

7. If a | b and b | c then a | c. TRUE - FALSE

(WHY: we have X ∈ Z such that b = aX and Y ∈ Z such that c = bY ; hence c = a(XY ), thus, a | c.)

8. If a | bc then a | b or a | c. TRUE - FALSE

(WHY: a = 4, b = 2, c = 2 is a counterexample.)

9. If p is a prime, p | (b + c), and p | (b− c) then p | c. TRUE - FALSE

(WHY: p = 2, a = 1, b = 1 is a counterexample.)

10. If gcd(a, c) = 1 and gcd(b, c) = 1 then gcd(ab, c) = 1. TRUE - FALSE

(WHY: no prime divides both a and c; no prime divides both b and c; hence no prime divides both ab and c
(since the set of primes dividing ab is the union of the set of primes dividing a and the set of primes dividing
b).)
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11. If gcd(a, c) = 1 and gcd(b, c) = 1 then gcd(a + b, c) = 1. TRUE - FALSE

(WHY: a = 1, b = 1, c = 2 is a counterexample.)

12. If gcd(a, b) = 1 and gcd(c, d) = 1 then gcd(ac, bd) = 1. TRUE - FALSE

(WHY: a = 1, b = 2, c = 2, d = 1 is a counterexample.)

13. If p is a prime and p | a2 then p | a. TRUE - FALSE

(WHY: this follows from that fact that if p is a prime and p |XY then p |X or p |Y (used with X = Y = a).)

14. If p is an odd prime then 3(p−1)/2 ≡ 1 (mod p). TRUE - FALSE

(WHY: p = 3 is a counterexample.)

15. If p is an odd prime then 4(p−1)/2 ≡ 1 (mod p). TRUE - FALSE

(WHY: since 4 = 22 we have 4(p−1)/2 ≡ 2p−1 ≡ 1 (mod p), the last congruence follows from Fermat’s little
theorem.)

16. If p is an odd prime, p | (b + c), and p | (b2 + c2) then p | c. TRUE - FALSE

(WHY: p | (b + c) implies p | (b2 − c2), which combined with p | (b2 + c2) implies p | 2c2; now since p is odd we
cannot have p | 2 and hence p | c2 which, in turn, implies p | c.)

17. If a | c and b | c then ab |c. TRUE - FALSE

(WHY: a = 2, b = 2, c = 2 is a counterexample.)

18. Let p be a prime. If ak ≡ 1 (mod p) and bk ≡ 1 (mod p) then (ab)k ≡ 1 (mod p).
TRUE - FALSE

(WHY: see the next problem.)

19. Let m ≥ 2. If ak ≡ 1 (mod m) and bk ≡ 1 (mod m) then (ab)k ≡ 1 (mod m).
TRUE - FALSE

(WHY: (ab)k = akbk; A ≡ B (mod m) and C ≡ D (mod m) implies AC ≡ BD (mod m).)

20. Let m ≥ 2. If for all a ∈ {1, . . . ,m− 1} we have am−1 ≡ 1 (mod m) then m is a prime.
TRUE - FALSE

(WHY: if m is not a prime then take a |m where a ∈ {2, . . . ,m− 1}; then a | am−1; then a - (am−1− 1); hence
m - (am−1 − 1) and hence am−1 6≡ 1 (mod m).)

21. Let m ≥ 2. If for all a ∈ Z∗m we have am−1 ≡ 1 (mod m) then m is a prime.
TRUE - FALSE

(WHY: Carmichael numbers, for example m = 561, are a counterexample.)
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22. Let p be a prime. If a ≡ 1 (mod p− 1) and gcd(p, b) = 1 then ba ≡ b (mod p).
TRUE - FALSE

(WHY: We have a = 1 + k(p − 1) for some k ∈ Z; then ba ≡ b(bp−1)k ≡ b (mod p), using Fermat’s little
theorem in the last congruence.)

23. Let p be a prime. If a ≡ 1 (mod p− 1) and gcd(p, b) = 1 then ab ≡ a (mod p).
TRUE - FALSE

(WHY: p = 3, a = 5, b = 2 is a counterexample.)

24. Let p be a prime. If a ≡ 1 (mod p) and gcd(p− 1, b) = 1 then ba ≡ b (mod p).
TRUE - FALSE

(WHY: p = 3, a = 4, b = 5 is a counterexample.)

25. Let p be a prime. If a ≡ 1 (mod p) and gcd(p− 1, b) = 1 then ab ≡ a (mod p).
TRUE - FALSE

(WHY: If a ≡ 1 (mod p) then ab ≡ 1 (mod p) for any b ∈ N.)

26. If 2 | (a + b) then a2 ≡ b2 (mod 2). TRUE - FALSE

(WHY: if 2|(a + b) then either both a, b are even or both a, b are odd; in both cases a2 ≡ b2 (mod 2).)

27. Assume a, b, c ∈ N. If ab ≡ 1 (mod c) then gcd(a, c) = 1. TRUE - FALSE

(WHY: if gcd(a, c) = t > 1 then t | ab; hence t - (ab − 1); hence c - (ab − 1); hence ab 6≡ 1 (mod c).)

28. Assume a, b, c ∈ N. If ab ≡ 1 (mod c) then gcd(b, c) = 1. TRUE - FALSE

(WHY: a = 1, b = 2, c = 2 is a counterexample.)

29. If p is an odd prime then 4(p+1)/2 ≡ 4 (mod p). TRUE - FALSE

(WHY: since 4 = 22 we have 4(p+1)/2 ≡ 2p+1 ≡ 22 (mod p), where in the last congruence we used Fermat’s
little theorem)

30. If gcd(a + b, c) = 1 and gcd(b, c) = 1 then gcd(a, c) = 1. TRUE - FALSE

(WHY: a = 2, b = 1, c = 2 is a counterexample)

31. Let p be a prime, a ∈ {2, . . . , p− 1}, and b ∈ N. If ab ≡ a (mod p) then gcd(b, p− 1) = 1.
TRUE - FALSE

(WHY: p = 7, a = 2, b = 4 is a counterexample)
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