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Abstract. We present deadlock-free packet/wormhole routing algorithms based
on multidimensional interval schemes for certain hypercube related multiproces-
sor interconnection networks and give their analysis in terms of the compactness
(i.e. the maximum number of intervals per link) and the buffer-size (i.e. the ma-
ximum number of buffers per node/link). The issue of a simultaneous reduction
of the compactness and the buffer-size is fundamental, worth to investigate and of
practical importance, since the interval routing and wormhole routing have been
industrialy realized in INMOS Transputer C104 Router chips.

In this paper we give an evidence that for some well-known interconnection net-
works there are efficient deadlock-free multidimensional interval routing schemes
(DFMIRS) despite of a provable nonexistence of efficient deterministic shortest path
interval routing schemes (IRS). For d-dimensional hypercubes (tori) we present a
d-dimensional DFMIRS of compactness 1 and size 2 (of compactness 1 and size 4),
while for shortest path IRS we can achieve the reduction to 2 (to at most 5) buffers
per node with compactness 2¢~! (with compactness O(n?~!)). For d-dimensional
generalized butterflies we give a d-dimensional DFMIRS with compactness 2 and
size 3, while each shortest path IRS is of the compactness at least superpolynomial
in d. For d-dimensional cube-connected cycles we show a d-dimensional DFMIRS
with compactness and size polynomial in d, while each shortest path IRS needs
compactness at least 21/2,

We also present a nonconstant lower bound (in the form +/d) on the size of
deadlock-free packet routing (based on acyclic orientation covering) for a set of
monotone routing paths on d-dimensional hypercubes.

Keywords: Interval routing, packet routing, deadlock avoidance, interconnection
networks

1 INTRODUCTION

Interval routing is an attractive space-efficient routing method for communication
networks which has found industrial applications in INMOS T9000 transputer de-
sign. As it is a simple, uniform and low latency technique that uses only limited
address space and does not modify message headers during the routing (i.e. it re-
quires no extra electro/optic conversions), it is also of interest for routing in optical
networks. Survey of principal characterization and efficiency results about interval
routing and its variants can be found in [27, 11, 20].

Interval routing is based on compact routing tables, where the set of nodes
reachable via outgoing links is represented by intervals. The space efficiency can be
measured by compactness, i.e. the maximum number of intervals per link.

Previous work mostly concentrated on shortest path interval routing schemes
(IRS). Shortest path IRS of compactness 1 are known to exist for a number of well-
known interconnection networks including trees, rings, complete bipartite graphs,
grids, and hypercubes. There are, however, interconnection networks that are known



to have no shortest path IRS even for large compactness, which include shuffle-
exchange, cube-connected cycles, butterfly, DeBruijn, and star graphs. Several ge-
neralizations of IRS were therefore proposed.

Multidimensional interval routing schemes (MIRS) were introduced in [8] and
were used to represent all the shortest paths information. MIRS with low memory
requirements were proposed for hypercubes, grids, tori and certain types of chordal
rings [8].

Another interesting aspect of the routing problem is related to deadlocks. A
deadlock refers to a situation in which a set of messages is blocked forever because
each message in the set occupies buffer in a node or on a link which is also required by
another message. Deadlock-free routing is relevant in the framework of packet and
wormhole routing protocols [4, 5, 18, 24, 25]. The first study dealing with deadlock-
free IRS appeared in [23]. Further results were presented in [22, 28, 29]. We follow
the model of buffered deadlock-free IRS introduced in [7] based on the notion of
acyclic orientation covering. An s-buffered deadlock-free IRS with compactness k is
denoted as (k, s)-DFIRS. Some results were already presented in [7]. For d-dimen-
sional tori there exists a shortest path (2,2d + 1)-DFIRS; the reduction to 5 buffers
can be achieved with compactness O(n4!). For d-dimensional hypercubes there is
a shortest path (1,d + 1)-DFIRS; the reduction to 2 buffers can be achieved with
compactness 247

We extend the model in [7] to buffered deadlock-free multidimensional inter-
val routing. We show that for some interconnection networks there are efficient
deadlock-free MIRS even in the case when there does not exist efficient shortest
path IRS. For butterflies of dimension d we give a deadlock-free d-dimensional MIRS
with constant compactness and size, while each shortest path IRS needs compact-
ness at least 2%, For cube-connected cycles of order d we present a deadlock-free
d-dimensional MIRS with compactness and size polynomial in d, while each shortest
path IRS needs compactness at least 2%2. For d-dimensional hypercubes we give a
deadlock-free d-dimensional MIRS of compactnes 1 and size 2, and for d-dimensional
tori we show a deadlock-free d-dimensional MIRS of compactness 1 and size 4.

There exist only few lower bounds on the size of deadlock-free packet routing,
even for those based on specific strategies. The best lower bound is 3 (see [4]). We
give the first nonconstant, lower bound (in the form v/d) on the size of deadlock-free
packet routing (based on acyclic orientation covering) for a special set of routing
paths on d-dimensional hypercubes. As a consequence, the set of routing paths
induced by 1-IRS on the hypercube proposed in [1] is not suitable for the efficient
deadlock-free packet routing based on acyclic orientation covering concept.

The structure of the paper is the following. In Section 2 we introduce some basic
notions and present deadlock-free routing model. In Section 3 we present efficient
deadlock-free MIRS on hypercubes, tori, generalized butterflies and cube-connected
cycles. We also give a nonconstant lower bound on the size of acyclic orientation
covering on hypercubes and the lower bound on compactness for IRS in generalized
butterfly networks. In Section 4 we conclude our results and discuss the impact of
graph operators on the compactness of interval routing.



2 DEFINITIONS
2.1 Basic Notions

An interconnection network is modeled by a connected undirected graph G = (V, E),
where V' is a set of nodes and E is a set of links of the network. Assume |V| = n.
Each node has a finite set of buffers for temporarily storing messages. The set of all
buffers in the network G is denoted as B.

A communication request is a pair of nodes in G. A communication pattern R is
a set of communication requests. We will consider certain significant communication
patterns in G. A static one-to-all communication pattern is a set {(v,w) | w € V'}
for a given source node v. A dynamic one-to-all communication pattern is a set
{(v,w) | w € V} for some (not given in advance) source node v. An all-to-all
communication pattern is a set {(v,w) | v,w € V}. A permutation communication
pattern is a set of communication requests realizing a permutation. A collection P
of paths in G satisfies the communication pattern R if there is at least one path
in G beginning in u and ending in v for each communication request (u,v) € R.

The routing problem for a network G and a communication pattern R is a prob-
lem of specifying a path collection P satisfying R. A path collection is simple if no
path contains the same link more than once, and it is a shortest path collection if
for each (u,v) € R only shortest paths from u to v in G are considered. Satisfying
a communication request consists of routing a message along a corresponding path
in P. In this paper, the routing problem is solved by a path collection induced by
interval routing schemes. In what follows we shall consider all-to-all communication
patterns only unless otherwise specified.

2.2 Layered Networks

A graph G = (V, E) is h-layerable if there exist h disjoint (non-empty) sets of vertices
Vi,..., Vi, where V; is the set of vertices in the layer ¢, such that V =V, U ..UV}
and every edge in F connects vertices of two adjacent layers. We shall call a graph
with given Vi, ..., V}, an h-layered graph. Let the layer with index 1 be the top layer,
and the layer with index h the bottom layer.

The graph can be layered in many different ways. For example, each bipartite
graph can be layered using just two layers. In what follows, we shall consider only
“naturally” layered graphs in the sense to be apparent later.

Some well-known interconnection networks used in parallel computing can be
viewed as layered graphs. Examples are grids, hypercubes, butterflies, Benes graphs,
mesh of trees or fat trees. On the other hand, examples of non-layerable networks
are cycles of odd length or odd-dimensional cube-connected cycles.

Let G; = (i, Ey) and Gy = (Va, E») be two h-layered graphs, where V; =
vihu.. .UVh(l) and V, = VPU.. .UVh@). The Layered Cross Product (LCP for short)
of the two h-layered multiplicands G4, G5 is an h-layered graph G = (V, E), where



V=ViU...UV, and V; is the cartesian product of Vi(l) and V;@), 1<i<h,and
an edge ((a1,az), (b1, b2)) belongs to E if and only if (a1, b;) € E; and (ag, bs) € Es.

We are interested only in h-layered interconnection networks, in which every
vertex is on a path of length h connecting a vertex of the top layer with a vertex
of the bottom layer. Two layered graphs are considered to be equal if they are
isomorphic, and the isomorphism preserves the layer to which a vertex belongs.
Under this assumption, the LCP operation is commutative and associative. Thus,
we may consider the LCP of more than two layered graphs (all with the same
number & of layers) without regard to the order in which they are written, or the
order in which the binary operation is applied. A simple h-layered path serves as
the identity element of the LCP operation.

By the LCP of trees one can obtain some interesting interconnection networks,
as butterflies, mesh of trees or fat trees. Globe graphs [12] can be constructed as
the LCP of cycles. Multi-globe graphs [26] can be composed as the LCP of cycles
and trees.

2.3 Interval Routing

An Interval Labeling Scheme (ILS) is given by labeling each node in a graph G
by a unique integer from the set {1,2,...,n} and each link by an interval [a, b],
where a,b € {1,2,...,n}. We allow cyclic intervals [a, b] such that [a,b] = {a,a +
1,...,n,1,...,b} for a > b. The set of all intervals associated with the links incident
with a node must form a partition of the set {1,2,...,n}. Messages to a destination
node having a label [ are routed via the link labeled by the interval [a, b] such that
[ € [a,b]. An ILS is valid if the set of paths specified by this ILS satisfies the all-
to-all communication pattern. (Thus, if, for all nodes v and v in G, messages sent
from u to v reach v correctly, not necessarily via the shortest paths.) A valid ILS
is also called an Interval Routing Scheme (IRS). An IRS thus specifies for each pair
of distinct nodes u and v in G a (unique) path from u to v.

In a k-ILS each link is labeled with up to k intervals, always under the assump-
tion that at every node, all intervals associated with links outgoing from the node
form a partition of {1,...,n}. At any given node a message with destination node
labeled [ is routed via the link labeled by the interval containing [. If k-ILS does
not use cyclic intervals, the k-ILS is called linear or simply k-LILS. Valid &-ILS and
k-LILS are called k-IRS and k-LIRS, respectively. A k-IRS (k-LIRS) is said to be
optimal if it represents a shortest path collection containing exactly one shortest
path between any pair of nodes.

2.4 Multidimensional Interval Routing

Multidimensional interval routing schemes (MIRS for short) are an extention of
interval routing schemes. In (k,d)-MIRS every node is labeled by a unique d-tuple
(li,...,14), where each [; is from the set {1,...,n;} (1 < n; < n). Each link is
labeled by up to k d-tuples of cyclic intervals (I11,...,Iq1), ..., (Tigy -y Iag). In



any node a message with destination (I1,...,[;) is routed along any outgoing link
containing a d-tuple of cyclic intervals (11, ..., I;) such that [; € I; for all 4. In this
case, multiple paths are represented by the scheme, so the intervals on the links of
a given node may overlap, i.e. they do not form a partition of the nodes in V.

As noted, MIRS can be multipath. A routing based on a multipath routing
scheme must choose one link from the eligible ones. If a scheme represents all
shortest paths it is called a full information shortest path routing scheme.

2.5 Deadlock-free Routing Model

We intend to model the packet routing, i.e. the so called store-and-forward message
passing in which the message from u to v passing via w has to be stored at the
node w before it is sent further towards v. We shall assume each node contains
a finite number of buffers. For a message to pass via a link (z,y) it means, that it
has to be moved from a buffer at node z to a buffer at node y. This assumes the
existence of an available (i.e., empty) buffer at y.

We follow the notions introduced in [7]. In packet routing, each message is
represented by its source-destination pair. For a given message m = (u,v) and
a buffer b containing m, a controller C': V xV x B + 2B specifies the subset C(u, v, b)
of buffers which can contain m in the next step along the path to its destination v.
(We assume C(u,v,b) = 0 if b never stores a message m = (u,v).) We say that
a controller C' is deadlock-free if it does not yield any deadlock configuration. This
property can be guaranteed if the resulting buffer dependencies graph is acyclic. In
buffer dependencies graph [18], each node represents a buffer and there is a directed
edge between b; and b; if there is at least one message m = (u,v) such that b; €
C(u,v,b;).

Let us by s, denote the number of buffers used by a controller C' at the node w.
In wormhole routing as s,,, the number of buffers assigned at a node u to the incident
link (u,v). For a network G = (V, E)) and a controller C for G, we define the size s
of C'as s = mawycy (su) (resp. s = Mar(uv)ca(Suw + Sv,u) in wormhole routing).

Assume a path 7 = vy, ..., v, connecting v; to v,. We say that the controller C'
covers r if there exist r buffers by, ..., b, such that for each 7, 1 <1i < r, b; belongs
to v; and for each ¢, 1 < i < r —1, by € C(vy,vy,b;). Similarly, the controller C
covers m in wormhole routing if there exist r — 1 buffers by,...,b,_1 s.t. for each i,
1 <i<r—1,b; belongs at v; to link (v;,v;41) and for each i, 1 <4 < r— 2, it holds
bi+1 € C(Ul, Ur, bz)

We need to extend the standard k-IRS to deadlock-free k-IRS. Notice that each
E-IRS uniquely induces the set of simple paths, one for each pair of nodes in G.
A (k, s)-DFIRS (deadlock-free IRS) for a graph G is a k-IRS for G together with
a deadlock-free routing controller of size s for G which covers the set of paths
represented by the k-IRS. The (k, s)-DFIRS is optimal if the k-IRS is optimal.

All controllers considered in this paper are based on the concept of an acyclic
orientation covering. An acyclic orientation of a graph G = (V, E) is an acyclic
directed graph DG = (V,DE) obtained by orienting all links in E. Let G =



(DG, ..., DG4) be a sequence of (not necessarily distinct) acyclic orientations of
a graph G and let 7 = vy, ..., v, be a simple path in G. We say that G covers m
if there exists a sequence of positive integers ji, ..., j,—1 such that 1 < j; < ... <
Jr—1 < s and for every i, 1 <1i <r —1, (v;,v41) belongs to DG};.

Note that a path 7 need not be covered by G in a unique way. There could be
different sequences ki, . . ., k,—; such that (v;,v;11) belongs to DGy,; but there exists
a unique sequence such that the corresponding (r —1)-tuple (k, ..., ky—1) is minimal
(w.r.t. the lexicographical ordering). We assume that the deadlock-free controller
based on G works with minimal tuples. Such a controller is called greedy.

Let P be a set of simple paths connecting every pair of nodes in G. A sequence
of orientations G = (DG, ..., DG;) is said to be an acyclic orientation covering
for P of size s if G covers at least one path m € P for each pair of nodes in G.
A ((k,d), s)-DFMIRS (deadlock-free MIRS) for a graph G is a (k,d)-MIRS for G
together with a deadlock-free controller of size s for G which covers the set of paths
induced by the (k, d)-MIRS.

The main problem covered is to design the deterministic packet routing protocol
based on a possibly nondeterministic (k, d)-MIRS with a deadlock-free routing con-
troller (based on acyclic orientation covering G = (DG, ..., DG;)) of size s for G.
In this paper we solve this problem by applying the greedy mode. At the source
node, the message destined for the node labeled [ is routed via a link e having the
interval containing [ and satisfying e € DG;. Only if such a possibility does not exist
it chooses the next orientation D(G5. Generally, at an arbitrary node, the protocol
first chooses a link in the current orientation DG, according to (k,d)-MIRS and
only if such a link does not exist, it switches to the next acyclic orientation DG4
in G. We call this strategy a greedy one. All ((k,d), s)-DFMIRS in this paper are
working with the greedy strategy.

The importance of acyclic orientation coverings is stated by the following clas-
sical result (see [23]) formulated for all-to-all communication patterns: given a net-
work GG and a set of simple paths P connecting all pairs of nodes in G, if an acyclic
orientation covering of size s for P exists, then there also exists a deadlock-free
packet (wormhole) routing controller of size s for G which covers P.

3 RESULTS

The size of deadlock-free controllers for the optimal (shortest paths) packet routing
on arbitrary networks strongly depends on the structure of communication patterns.
The following fact for all-to-all communication patterns can be found e.g. in [23]: for
any network G and a set of n.(n — 1) shortest paths connecting every pair of nodes
in G, there is a deadlock-free controller (based on an acyclic orientation covering)
of size D + 1, where D is the diameter of G. The best lower bound on the size of
deadlock-free controllers is 3 [4].

Considering all-to-all communication patterns on arbitrary networks, the prob-
lem is to determine nonconstant lower bound on the size of a deadlock-free controller



(based on acyclic orientation covering concept) necessary for the optimal (shortest
paths) packet routing.

For a specific set of routing paths in d-dimensional hypercubes we prove (in
Theorem 7) the lower bound v/d on the size of deadlock-free controllers (based
on acyclic orientation covering). This is the first nonconstant lower bound on the
size of controllers and it is useful in proving nonefficiency of certain 1-LIRS [1] for
deadlock-free packet routing.

However, if we assume static one-to-all communication patterns, the require-
ments for the size of deadlock-free controllers are much lower. Namely, for any net-
work G and a set of n — 1 shortest paths connecting a node with all other nodes in G,
there is a deadlock-free controller (based on acyclic orientation covering) of size 1.

For other types of communication patterns the problems are again unsolved.
What is the number of buffers sufficient to realize dynamic one-to-all or permutation
communication patterns? Can we do better than D + 1 buffers per node?

We shall now concentrate on specific networks. We shall study the relationship
between the size and the compactness of deadlock-free packet routing, based on
interval routing schemes, for certain interconnection networks including hypercubes,
tori, butterflies and cube connecting cycles.

3.1 Hypercubes
A d-dimensional hypercube H, is the cartesian product of d complete graphs K.
3.1.1 Deadlock-free IRS

Lemma 1. There exists a deadlock-free controller of size 2 for the optimal packet
routing on a d-dimensional hypercube.

Proof. A hypercube H, is a node symmetric graph, so we can fix an arbitrary node
as the initiator of H, and assign it the string 0?. Let the unique strings of the nodes
in Hy be from {0, 1}¢ such that two nodes are neighbors if and only if their strings
differ in exactly one bit. Define the acyclic orientation covering G = (DHy, DH,) of
a hypercube such that in DH; all links are oriented from all the nodes towards the
initiator and in D H, the orientation is opposite.

It is easy to verify that G forms a greedy deadlock-free controller of size 2
for H;. There exists a collection of shortest paths between all pairs of vertices in
Hy, covered by G. Given any two nodes u and v in H; with corresponding strings o
and (3, a shortest path from u to v follows

e in the first place the links (in arbitrary order) changing bit 1 to 0 in all positions
in which o has 1 and 8 has 0, and

e later on the links (in arbitrary order) changing bit 0 to 1 in all positions in which
a has 0 and § has 1.

|



When we consider dynamic one-to-all communication patterns instead of all-
to-all communication patterns, we get the following consequence of the previous
lemma.

Corollary 2. There exists a deadlock-free controller of size 2 for the optimal packet
routing on a d-dimensional hypercube with dynamic one-to-all communication pat-
terns.

The next two results are from [7]. When we consider linear interval routing
schemes, the size d + 1 can be obtained with compactness 1, and the reduction to
the size 2 can be achieved with the compactness 2%~

Lemma 3. For every i (1 < i < d) there exists a (2i1, [d/i] + 1)-DFLIRS for
a d-dimensional hypercube.

Corollary 4. There exists a (1,d + 1)-DFLIRS on a d-dimensional hypercube.

3.1.2 Deadlock-free MIRS

We now show that using d-dimensional interval routing schemes (see [8]) the size 2
can be achieved with compactness just 1.

Theorem 5. For every i (1 < i < d) there exists a ((271, [d/i]),2)-DFMIRS for
a d-dimensional hypercube.

Proof. Consider a d-dimensional hypercube Hy = (V, E), given as the product of
|d/i] subcubes of dimension i and a subcube of dimension d mod i. For simplicity,
assume d mod i = 0. Observe that each of these d/i subcubes Hi(]) = (V}, Ej),
1 < j < d/i, of dimensions i admits a ([2!"!/i], 1)-MIRS.

We label each node in V' by the d-tuple

(ll,ly sy ll,ia 12,17 sy l?,iy sy ld/i,la IR ld/i,i)

(lpg € {0,1},1 < p < d/i,1 < ¢ < i) where for each j, (I1,...,0;;) is the label of
a node in V; in the ([2'=1/i],1)-MIRS of H",

We label each link e = ((Iy, ..., lny - 1a), (Iy oo dpy o 1)) in B, 1y = 1 — 1,
by [2i-1/i] d/i-tuples

([1,17 ey Il,d/i)y ey (["Qi—l/l“l,l, ey IrQi_l/i],d/i)

where (k —1)-i+1 < h < k-i (for some k£ € {1,...,d/i}), and for each m
such that either m < (b —1)i+ 1 or m > ki, L = Do = .. =
Ityi-1i1rmyi1 18 the interval containing the [m/i]-th dimensional component of all
node labels, and Iy i1, - . ., Ipi-1jiy ey are the [271/4] intervals associated at

the node (11,...,lh,...,ld) to the link ((ll,...,lh,...,ld),(ll,...,lh,...,ld)) in the

([2i=1/i],1)-MIRS for HY), 1 < j < d/i.



It is easy to verify that the described scheme correctly transmits messages via
the shortest paths. At each link the number of intervals is at most [2¢71/i], hence
it can be no worse than 2¢! for each i. The dimension of the product cube Hj is
clearly the sum of dimensions of all the subcubes, i.e. d/i. Following the proof of
Lemma 1 we get a deadlock-free controller of size 2 working in the greedy mode for
the optimal packet routing on Hj. O

Corollary 6. There is a ((1,d),2)-DFMIRS on a d-dimensional hypercube.

In Lemma 1 we proved that there exists a deadlock-free controller, for packet
routing on a hypercube, which uses only two buffers in each node and allows messages
to be routed via the shortest paths. Tel [23] posed the question whether it is possible
to obtain the set of the paths used by means of a (linear) interval routing scheme.
We argue that there is no (1,2)-DFLIRS (based on acyclic orientation controller)
on a d-dimensional hypercube. (It is sufficient to show the nonexistence of (1,2)-
DFLIRS on d-dimensional hypercubes for a small constant dimension.)

3.1.3 Lower Bound on the Size of Acyclic Orientation Cover

There exists an acyclic orientation covering of size d + 1 for the set of all shortest
paths between all pairs of nodes in H;. We show that the relevant lower bound
is \/E

Recall that the d-dimensional hypercube has a node set consisting of all binary
strings of length d with two nodes being connected if and only if they differ in exactly
one bit. Thus every path in the hypercube corresponds to a sequence of changes of
some bits. If the bits are changed in order from left to right then the path is called
monotone.

Theorem 7. Let P be a path system of a d-dimensional hypercube such that each
path between any node v and its complement ¥ in P is monotone. Every acyclic
orientation covering for P has size of at least v/d.

Proof. A movement of a message along the monotone path connecting a node v and
its complement T can be simulated by a device consisting of a tape with d cells and
a cursor which can be positioned either between any two neighboring cells or at the
two ends of the tape. Initially the tape contains the string v and the cursor is on
the left end of the tape. Moving a message along one link of the path corresponds
to moving the cursor over one cell to the right and inverting the content of that cell.
Reaching the destination is equivalent to reaching the right end of the tape. If we are
given some acyclic orientation of the hypercube then we allow the cursor to advance
only if the corresponding link is properly oriented in the current orientation.

If a sequence (DGy,...,DG,) of acyclic orientations of the hypercube is an
acyclic orientation covering for P then if we start the device on any node v and move
the cursor according to DG, ..., DG, (in this order, using the greedy strategy) then
the cursor reaches the right end of the tape.



Let us assume we shall start the device on all 2¢ nodes simultaneously and
consider the positions of cursors following the use of each acyclic orientation. An
important observation is that for any acyclic orientation only few cursors can make
long movements. For any positions of cursors a,b € {0,...,d}, a < b and any acyclic
orientation there are at most 2¢/(h — a + 1) cursors that move between positions a
and b in this orientation. For the sake of contradiction suppose that for some a,b
there are more than 2¢/(b— a + 1) cursors moving between positions a and b. From
now on we consider only these cursors and their devices. For each device and for each
of the b — a + 1 cursor positions between a and b the tape of the device has different
contents. Therefore there must be two devices that have the same tape content with
both cursors between a and b. Let this content be w;wsws, the cursor of the first
device being between w; and w, and the cursor of the second device being between
wy and ws. In this orientation the first device will move from w; |wyws to w3 |ws
and the second device moved from w, [Wrw; to wyws|ws. Therefore there is a cycle
in the acyclic orientation between w;wsws and wWsws which is a contradiction.

Now we are ready to prove that after the i-th orientation at least (1 — ﬁ) 24

cursors are at most at position iv/d. For i = 0 the claim holds since at the begining
all cursors are at position 0. Let the claim holds after the i-th orientation. Based on
the observation above at most 2¢ / v/d cursors can advance more than v/d positions
to the right in the (i+ 1)-st orientation. Thus the claim holds also after the (i+1)-st
orientation. Clearly the claim implies the theorem. a

In the 1-LIRS of the hypercube proposed in [1] every path between a node and
its complement is monotone. The consequence of the previous theorem is that this
1-LIRS is not suitable for the efficient deadlock-free packet routing (based on acyclic
orientation covering).

One can observe that there exists a general deadlock-free controller of constant
size covering the set of routing paths P from Theorem 7.

3.2 Tori

A d-dimensional torus T, . .
which each R; has n; nodes.

, is the cartesian product of d rings R,,..., R4, in

Lemma 8. There exists a deadlock-free controller of size 4 for the optimal packet
routing on a d-dimensional torus.

Proof. For simplicity, we will assume the case of 2 dimensions. The case of d dimen-
sions is handled in a similar fashion. Fix an arbitrary node w of an n. x m torus T}, .
For simplicity, consider n,m even. Say w = (n/2,m/2). Define the acyclic orienta-
tion covering G = (DTy, DTy, DTy, DT5) of a 2-dimensional tori T, ,, such that in
DT the links are oriented from (¢, j) to (i+1,j) fori=1,2,...,n/2=2,n/2,...,n
and 1 < j < m and from (i,j) to ({,j+ 1) for 1 <i<n,j7=12,....,m/2 -2,
m/2,...,m and the links are oriented from (n/2,j) to (n/2—1,j)for 1 <j<m



and from (i,m/2) to (i,m/2 — 1) for 1 < i < n. In DT, all links are in opposite
orientation. Edges ((n/2 —1,7),(n/2,7)) for 1 < j < m and ((¢,m/2— 1), (i,m/2))
for 1 < ¢ < n form row and column frontiers, respectively.

It is easy to verify that G forms a deadlock-free controller of size 4 for T, ,,. There
is a collection of the shortest paths between all pairs of nodes in T, ,, that can be
covered by G. Given any two nodes u and v in T}, ,, with coordinates (i, j) and (k, ),
respectively, there exists a shortest path from u to v that can be partitioned into
four subpaths (where some of them may be empty) such that these subpaths are
contained in coverings DTy, DT, DTy, DT, respectively. If the shortest path from u
to v does not cross frontiers, the routing from u to v can be done using DTy, DT5.
If the shortest path from u to v crosses one or two frontiers, the routing from w can
reach frontiers using either DT} or DTy, DT;, then routing through frontiers can be
performed with the next orientation in G and finally routing to v can be done with
the next orientation in G. O

The question remains whether it is possible to induce the set of paths achieved
by deadlock-free controllers of size 4 by means of efficient interval routing schemes.

The next two results are from [7]. When we consider linear interval routing
schemes, the size 2d + 1 can be obtained with the compactness 2, and the restriction
to the size 5 can be achieved with the compactness O(n?!).

Lemma 9. There exists a (2,2d + 1)-DFLIRS for a d-dimensional torus.

Lemma 10. For every n and i (1 < i < d) there exists a ([n’/2],2.[d/i] + 1)-
DFLIRS on a d-dimensional torus.

On the other hand, when using d-dimensional interval routing schemes (see [8])
the size 4 can be achieved with compactness of only 1.

Theorem 11. For every n and i (1 < i < d) there exists a ((n‘~!, [d/i]),4)-
DFMIRS on a d-dimensional torus.

Proof. Consider a d-dimensional torus, given as the product of |d/i| subtori of di-
mension ¢ and a subtorus of dimension d mod i. For simplicity, assume d mod i = 0.
Observe that each of these d/i subtori of dimension i admits (n*~!, 1)-MIRS. Now,
the proof follows in a similar way as the proof of Theorem 5 for hypercubes. Fol-
lowing the proof of Lemma 8 we get a deadlock-free controller of size 4 working
in the greedy mode for the optimal packet routing on d-dimensional tori, based on
(ni=t,[d/i])-MIRS. O

Corollary 12. There exists a ((1,d),4) — DFMIRS on a d-dimensional torus.
3.3 Generalized Butterflies

We start by introducing some basic layered graphs. By an h-layered top-tree
(bottom-tree) we mean a rooted tree for which the root is in the top (bottom)



layer 1 (h) and each path from the root to a leaf passes through decreasing (in-
creasing) layers. The LCP of the (h + 1)-layered complete d-ary top-tree and the
(h + 1)-ary layered complete d-ary bottom-tree can be viewed as a generalized but-
terfly graph.

A generalized butterfly graph of the degree h and alphabet size d (denoted as
GBF(h,d)) consists of h + 1 layers, each layer containing d* vertices, each of
them labeled by a unique d-ary string of length h. An edge connects two vertices
in GBF(h,d) if and only if they are in the consecutive p-th and (p + 1)-st layer,
respectively, and their labels are either equal or differ only in the p-th position.

Let @« = ay,...a; be a d-ary string (a; € {0,1,...,d—1}) and let p, 1 < p <
h 4+ 1, be an index of a layer. Operations L, R® are defined as L) ((p, o)) =
(p+1,an...00) .. .a1), and RO((p+1,a)) = (p,an...b) ... a1), respectively, where
b)) = (ap + i) mod (d — 1). An edge (u,v) in GBF(h,d) is called an L{)-edge,
R%-edge, if L) (u) = v, R®(u) = v, respectively, 0 < i < d.

Formally, GBF'(h,d) is a graph (V, E), where

V={u|lue{l,...,h+1} x{0,1,...,d —1}"}

and
E = {(u,v) | L) =vor RY(u)=vfor0<i<d—1}.

3.3.1 Compactness Lower Bound for IRS

First we show that there does not exist an efficient IRS for generalized butterfly
networks.

Let G = (V,E) be a simple connected graph with maximum degree A. For
a vertex v € V and an arc e outgoing from v, denote S(v, e) the subset of vertices
w € V which can be reached optimally from v over its outgoing arc e.

In the following lemma we present a lower bound on the number of intervals for
an optimal interval routing scheme in G. The idea of the proof technique is based
on the so called wq-property: Given a graph G, the aim is to choose two disjoint sets
of vertices W and @) such that for any distinct vertices w;, w; € W there is a vertex
v € @ such that in any optimal routing scheme the messages sent by v to w; and w;
are routed along different outgoing arcs.

Lemma 13. [16] Let G be a graph with maximum degree A and let us have an
optimal k-IRS on G. Let Q and W be disjoint vertex subsets of G satisfying the
wg-property, that means for w;, w; € W, w; # wj, there is v € ) such that for each
arc e outgoing from v it holds w; € S(v,e) or w; ¢ S(v,e). Then it holds

W
kE>——-.
—AlQ
The previous lemma proved to be quite powerfull tool for certain interconnection
networks. It can be effectivelly applied when there is a “large” set W and a relatively



“small” set @ such that the system of all shortest paths between all pairs of vertices
from @ x W satisfies the wg-property. In [16], this argument has been applied to
some well-known constant degree interconnection networks (like shuffle-exchange,
binary De Bruijn, cube-connected cycles, butterfly) to obtain superpolynomial lower
bounds w.r.t. the diameter of the networks as well as to obtain near-optimal lower
bounds for some non-constant degree interconnection networks (like star).

Now we show that the argument is also suitable for the class of networks, con-
structed as the LCP of complete regular trees.

Theorem 14. Let G = (V, E) be the LCP of an (h + 1)-layered complete d;-ary
top-tree and an (h + 1)-layered complete dy-ary bottom-tree, where d; > dy > 1.
Then every optimal £-IRS on G requires

h—1
k> dlh .
4akz it

Proof. Consider a di-ary alphabet A = {04,...,(d; — 1)4} and a dy-ary alpha-
bet B = {0g,...,(ds — 1)g}. Then every vertex in the i-th (0 < i < h) layer
of G can be labeled by a string (z1,...,2;, Yh—i-1,...,¥1), where each z; € A and
each y; € B. The edges connect vertices of the form (1, ..., 2, yn—i-1,-..,y1) and
(T1y o T T, Ynio2y - -5 Y1)

Let h =p+q+ 1 where p = L%J Consider the following sets Q and W:

Q:Uf;ll <x1a"'axiaOBa""OB>}UU(]I';i <0A7"'70Aayj7"~7y1>}

W= {(xh sy Tp,y ]-.Au Yh—p—2, - - 'ay1>}

W] = d&ds, Q] = 4% + =2 A — g+ dy, V| = %" i d; > dy and

We show that W and @ satisfy the wg-property expressed in the previous lemma.
Let w; and wy be arbitrary vertices from W. W.lo.g. suppose that w; and w,
differ somewhere to the left of the middle 1. Then for some |o| < p — 1 it holds
wy = (aayrr) and wy = (abary). Choose v € Q as v = (alp...0p).

Clearly every shortest path from v to w; must start with an edge that changes
0p to a4 and every shortest path from v to w, must start with an edge that changes
0p to b4.

As a consequence of the previous lemma, it holds

L &
~AlQ] (di +d,) (ddlli(]lll + %f;?)
If dy =dy =d we get k> 1d". W.lo.g. suppose that d; > ds, then we get
p+a
s & O

2 o
4d?



Note that the same argument as in the previous theorem can be used to prove (re-
prove) lower bounds on the compactness & for butterfly [16] in the form Q(y/n/ logn),

wrap-around butterfly in the form Q((n/logn)'/*), fat tree [6] in the form Q(y/n)
and globe graph [16] in the form Q(y/n), where n is the size of the topology.

3.3.2 Deadlock-free MIRS

First we give an efficient multidimensional interval routing scheme for generalized
butterfly networks.

Consider the following GBF-machine. It has a work tape with A cells and a head
which can be positioned between cells or at any of the ends of the tape. Each cell
contains one d-ary digit (from {0,1,...,d—1}). In one step, the head moves to the
left or to the right over a cell and writes a digit from {0,1,...,d — 1} to this cell.
The state diagram of a GBF-machine with vertices corresponding to the states and
arcs corresponding to the steps forms exactly the GBF(h,d) graph. This allows us
to consider the vertices of the GBF(h, d) graph as being the states of the described
machine.

Proposition 15. Given the GBF(h,d) graph, let w be a vertex of the form (p, uawv),
where p = |ual, o € {0,1,...,d — 1}. There exists a shortest path from w to a
vertex z starting with an arc e corresponding to moving the head to the left and
writing zero if and only if the vertex z is of the form (A): (g, wjws), w1 # uc,
q > p = |w] or of the form (B): (g, ws0v), ¢ < p = |w30].

If we want to design a full information shortest path routing scheme, it must
route messages destinated to those vertices precisely along the arc e. The charac-
terization of vertices whose messages are to be routed along arcs of other types is
similar.

Now we briefly describe a (2, 3)-MIRS of the GBF'(h,d).

Lemma 16. There exists a full information shortest path (2,3)-MIRS on the
GBF(h,d).

Proof. Let us label the vertices in the individual dimensions as follows: The first
dimension of the label represents the number written on the tape, the second di-
mension represents the number written on the tape read backwards and the third
dimension represents the position of the head.

For any vertex w and any arc e from the previous Proposition it is possible to
select vertices of the forms (A) and (B) using two triples of intervals. The first
triple selects the vertices not starting with ua (these form a cyclic interval in the
1st dimension) and not having the head to the left of w’s head (these form a cyclic
interval in the 3rd dimension). The second triple selects the vertices ending with Qv
(these form a cyclic interval in the 2nd dimension) and having the head to the left of
w’s head. For other types of arcs the construction is similar. The bit length of the
labels of the described routing scheme is 2h + log h and therefore the space required
per vertex in bits is O(h). O



In [15] it is proved that the rank is at most 4 for the smallest class of graphs
which contains layered trees and layered series-parallel graphs and is closed under
the LCP. As a consequence we get the following lemma.

Lemma 17. There exists a deadlock-free controller of size 4 for the optimal packet
routing on a GBF(h,d).

Corollary 18. There is a ((2,3),4)-DFMIRS on a GBF(h, d).
3.4 Cube-connected Cycles

Let u = (ap .. .aq4_1,p) be a tuple consisting of a binary string and a cursor position
from {0,...,d — 1}. The operations of shifting cursor cyclically to the left and to
the right on u are denoted as L(u) and R(u), respectively, and the shuffle operation
is defined as S(u) = (ag...dy...a4-1,p), where 4, = 1 — a,.

A d-dimensional cube-connected cycles (denoted as CCCy) is a network (V) E),
where V = {u|u e {0,1}¢x {0,...,d - 1}} and E = {(u,v) | R(u) = v or L(u) =
vor S(u) =v}.

Lemma 19. There exists an acyclic orientation covering of size 2d+6 for the system
of all shortest paths between all pairs of nodes in CCCj.

Proof. Consider the following acyclic orientation DC}: for each binary string a =
ap...aq— the cycle (a,0),...,(a,d — 1) is oriented (a,0) — ... = (o,d — 1) and
(a,0) = (a,d — 1); the remaining links are oriented arbitrarily provided that the
resulting orientation is acyclic. The covering G consists of an alternating sequence
of DC and its opposite DC, of length 2d + 6.

Consider an arbitrary shortest path 7 = (ag, po), - - -, (o, pr)- It clearly contains
at most d S-links (such that p; = p;y1). By cycle segment we mean maximal
subpath of 7 that contains no S-link. If a cycle segment does not contain a link
(,0), (ar,d — 1) for some « then the entire segment is covered either by DC; or by
DC(5. Call this segment as non-zero segment. FEach zero segment consists of at most
three paths such that each of them is covered either by DCy or by DCj.

Because each shortest path contains at most two vertices (o, p), (s, p) with the
same cursor position p, there are at most two zero segments.

Thus 7 consists of at most 2d + 5 parts (i.e. d S-links, d — 1 non-zero segments
and two zero segments each of three paths) all of which are covered either by DC
or by DC5. Hence 7 is covered by G. O

Corollary 20. There exists a deadlock-free controller of size 2d + 6 for the optimal
packet routing on a d-dimensional cube connected cycles network.

It was shown in [16] that there does not exist an efficient shortest paths IRS
for CCCy (more precisely, superpolynomial compactness in d is required!).

Lemma 21. Each optimal £-IRS for a d-dimensional cube-connected cycles network
needs k = Q(2%/2).



Now we show that there are efficient d-dimensional TRS on CCCy; with com-
pactness and size polynomial in d.

Theorem 22. There exists a ((2d*, d), 2d + 6)-DFMIRS on CCC,.

Proof. Let us define a machine whose state diagram is the d-dimensional cube-
connected-cycles graph. Its working tape is a circular strip consisting of d cells.
The head can be positioned above any cell. Each cell can contain one binary digit.
In one step the head can change the content of the cell read or move one position
to the left or to the right. Again we consider nodes being the states of the machine
described.

Let u,v be two nodes of the CCCy. Take v XOR v (the tape is unwound on
the picture):

v's head u's head

v v
‘ part B | H part A | H part B

l

Denote a,b and o’ the lengths of the longest runs of consecutive zeros in parts A, B
and A'(= A without the rightmost cell) respectively and b" the length of the run
of consecutive zeros in part B starting immediately to the right of the position of
u's head. There exists a shortest path from u to v starting with the left arc e if and
only if either:

Ard=aand 2(l+b—a)<d
or
B: v =band 2(I+b—a) > d and u, v do not differ in the cell scanned by u’s head.

The condition for the existence of a shortest path starting with the right arc is
symmetric. There exists a shortest path from « to v starting with the shuffle arc if
and only if u and v differ in the cell scanned by u’s head. Now we briefly describe
the (2d%, d)-MIRS of CCC.

The vertices in the é-th dimension (i € {1,...,d}) have numbers 1,...,d ac-
cording to the following lexicographic ordering:

e the first criterion is the position of the head

e the second criterion is the number written on the tape after the cyclic rotation
by ¢ bits to the left.

In this labeling the vertices having the same position of the head form a block
in each dimension. Another important property of the labeling is that selecting
vertices having the head at any given position and containing (resp. not containing)
any given binary substring at any given position of the tape can be done using at
most two intervals in one block of one dimension. The dimension in which intervals
are used is determined by the position of the substring.



Let u be any vertex of the CCCy graph. Labeling the shuffle arc emanating
from wu is easy, as exactly messages to the vertices having a different symbol at the
position of u's head are to be routed along it. As there exists a dimension such that
in each of its blocks such vertices form a cyclic interval, we need only d intervals per
dimension.

Labeling the left arc is more complicated. We select vertices whose messages
are to be routed along this arc for each position of their head independently. If for
each given position we need at most ¢ intervals per dimension to select such vertices
then in total we need at most dq intervals per dimension.

Vertices satisfying the rule A and having the head at a given position are to be
selected as follows:

e We choose the length a' of the longest run of consecutive zeros in the part A’
of u XOR v (len(A’) + 1 possibilities).

e We choose the position of this run (len(A’) — a’ + 1 possibilities).

e Given o' and the position of the run, the vertices

— having run of a' zeros at the choosen position

— not having longer run of zeros in the part A

— not having run of zeros in the part B longer than a + %

can be selected using two intervals per dimension, because we can fulfill these
conditions by selecting the vertices having, or not having certain substrings at
different positions.

Vertices satisfying the rule B and having the head at a given position are to be
selected as follows:

e We choose the length b' of the run of consecutive zeros in the part B starting
immediately to the right of the position of u’s head. (len(B) + 1 possibilities)

e Given I, the vertices

— having run of b’ zeros in the part B starting immediately to the right of the
position of «’s head
— not having longer run of zeros in the part B

2l—d

— not having run of zeros in the part A longer than b + =5¢

— not differing from w in the cell scanned by u’s head

can be selected using two intervals per dimension, using the same reasoning as
in the previous case.

It holds (len(A") + 1)(len(A") + 1) +len(B) + 1 < d?, therefore we have used in total
at most 2d intervals per dimension which gives us the (2d%, d)-MIRS. O



4 CONCLUSIONS AND DISCUSSION

Interval routing is a significant representative of compact routing methods. It is
a simple, space-efficient, and uniform technique suitable for hardware realization
and in fact it has been adopted as routing method in a commercial router chips.
Moreover, as low latency technique, not rewriting message headers upon retrans-
mission (i.e. without electro/optic conversions) it is also of interest in ultra-high
capacity networks (see [3, 30]). Therefore, interval routing has attracted a fair
amount of attention in recent years.

We have presented efficient deadlock-free MIRS on hypercubes, tori, generalized
butterflies and cube-connected cycles. These results can be transformed also to
an analogous wormhole routing model as formulated in Subsection 2.5. The main
question remains whether there are efficient deadlock-free MIRS also for wider classes
of graphs, e.g. symmetric graphs, planar graphs etc.

We have also presented a nonconstant lower bound on the size of deadlock-free
controllers (based on acyclic orientation covering) for a special set of routing paths
in d-dimensional hypercubes. This is the first nontrivial lower bound on specific
controllers. Moreover, this set of routing paths can be covered by general deadlock-
free controllers of constant size, thus giving the first example of differences between
sizes of general and specific controllers. The question is to determine nonconstant
lower bounds on the size of deadlock-free controllers for general networks and to
give size differences between general and specific deadlock-free controllers.

There are still many unresolved questions concerning DFMIRS (some of them are
mentioned in Section 3). It would be nice to have a trade-off between compactness
and buffer-size for deadlock-free MIRS on general graphs.

We conclude by discussion concerning the impact of graph operators on the
compactness of interval routing. Certain graph operators have been found interesting
in the design of communication networks. The impact of some graph operators on
the compactness of interval routing has been previously studied [12, 10, 19]. These
results characterize the effect of the cartesian product, the composition, and the
join of graphs on the minimum number of linear intervals needed for the optimal
deterministic routing.

We have presented the study of another graph-theoretic operation, namely the
layered cross product of graphs. LCP was introduced [6] as a technique for con-
structing some more complex interconnection networks on the basis of structurally
simple multiplicands. Certain useful properties of networks decomposable as the lay-
ered cross product of simple graphs have been already exploited. In [2] an efficient
compact routing protocol was introduced for the LCP of trees. In [15] deadlock-free
packet and wormhole routing protocols have been considered for interconnection net-
works constructed as the layered cross product of trees and series-parallel graphs.

In this paper we have considered the class of networks constructed as the layered
cross product of regular complete trees. This class of networks is of interest, as it
includes among others butterflies, mesh of trees, and fat trees. We first proved
that the classical shortest path interval routing schemes do not work efficiently on



the class of interconnection networks, constructed as the LCP of regular complete
trees. However, we have shown that there are efficient full information shortest path
multidimensional interval routing schemes for this class of networks. By [21] there
are other well-known interconnection networks for which multidimensional schemes
do not work efficiently. These are not known to be composable by the LCP operation.
Our results thus indicate a possible explanation why improvement in the efficiency
by using the multidimensional approach (instead of the deterministic unidimensional
approach) is obtained for some well-known interconnection networks.

It would be a step forward in understanding the complexity of multidimensional
routing in order to identify other classes of networks with efficient MIRS and to
characterize the exact border between the efficiency and inefficiency of MIRS.
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