1 Schedule

The homework is due Sep 8

Graded homework will be available at noon Sep 9, noon.
EXAM \#1 will be on Tuesday, Sep. 13.

2 List of algorithms covered in the class

(B-basic, I-intermediate, A-advanced):

B: Addition (p.11, DSV).
B: Multiplication (p.15, DSV).
B: Division (p.15, DSV).
B: Modular exponentiation (p.19, DSV).
B: Euclid's algorithm (p.20, DSV).
I: Extended Euclid's algorithm (p.21, DSV).
A: Primality testing (p.25, DSV).
A: Generating random primes (p.28, DSV).
A: RSA (p.33, DSV).

3 Basic material

Important concepts, problems, theorems, and algorithms:

- Modular arithmetic, Fermat's little theorem.

> Theorem: Let p be a prime and let a be an integer such that $\operatorname{gcd}(a, p)=1$. Then $a^{p-1} \equiv 1(\bmod p)$.
> Theorem: Let p be a prime and let a be an integer. Then $a^{p} \equiv a(\bmod p)$.

Simple (computational) questions:

- Compute $a^{b} \bmod c$. (c will be a prime smaller than 20 .)
- Trace the execution of Euclid's gcd algorithm.
- Compute the multiplicative inverse of a modulo b.
- Apply Fermat's little theorem in a computation (see problems 1.1, 1.4, 1.5, below).

Example problems (solve, but do NOT turn in):

1.1 Compute $3^{80} \bmod 5$.
1.2 Compute $\operatorname{gcd}(30,81)$. Compute $\operatorname{gcd}(55,34)$. Use Euclid's gcd algorithm. Show all steps.
1.3 Compute the multiplicative inverse of 26 modulo 677 .
1.4 Is $4^{200}-9^{100}$ divisible by 35 ? Use Fermat's little theorem to prove your answer.
1.5 What is $3^{3^{100}} \bmod 5$? (as usual, $a^{b^{c}}$ is a raised to the b^{c}-th power).
1.6 Prove that for every integer x, either $x^{2} \equiv 0(\bmod 4)$ or $x^{2} \equiv 1(\bmod 4)$.
1.7 Let p, q be two different primes. Let x, y be such that $x \equiv y(\bmod p)$ and $x \equiv y(\bmod q)$. Prove that $x \equiv$ $y(\bmod p q)$.

4 Basic Homework - solve and turn in

1.8 (due Sep 8) Solve the following system of congruences:

$$
\begin{aligned}
& x \equiv 20(\bmod 21) \\
& x \equiv 21(\bmod 22) \\
& x \equiv 22(\bmod 23)
\end{aligned}
$$

That is, find $x \in\{0, \ldots, 10625\}$ that satisfies all 3 congruences above. (Hint: Chinese remainder theorem.)
1.9 (due Sep 8) Let p be a prime and let a, b be two integers such that $a^{2} \equiv b^{2}(\bmod p)$. Prove that either $a \equiv b(\bmod p)$ or $a \equiv-b(\bmod p)$. (Hint: you will need to use the following fact about primes and divisibility. If p is a prime and $p \mid c d$ then $p \mid c$ or $p \mid d$.)
1.10 (due Sep 8) For each of the following - prove or disprove (clearly state which of the two are you doing):

- For all $x \in \mathbb{Z}$ such that $\operatorname{gcd}(x, 19)=1$ we have $x^{18} \equiv 1(\bmod 19)$.
- For all $x \in \mathbb{Z}$ such that $\operatorname{gcd}(x, 21)=1$ we have $x^{18} \equiv 1(\bmod 21)$.
- For all $x \in \mathbb{Z}$ we have $x^{37} \equiv x(\bmod 37)$.
- For all $x \in \mathbb{Z}$ we have $x^{37} \equiv x(\bmod 35)$.

5 Advanced Homework solve and turn in

Please, make sure that the basic homework and the advanced homework are on separate sheets of paper.
1.11 (due Sep 8) Let p be a prime such that $p \equiv 3(\bmod 4)$. We would like to have an algorithm which on input x computes the square root of x, that is, y such that $y^{2} \equiv x(\bmod p)$. Show that we can let $y:=x^{(p+1) / 4}(\bmod p)$.
1.12 (due Sep 8) Let x, y be unknown positive integers. Let $A=x y$ and $B=x+y$. Give a polynomial-time algorithm which on input A, B computes x, y. Clearly state and analyze the running time of your algorithm.
1.13 (due Sep 8) Professor A designed a black-box which on input a computes a^{2} in time $O(\log a)$. We would like to use the black-box to multiply numbers, i. e., on input a, b we want to compute $a b$. We want our algorithm to run in time $O(\log (a b))$.
a) Give such an algorithm.
b) Suppose now, that instead of $x \mapsto x^{2}$ black-box, we have $x \mapsto x^{3}$ black-box. Show how we can use the new black-box to multiply numbers a, b in time $O(\log (a b))$.
c) Suppose now, that instead of $x \mapsto x^{2}$ black-box, we have $x \mapsto x^{4}$ black-box. Show how we can use the new black-box to multiply numbers a, b in time $O(\log (a b))$.

In parts a), b), c) you can assume that we can add two numbers c, d in $O(\log (c d))$-time. You can also assume that for any constant f we can divide d by f in $O(\log d)$-time.
1.14 (due Sep 8) Fibonnaci numbers are defined as follows: $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Give a polynomial-time algorithm which on input n and M outputs $\left(F_{n} \bmod M\right)$. (Note that the input length is $\Theta(\log n+\log M)$, and your algorithm has to run in time polynomial in the input length).

6 Additional problems from the book (do NOT turn in)

Try to solve the following problems. A few of them will be on the quiz.

- $1.1,1.4,1.5,1.10,1.11,1.14,1.15,1.19,1.20,1.22,1.23,1.25,1.26,1.31,1.32,1.37,1.39$.

7 Additional problems (do NOT turn in)

Solve the problems below; use the answer key below to check your answers.
Definitions: $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ denotes the set of integers, $\mathbb{N}=\{1,2,3, \ldots\}$ denotes the set of natural numbers (which we define to be positive integers). For $a, b \in \mathbb{Z}$ we say a divides b (notation: $a \mid b$) if there exists $c \in \mathbb{Z}$ such that $b=a c$. For $a, b, m \in Z$ we say a is congruent to b modulo m (notation: $a \equiv b(\bmod m)$) if $m \mid(a-b)$. We say that a natural number n is a prime if there are exactly 2 natural numbers that divide n (they are 1 and n, with $n \neq 1$). For a natural number m we let $\mathbb{Z}_{m}^{*}=\{a \in\{1, \ldots, m-1\} \mid \operatorname{gcd}(a, m)=1\}$, that is, Z_{m}^{*} are the numbers from $\{1, \ldots, m-1\}$ that are co-prime with m.

1. If p, q are different primes then $\operatorname{gcd}(p, q)=1$.
2. If $2 \mid(a+b) \quad$ then $a \equiv b(\bmod 2)$.
3. If $\quad p$ is a prime and $p \mid(a+b) \quad$ then $\quad a \equiv b(\bmod p)$.
4. If $m \mid(a-b) \quad$ then $a \equiv b(\bmod m)$.
5. If $a b \equiv 1 \bmod c$ then $\operatorname{gcd}(a, c)=1$.
6. If $a b \equiv 1 \bmod c$ then $\operatorname{gcd}(a, b)=1$.
7. If $a \mid b$ and $b \mid c$ then $a \mid c$.
8. If $a \mid b c$ then $a \mid b$ or $a \mid c$.
9. If p is a prime, $p \mid(b+c)$, and $p \mid(b-c)$ then $p \mid c$.
10. If $\operatorname{gcd}(a, c)=1$ and $\operatorname{gcd}(b, c)=1$ then $\operatorname{gcd}(a b, c)=1$.

TRUE

TRUE - FALSE

TRUE - FALSE
11. If $\operatorname{gcd}(a, c)=1$ and $\operatorname{gcd}(b, c)=1$ then $\operatorname{gcd}(a+b, c)=1$.
12. If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(c, d)=1$ then $\operatorname{gcd}(a c, b d)=1$.
13. If p is a prime and $p \mid a^{2}$ then $p \mid a$.
14. If p is an odd prime then $3^{(p-1) / 2} \equiv 1(\bmod p)$.
15. If p is an odd prime then $4^{(p-1) / 2} \equiv 1(\bmod p)$.
16. If p is an odd prime, $p \mid(b+c)$, and $p \mid\left(b^{2}+c^{2}\right)$ then $p \mid c$.
17. If $a \mid c$ and $b \mid c$ then $a b \mid c$.
18. Let p be a prime. If $a^{k} \equiv 1(\bmod p)$ and $b^{k} \equiv 1(\bmod p) \quad$ then $\quad(a b)^{k} \equiv 1(\bmod p)$.

TRUE
FALSE
19. Let $m \geq 2$. If $\quad a^{k} \equiv 1(\bmod m)$ and $b^{k} \equiv 1(\bmod m) \quad$ then $\quad(a b)^{k} \equiv 1(\bmod m)$.

TRUE
FALSE
20. Let $m \geq 2$. If for all $a \in\{1, \ldots, m-1\}$ we have $a^{m-1} \equiv 1(\bmod m) \quad$ then m is a prime.

TRUE
FALSE
21. Let $m \geq 2$. If for all $a \in \mathbb{Z}_{m}^{*}$ we have $a^{m-1} \equiv 1(\bmod m) \quad$ then m is a prime.

TRUE - FALSE
22. Let p be a prime. If $a \equiv 1(\bmod p-1)$ and $\operatorname{gcd}(p, b)=1 \quad$ then $\quad b^{a} \equiv b(\bmod p)$.

TRUE

- FALSE

23. Let p be a prime. If $\quad a \equiv 1(\bmod p-1)$ and $\operatorname{gcd}(p, b)=1 \quad$ then $\quad a^{b} \equiv a(\bmod p)$.

TRUE - FALSE
24. Let p be a prime. If $a \equiv 1(\bmod p)$ and $\operatorname{gcd}(p-1, b)=1 \quad$ then $\quad b^{a} \equiv b(\bmod p)$.

TRUE

- FALSE

25. Let p be a prime. If $a \equiv 1(\bmod p)$ and $\operatorname{gcd}(p-1, b)=1 \quad$ then $\quad a^{b} \equiv a(\bmod p)$.

TRUE - FALSE
26. If $2 \mid(a+b)$ then $a^{2} \equiv b^{2}(\bmod 2)$.
27. Assume $a, b, c \in \mathbb{N}$. If $a^{b} \equiv 1(\bmod c) \quad$ then $\operatorname{gcd}(a, c)=1$.

TRUE
FALSE

TRUE

- FALSE

28. Assume $a, b, c \in \mathbb{N}$. If $a^{b} \equiv 1(\bmod c) \quad$ then $\operatorname{gcd}(b, c)=1$.

TRUE - FALSE
29. If p is an odd prime then $4^{(p+1) / 2} \equiv 4(\bmod p)$.

TRUE
FALSE
30. If $\operatorname{gcd}(a+b, c)=1$ and $\operatorname{gcd}(b, c)=1$ then $\operatorname{gcd}(a, c)=1$.

TRUE
FALSE
31. Let p be a prime, $a \in\{2, \ldots, p-1\}$, and $b \in \mathbb{N}$. If $a^{b} \equiv a(\bmod p)$ then $\operatorname{gcd}(b, p-1)=1$.

TRUE - FALSE

Solutions.

1. If p, q are different primes then $\operatorname{gcd}(p, q)=1 . \quad$ TRUE - FALSE
(WHY: w.l.o.g. $p<q$; assume, for the sake of contradiction, that $\operatorname{gcd}(p, q)=a>1$; then $a \mid q$, yet $a \neq 1$ and $a \neq q$ (since $a \leq p<q$), contradicting the assumption that q is a prime.)
2. If $2 \mid(a+b)$ then $a \equiv b(\bmod 2) . \quad \quad$ TRUE - FALSE
(WHY: if $2 \mid(a+b)$ then either both a, b are even or both a, b are odd; in both cases $a \equiv b(\bmod 2)$.)
3. If $\quad p$ is a prime and $p \mid(a+b) \quad$ then $\quad a \equiv b(\bmod p)$.

TRUE - FALSE
(WHY: $p=3, a=1, b=2$ is a counterexample.)
4. If $m \mid(a-b)$ then $a \equiv b(\bmod m) . \quad$ TRUE - FALSE
(WHY: definition of $a \equiv b(\bmod m)$.)
5. If $a b \equiv 1 \bmod c$ then $\operatorname{gcd}(a, c)=1 . \quad$ TRUE - FALSE
(WHY: assume, for the sake of contradiction, that $\operatorname{gcd}(a, c)=t>1$; then $t \mid a$ and $t \mid(1-a b)$, hence $t \mid 1$, and hence $t=1$, a contradiction (we used the fact that $t \mid A$ and $t \mid B$ implies $t \mid(A+B)$ (used with $A=a b$ and $B=1-a b)$.)
6. If $a b \equiv 1 \bmod c$ then $\operatorname{gcd}(a, b)=1$.

TRUE
FALSE
(WHY: $p=7, a=2, b=4$ is a counterexample.)
7. If $a \mid b$ and $b \mid c$ then $a \mid c$.

TRUE - FALSE
(WHY: we have $X \in \mathbb{Z}$ such that $b=a X$ and $Y \in \mathbb{Z}$ such that $c=b Y$; hence $c=a(X Y)$, thus, $a \mid c$.)
8. If $a \mid b c$ then $a \mid b$ or $a \mid c$.

TRUE
FALSE
(WHY: $a=4, b=2, c=2$ is a counterexample.)
9. If p is a prime, $p \mid(b+c)$, and $p \mid(b-c)$ then $p \mid c$.

TRUE
FALSE
(WHY: $p=2, a=1, b=1$ is a counterexample.)
10. If $\operatorname{gcd}(a, c)=1$ and $\operatorname{gcd}(b, c)=1$ then $\operatorname{gcd}(a b, c)=1$.

TRUE - FALSE
(WHY: no prime divides both a and c; no prime divides both b and c; hence no prime divides both $a b$ and c (since the set of primes dividing $a b$ is the union of the set of primes dividing a and the set of primes dividing b).)
11. If $\operatorname{gcd}(a, c)=1$ and $\operatorname{gcd}(b, c)=1$ then $\operatorname{gcd}(a+b, c)=1$.

TRUE
FALSE
(WHY: $a=1, b=1, c=2$ is a counterexample.)
12. If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(c, d)=1$ then $\operatorname{gcd}(a c, b d)=1$.

TRUE
FALSE
(WHY: $a=1, b=2, c=2, d=1$ is a counterexample.)
13. If p is a prime and $p \mid a^{2}$ then $p \mid a$.

TRUE - FALSE
(WHY: this follows from that fact that if p is a prime and $p \mid X Y$ then $p \mid X$ or $p \mid Y$ (used with $X=Y=a)$.)
14. If p is an odd prime then $3^{(p-1) / 2} \equiv 1(\bmod p)$.

TRUE
FALSE
(WHY: $p=3$ is a counterexample.)
15. If p is an odd prime then $4^{(p-1) / 2} \equiv 1(\bmod p)$.

TRUE - FALSE
(WHY: since $4=2^{2}$ we have $4^{(p-1) / 2} \equiv 2^{p-1} \equiv 1(\bmod p)$, the last congruence follows from Fermat's little theorem.)
16. If p is an odd prime, $p \mid(b+c)$, and $p \mid\left(b^{2}+c^{2}\right)$ then $p \mid c . \quad$ TRUE - FALSE
(WHY: $p \mid(b+c)$ implies $p \mid\left(b^{2}-c^{2}\right)$, which combined with $p \mid\left(b^{2}+c^{2}\right)$ implies $p \mid 2 c^{2}$; now since p is odd we cannot have $p \mid 2$ and hence $p \mid c^{2}$ which, in turn, implies $p \mid c$.)
17. If $a \mid c$ and $b \mid c$ then $a b \mid c$.

TRUE
FALSE
(WHY: $a=2, b=2, c=2$ is a counterexample.)
18. Let p be a prime. If $a^{k} \equiv 1(\bmod p)$ and $b^{k} \equiv 1(\bmod p) \quad$ then $\quad(a b)^{k} \equiv 1(\bmod p)$.

TRUE - FALSE
(WHY: see the next problem.)
19. Let $m \geq 2$. If $\quad a^{k} \equiv 1(\bmod m)$ and $b^{k} \equiv 1(\bmod m) \quad$ then $\quad(a b)^{k} \equiv 1(\bmod m)$.

TRUE - FALSE
(WHY: $(a b)^{k}=a^{k} b^{k} ; A \equiv B(\bmod m)$ and $C \equiv D(\bmod m)$ implies $A C \equiv B D(\bmod m)$.)
20. Let $m \geq 2$. If for all $a \in\{1, \ldots, m-1\}$ we have $a^{m-1} \equiv 1(\bmod m) \quad$ then m is a prime.

TRUE - FALSE
(WHY: if m is not a prime then take $a \mid m$ where $a \in\{2, \ldots, m-1\}$; then $a \mid a^{m-1}$; then $a \nmid\left(a^{m-1}-1\right)$; hence $m \nmid\left(a^{m-1}-1\right)$ and hence $a^{m-1} \not \equiv 1(\bmod m)$.)
21. Let $m \geq 2$. If for all $a \in \mathbb{Z}_{m}^{*}$ we have $a^{m-1} \equiv 1(\bmod m) \quad$ then m is a prime.

TRUE
FALSE
(WHY: Carmichael numbers, for example $m=561$, are a counterexample.)
22. Let p be a prime. If $a \equiv 1(\bmod p-1)$ and $\operatorname{gcd}(p, b)=1 \quad$ then $\quad b^{a} \equiv b(\bmod p)$.

TRUE - FALSE
(WHY: We have $a=1+k(p-1)$ for some $k \in \mathbb{Z}$; then $b^{a} \equiv b\left(b^{p-1}\right)^{k} \equiv b(\bmod p)$, using Fermat's little theorem in the last congruence.)
23. Let p be a prime. If $a \equiv 1(\bmod p-1)$ and $\operatorname{gcd}(p, b)=1 \quad$ then $\quad a^{b} \equiv a(\bmod p)$.

TRUE
FALSE
(WHY: $p=3, a=5, b=2$ is a counterexample.)
24. Let p be a prime. If $a \equiv 1(\bmod p)$ and $\operatorname{gcd}(p-1, b)=1 \quad$ then $\quad b^{a} \equiv b(\bmod p)$.

TRUE
FALSE
(WHY: $p=3, a=4, b=5$ is a counterexample.)
25. Let p be a prime. If $a \equiv 1(\bmod p)$ and $\operatorname{gcd}(p-1, b)=1 \quad$ then $\quad a^{b} \equiv a(\bmod p)$.

TRUE - FALSE
(WHY: If $\quad a \equiv 1(\bmod p)$ then $\quad a^{b} \equiv 1(\bmod p)$ for any $b \in \mathbb{N}$.)
26. If $2 \mid(a+b)$ then $a^{2} \equiv b^{2}(\bmod 2)$.

TRUE - FALSE
(WHY: if $2 \mid(a+b)$ then either both a, b are even or both a, b are odd; in both cases $a^{2} \equiv b^{2}(\bmod 2)$.)
27. Assume $a, b, c \in \mathbb{N}$. If $a^{b} \equiv 1(\bmod c)$ then $\operatorname{gcd}(a, c)=1 . \quad$ TRUE - FALSE (WHY: if $\operatorname{gcd}(a, c)=t>1$ then $t \mid a^{b}$; hence $t \nmid\left(a^{b}-1\right)$; hence $c \nmid\left(a^{b}-1\right)$; hence $a^{b} \neq 1(\bmod c)$.)
28. Assume $a, b, c \in \mathbb{N}$. If $a^{b} \equiv 1(\bmod c)$ then $\operatorname{gcd}(b, c)=1$.

TRUE
FALSE (WHY: $a=1, b=2, c=2$ is a counterexample.)
29. If p is an odd prime then $4^{(p+1) / 2} \equiv 4(\bmod p)$.

TRUE - FALSE
(WHY: since $4=2^{2}$ we have $4^{(p+1) / 2} \equiv 2^{p+1} \equiv 2^{2}(\bmod p)$, where in the last congruence we used Fermat's little theorem)
30. If $\operatorname{gcd}(a+b, c)=1$ and $\operatorname{gcd}(b, c)=1$ then $\operatorname{gcd}(a, c)=1$.

TRUE
FALSE (WHY: $a=2, b=1, c=2$ is a counterexample)
31. Let p be a prime, $a \in\{2, \ldots, p-1\}$, and $b \in \mathbb{N}$. If $a^{b} \equiv a(\bmod p)$ then $\operatorname{gcd}(b, p-1)=1$.

TRUE
FALSE
(WHY: $p=7, a=2, b=4$ is a counterexample)

