1 Schedule

The homework is **due Sep 8** Graded homework will be available at noon **Sep 9**, **noon**. **EXAM** #1 will be on **Tuesday, Sep. 13**.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

- B: Addition (p.11, DSV).
- B: Multiplication (p.15, DSV).
- B: Division (p.15, DSV).
- B: Modular exponentiation (p.19, DSV).
- B: Euclid's algorithm (p.20, DSV).
- I: Extended Euclid's algorithm (p.21, DSV).
- A: Primality testing (p.25, DSV).
- A: Generating random primes (p.28, DSV).
- A: RSA (p.33, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

• Modular arithmetic, Fermat's little theorem.

Theorem: Let p be a prime and let a be an integer such that gcd(a, p) = 1. Then $a^{p-1} \equiv 1 \pmod{p}$.

Theorem: Let p be a prime and let a be an integer. Then $a^p \equiv a \pmod{p}$.

Simple (computational) questions:

- Compute $a^b \mod c$. (c will be a prime smaller than 20.)
- Trace the execution of Euclid's gcd algorithm.
- Compute the multiplicative inverse of a modulo b.
- Apply Fermat's little theorem in a computation (see problems 1.1, 1.4, 1.5, below).

Example problems (solve, but do NOT turn in):

- 1.1 Compute $3^{80} \mod 5$.
- 1.2 Compute gcd(30, 81). Compute gcd(55, 34). Use Euclid's gcd algorithm. Show all steps.
- 1.3 Compute the multiplicative inverse of 26 modulo 677.
- 1.4 Is $4^{200} 9^{100}$ divisible by 35? Use Fermat's little theorem to prove your answer.
- **1.5** What is $3^{3^{100}} \mod 5$? (as usual, a^{b^c} is a raised to the b^c -th power).

1.6 Prove that for every integer x, either $x^2 \equiv 0 \pmod{4}$ or $x^2 \equiv 1 \pmod{4}$.

1.7 Let p, q be two different primes. Let x, y be such that $x \equiv y \pmod{p}$ and $x \equiv y \pmod{q}$. Prove that $x \equiv y \pmod{p}$.

4 <u>Basic Homework</u> - solve and turn in

1.8 (due Sep 8) Solve the following system of congruences:

 $x \equiv 20 \pmod{21},$ $x \equiv 21 \pmod{22},$ $x \equiv 22 \pmod{23}.$

That is, find $x \in \{0, \ldots, 10625\}$ that satisfies all 3 congruences above. (HINT: Chinese remainder theorem.)

1.9 (due Sep 8) Let p be a prime and let a, b be two integers such that $a^2 \equiv b^2 \pmod{p}$. Prove that either $a \equiv b \pmod{p}$ or $a \equiv -b \pmod{p}$. (HINT: you will need to use the following fact about primes and divisibility. If p is a prime and $p \mid cd$ then $p \mid c$ or $p \mid d$.)

1.10 (due Sep 8) For each of the following—prove or disprove (clearly state which of the two are you doing):

- For all $x \in \mathbb{Z}$ such that gcd(x, 19) = 1 we have $x^{18} \equiv 1 \pmod{19}$.
- For all $x \in \mathbb{Z}$ such that gcd(x, 21) = 1 we have $x^{18} \equiv 1 \pmod{21}$.
- For all $x \in \mathbb{Z}$ we have $x^{37} \equiv x \pmod{37}$.
- For all $x \in \mathbb{Z}$ we have $x^{37} \equiv x \pmod{35}$.

5 <u>Advanced Homework</u> solve and turn in

Please, make sure that the basic homework and the advanced homework are on separate sheets of paper.

1.11 (due Sep 8) Let p be a prime such that $p \equiv 3 \pmod{4}$. We would like to have an algorithm which on input x computes the square root of x, that is, y such that $y^2 \equiv x \pmod{p}$. Show that we can let $y := x^{(p+1)/4} \pmod{p}$.

1.12 (due Sep 8) Let x, y be unknown positive integers. Let A = xy and B = x + y. Give a polynomial-time algorithm which on input A, B computes x, y. Clearly state and analyze the running time of your algorithm.

1.13 (due Sep 8) Professor A designed a black-box which on input *a* computes a^2 in time $O(\log a)$. We would like to use the black-box to multiply numbers, i. e., on input *a*, *b* we want to compute *ab*. We want our algorithm to run in time $O(\log(ab))$.

- a) Give such an algorithm.
- b) Suppose now, that instead of $x \mapsto x^2$ black-box, we have $x \mapsto x^3$ black-box. Show how we can use the new black-box to multiply numbers a, b in time $O(\log(ab))$.
- c) Suppose now, that instead of $x \mapsto x^2$ black-box, we have $x \mapsto x^4$ black-box. Show how we can use the new black-box to multiply numbers a, b in time $O(\log(ab))$.

In parts a), b), c) you can assume that we can add two numbers c, d in $O(\log(cd))$ -time. You can also assume that for any constant f we can divide d by f in $O(\log d)$ -time.

1.14 (due Sep 8) Fibonnaci numbers are defined as follows: $F_0 = 0, F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Give a polynomial-time algorithm which on input n and M outputs ($F_n \mod M$). (Note that the input length is $\Theta(\log n + \log M)$, and your algorithm has to run in time polynomial in the input length).

6 Additional problems from the book (do NOT turn in)

Try to solve the following problems. A few of them $\underline{\rm will}\ \underline{\rm be}$ on the quiz.

 $\bullet \ 1.1, \ 1.4, \ 1.5, \ 1.10, \ 1.11, \ 1.14, \ 1.15, \ 1.19, \ 1.20, \ 1.22, \ 1.23, \ 1.25, \ 1.26, \ 1.31, \ 1.32, \ 1.37, \ 1.39.$

7 Additional problems (do NOT turn in)

Solve the problems below; use the answer key below to check your answers.

Definitions: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ denotes the set of **integers**, $\mathbb{N} = \{1, 2, 3, \dots\}$ denotes the set of **natural numbers** (which we define to be positive integers). For $a, b \in \mathbb{Z}$ we say a **divides** b (notation: $a \mid b$) if there exists $c \in \mathbb{Z}$ such that b = ac. For $a, b, m \in \mathbb{Z}$ we say a is **congruent** to b modulo m (notation: $a \equiv b \pmod{m}$) if $m \mid (a - b)$. We say that a natural number n is a **prime** if there are exactly 2 natural numbers that divide n (they are 1 and n, with $n \neq 1$). For a natural number m we let $\mathbb{Z}_m^* = \{a \in \{1, \dots, m-1\} \mid \gcd(a, m) = 1\}$, that is, \mathbb{Z}_m^* are the numbers from $\{1, \dots, m-1\}$ that are *co-prime* with m.

1. If	p, q are different primes then $gcd(p, q) = 1$.	TRUE	-	FALSE
2. If	$2 \mid (a+b)$ then $a \equiv b \pmod{2}$.	TRUE	-	FALSE
3. If	$p \text{ is a prime and } p \mid (a+b) \text{then} a \equiv b \pmod{p}.$	TRUE	-	FALSE
4. If	$m \mid (a - b)$ then $a \equiv b \pmod{m}$.	TRUE	-	FALSE
5. If	$ab \equiv 1 \mod c$ then $\gcd(a, c) = 1$.	TRUE	-	FALSE
6. If	$ab \equiv 1 \mod c$ then $\gcd(a, b) = 1$.	TRUE	-	FALSE
7. If	$a \mid b \text{ and } b \mid c ext{ then } a \mid c.$	TRUE	-	FALSE
8. If	$a \mid bc$ then $a \mid b$ or $a \mid c$.	TRUE	-	FALSE
9. If	$p \text{ is a prime, } p \mid (b+c), \text{ and } p \mid (b-c) \text{ then } p \mid c.$	TRUE	-	FALSE
10. If	gcd(a, c) = 1 and $gcd(b, c) = 1$ then $gcd(ab, c) = 1$.	TRUE	-	FALSE

11.	If	gcd(a,c) = 1 and $gcd(b,c) = 1$ then $gcd(a+b,c) = 1$.	TRUE	-	FALSE
12.	If	gcd(a,b) = 1 and $gcd(c,d) = 1$ then $gcd(ac,bd) = 1$.	TRUE	-	FALSE
13.	If	p is a prime and $p a^2$ then $p a$.	TRUE	-	FALSE
14.	If	$p \text{ is an odd prime}$ then $3^{(p-1)/2} \equiv 1 \pmod{p}$.	TRUE	-	FALSE
15.	If	$p \text{ is an odd prime}$ then $4^{(p-1)/2} \equiv 1 \pmod{p}$.	TRUE	-	FALSE
16.	If	p is an odd prime, $p \mid (b+c)$, and $p \mid (b^2 + c^2)$ then $p \mid c$.	TRUE	-	FALSE
17.	If	$a \mid c \text{ and } b \mid c ext{ then } ab \mid c.$	TRUE	-	FALSE
18.	Let	p be a prime. If $a^k \equiv 1 \pmod{p}$ and $b^k \equiv 1 \pmod{p}$ then $(ab)^k \equiv 1 \pmod{p}$). TRUE	-	FALSE
19.	Let	$m \ge 2$. If $a^k \equiv 1 \pmod{m}$ and $b^k \equiv 1 \pmod{m}$ then $(ab)^k \equiv 1 \pmod{m}$.	TRUE	-	FALSE
20.	Let	$m \ge 2$. If for all $a \in \{1, \dots, m-1\}$ we have $a^{m-1} \equiv 1 \pmod{m}$ then m is a particular term.	prime. TRUE	-	FALSE
21.	Let	$m \ge 2$. If for all $a \in \mathbb{Z}_m^*$ we have $a^{m-1} \equiv 1 \pmod{m}$ then m is a prime.	TRUE	-	FALSE

22.	Let	p be a prime. If	$a \equiv 1 \pmod{p-1} =$	and gc	$\mathbf{d}(p,b) = 1$	then	$b^a \equiv b \pmod{p}.$	TRUE	-	FALSE
23.	Let	p be a prime. If	$a \equiv 1 \pmod{p-1}$	and gc	$\mathbf{d}(p,b) = 1$	then	$a^b \equiv a \pmod{p}.$	TRUE	-	FALSE
24.	Let	p be a prime. If	$a \equiv 1 \pmod{p}$ and	$\gcd(p$	(-1, b) = 1	then	$b^a \equiv b \pmod{p}.$	TRUE	-	FALSE
25.	Let	p be a prime. If	$a \equiv 1 \pmod{p}$ and	$\gcd(p$	(-1, b) = 1	then	$a^b \equiv a \pmod{p}.$	TRUE	-	FALSE
26.	If	2 (a+b) then	$a^2 \equiv b^2 \pmod{2}$.					TRUE	-	FALSE
27.	Ass	ume $a, b, c \in \mathbb{N}$. If	$a^b \equiv 1 \pmod{c}$	then	gcd(a,c) =	1.		TRUE	-	FALSE
28.	Ass	ume $a, b, c \in \mathbb{N}$. If	$a^b \equiv 1 \pmod{c}$	then	$\gcd(b,c) =$	1.		TRUE	-	FALSE
29.	If	p is an odd prime	then $4^{(p+1)/2}$	$\equiv 4 (m$	nod p).			TRUE	-	FALSE
30.	If	gcd(a+b,c) = 1 a	and $gcd(b,c) = 1$ t	then	gcd(a,c) = 1	L.		TRUE	-	FALSE
31.	Let	p be a prime, $a \in \mathbb{R}$	$\{2, \ldots, p-1\}, \text{ and } b$	$b \in \mathbb{N}.$	If $a^b \equiv a \pmod{\frac{1}{2}}{\frac{1}{2}}$	od p) th	nen $gcd(b, p-1)$	= 1.TRUE	_	FALSE

Solutions.

1.	If p, q are different primes then $gcd(p, q) = 1$.	TRUE	-	FALSE
	(WHY: w.l.o.g. $p < q$; assume, for the sake of contradiction, that $gcd(p,q) = a > 1$; $a \neq q$ (since $a \leq p < q$), contradicting the assumption that q is a prime.)	then $a \mid q$,	yet a	$a \neq 1$ and
2.	If $2 \mid (a+b)$ then $a \equiv b \pmod{2}$.	TRUE	-	FALSE
	(WHY: if $2 \mid (a + b)$ then either both a, b are even or both a, b are odd; in both cases	$a \equiv b \pmod{m}$	d 2).)
3.	If p is a prime and $p \mid (a+b)$ then $a \equiv b \pmod{p}$.	TRUE	-	FALSE
	(WHY: $p = 3$, $a = 1$, $b = 2$ is a counterexample.)			
4.	If $m \mid (a-b)$ then $a \equiv b \pmod{m}$.	TRUE	-	FALSE
	(WHY: definition of $a \equiv b \pmod{m}$.)			
5.	If $ab \equiv 1 \mod c$ then $\gcd(a, c) = 1$.	TRUE	-	FALSE
	(WHY: assume, for the sake of contradiction, that $gcd(a, c) = t > 1$; then $t \mid a$ and $t \mid$ hence $t = 1$, a contradiction (we used the fact that $t \mid A$ and $t \mid B$ implies $t \mid (A + B) B = 1 - ab$).)	(1-ab), h (used wit	h A	$t \mid 1$, and = ab and
6.	If $ab \equiv 1 \mod c$ then $\gcd(a, b) = 1$.	TRUE	-	FALSE
	(WHY: $p = 7$, $a = 2$, $b = 4$ is a counterexample.)			
7.	If $a \mid b \text{ and } b \mid c$ then $a \mid c$.	TRUE	-	FALSE
	(WHY: we have $X \in \mathbb{Z}$ such that $b = aX$ and $Y \in \mathbb{Z}$ such that $c = bY$; hence $c = a(X)$	(Y), thus,	$a \mid c$.)
8.	If $a \mid bc$ then $a \mid b$ or $a \mid c$.	TRUE	-	FALSE
	(WHY: $a = 4, b = 2, c = 2$ is a counterexample.)			
9.	If p is a prime, $p \mid (b+c)$, and $p \mid (b-c)$ then $p \mid c$.	TRUE	-	FALSE
	(WHY: $p = 2, a = 1, b = 1$ is a counterexample.)			
10.	If $gcd(a,c) = 1$ and $gcd(b,c) = 1$ then $gcd(ab,c) = 1$.	TRUE	-	FALSE

(WHY: no prime divides both a and c; no prime divides both b and c; hence no prime divides both ab and c (since the set of primes dividing ab is the union of the set of primes dividing a and the set of primes dividing b).)

11.	If $gcd(a,c) = 1$ and $gcd(b,c) = 1$ then $gcd(a+b,c) = 1$.	TRUE	-	FALSE
	(WHY: $a = 1, b = 1, c = 2$ is a counterexample.)			
12.	If $gcd(a,b) = 1$ and $gcd(c,d) = 1$ then $gcd(ac,bd) = 1$.	TRUE	-	FALSE
	(WHY: $a = 1, b = 2, c = 2, d = 1$ is a counterexample.)			
13.	If p is a prime and $p a^2$ then $p a$.	TRUE	-	FALSE
	(WHY: this follows from that fact that if p is a prime and $p \mid XY$ then $p \mid X$ or $p \mid Y$ (used with	X =	Y = a).)
14.	If p is an odd prime then $3^{(p-1)/2} \equiv 1 \pmod{p}$.	TRUE	-	FALSE
	(WHY: $p = 3$ is a counterexample.)			
15.	If p is an odd prime then $4^{(p-1)/2} \equiv 1 \pmod{p}$.	TRUE	-	FALSE
	(WHY: since $4 = 2^2$ we have $4^{(p-1)/2} \equiv 2^{p-1} \equiv 1 \pmod{p}$, the last congruence foll theorem.)	ows from	Ferm	at's little
16.	If p is an odd prime, $p \mid (b+c)$, and $p \mid (b^2+c^2)$ then $p \mid c$.	TRUE	-	FALSE
	(WHY: $p \mid (b + c)$ implies $p \mid (b^2 - c^2)$, which combined with $p \mid (b^2 + c^2)$ implies $p \mid 2c$ cannot have $p \mid 2$ and hence $p \mid c^2$ which, in turn, implies $p \mid c$.)	² ; now sine	ce p i	is odd we
17.	If $a \mid c \text{ and } b \mid c$ then $ab \mid c$.	TRUE	-	FALSE
	(WHY: $a = 2, b = 2, c = 2$ is a counterexample.)			
18.	Let p be a prime. If $a^k \equiv 1 \pmod{p}$ and $b^k \equiv 1 \pmod{p}$ then $(ab)^k \equiv 1 \pmod{p}$	p). TRUE	-	FALSE
	(WHY: see the next problem.)			
19.	Let $m \ge 2$. If $a^k \equiv 1 \pmod{m}$ and $b^k \equiv 1 \pmod{m}$ then $(ab)^k \equiv 1 \pmod{m}$.	TRUE	-	FALSE
	(WHY: $(ab)^k = a^k b^k$; $A \equiv B \pmod{m}$ and $C \equiv D \pmod{m}$ implies $AC \equiv BD \pmod{m}$	m).)		
20.	Let $m \ge 2$. If for all $a \in \{1, \dots, m-1\}$ we have $a^{m-1} \equiv 1 \pmod{m}$ then m is a	TRUE	-	FALSE
	(WHY: if m is not a prime then take $a \mid m$ where $a \in \{2, \ldots, m-1\}$; then $a \mid a^{m-1}$; the $m \nmid (a^{m-1}-1)$ and hence $a^{m-1} \not\equiv 1 \pmod{m}$.)	en $a \nmid (a^m)$	_1_	1); hence
21.	Let $m \ge 2$. If for all $a \in \mathbb{Z}_m^*$ we have $a^{m-1} \equiv 1 \pmod{m}$ then m is a prime.	TRUE	-	FALSE
	(WHY: Carmichael numbers, for example $m = 561$, are a counterexample.)			

22.	Let p be a prime. If $a \equiv 1 \pmod{p-1}$ and $gcd(p,b) = 1$ then $b^a \equiv b \pmod{p}$.			
		TRUE	-	FALSE
	(WHY: We have $a = 1 + k(p-1)$ for some $k \in \mathbb{Z}$; then $b^a \equiv b(b^{p-1})^k \equiv b \pmod{2}$ (mod theorem in the last congruence.)	p), using f	Ferm	at's little
23.	Let p be a prime. If $a \equiv 1 \pmod{p-1}$ and $gcd(p,b) = 1$ then $a^b \equiv a \pmod{p}$.	TRUE	-	FALSE
	(WHY: $p = 3, a = 5, b = 2$ is a counterexample.)			
24.	Let p be a prime. If $a \equiv 1 \pmod{p}$ and $gcd(p-1,b) = 1$ then $b^a \equiv b \pmod{p}$.	TRUE	-	FALSE
	(WHY: $p = 3, a = 4, b = 5$ is a counterexample.)			
25.	Let p be a prime. If $a \equiv 1 \pmod{p}$ and $gcd(p-1,b) = 1$ then $a^b \equiv a \pmod{p}$.	TRUE	-	FALSE
	(WHY: If $a \equiv 1 \pmod{p}$ then $a^b \equiv 1 \pmod{p}$ for any $b \in \mathbb{N}$.)			
26.	If $2 \mid (a+b)$ then $a^2 \equiv b^2 \pmod{2}$.	TRUE	-	FALSE
	(WHY: if $2 (a+b)$ then either both a, b are even or both a, b are odd; in both cases a	$u^2 \equiv b^2 \pmod{m}$	od 2)).)
27.	Assume $a, b, c \in \mathbb{N}$. If $a^b \equiv 1 \pmod{c}$ then $\gcd(a, c) = 1$.	TRUE	-	FALSE
	(WHY: if $gcd(a, c) = t > 1$ then $t \mid a^b$; hence $t \nmid (a^b - 1)$; hence $c \nmid (a^b - 1)$; hence $a^b = a^b + b^b$; henc	$\not\equiv 1 \pmod{1}$	c).)	
28.	Assume $a, b, c \in \mathbb{N}$. If $a^b \equiv 1 \pmod{c}$ then $\gcd(b, c) = 1$.	TRUE	-	FALSE
	(WHY: $a = 1, b = 2, c = 2$ is a counterexample.)			
29.	If p is an odd prime then $4^{(p+1)/2} \equiv 4 \pmod{p}$.	TRUE	-	FALSE
	(WHY: since $4 = 2^2$ we have $4^{(p+1)/2} \equiv 2^{p+1} \equiv 2^2 \pmod{p}$, where in the last congrittle theorem)	ruence we	used	Fermat's
30.	If $gcd(a+b,c) = 1$ and $gcd(b,c) = 1$ then $gcd(a,c) = 1$.	TRUE	-	FALSE
	(WHY: $a = 2, b = 1, c = 2$ is a counterexample)			
31.	Let p be a prime, $a \in \{2,, p-1\}$, and $b \in \mathbb{N}$. If $a^b \equiv a \pmod{p}$ then $\gcd(b, p-2)$	l) = 1. TRUE	-	FALSE
	(WHY: $p = 7, a = 2, b = 4$ is a counterexample)			