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Abstrat. We present deadlok-free paket/wormhole routing algorithms basedon multidimensional interval shemes for ertain hyperube related multiproes-sor interonnetion networks and give their analysis in terms of the ompatness(i.e. the maximum number of intervals per link) and the bu�er-size (i.e. the ma-ximum number of bu�ers per node/link). The issue of a simultaneous redutionof the ompatness and the bu�er-size is fundamental, worth to investigate and ofpratial importane, sine the interval routing and wormhole routing have beenindustrialy realized in INMOS Transputer C104 Router hips.In this paper we give an evidene that for some well-known interonnetion net-works there are eÆient deadlok-free multidimensional interval routing shemes(DFMIRS) despite of a provable nonexistene of eÆient deterministi shortest pathinterval routing shemes (IRS). For d-dimensional hyperubes (tori) we present ad-dimensional DFMIRS of ompatness 1 and size 2 (of ompatness 1 and size 4),while for shortest path IRS we an ahieve the redution to 2 (to at most 5) bu�ersper node with ompatness 2d�1 (with ompatness O(nd�1)). For d-dimensionalgeneralized butteries we give a d-dimensional DFMIRS with ompatness 2 andsize 3, while eah shortest path IRS is of the ompatness at least superpolynomialin d. For d-dimensional ube-onneted yles we show a d-dimensional DFMIRSwith ompatness and size polynomial in d, while eah shortest path IRS needsompatness at least 2d=2.We also present a nononstant lower bound (in the form pd) on the size ofdeadlok-free paket routing (based on ayli orientation overing) for a set ofmonotone routing paths on d-dimensional hyperubes.Keywords: Interval routing, paket routing, deadlok avoidane, interonnetionnetworks1 INTRODUCTIONInterval routing is an attrative spae-eÆient routing method for ommuniationnetworks whih has found industrial appliations in INMOS T9000 transputer de-sign. As it is a simple, uniform and low lateny tehnique that uses only limitedaddress spae and does not modify message headers during the routing (i.e. it re-quires no extra eletro/opti onversions), it is also of interest for routing in optialnetworks. Survey of prinipal haraterization and eÆieny results about intervalrouting and its variants an be found in [27, 11, 20℄.Interval routing is based on ompat routing tables, where the set of nodesreahable via outgoing links is represented by intervals. The spae eÆieny an bemeasured by ompatness, i.e. the maximum number of intervals per link.Previous work mostly onentrated on shortest path interval routing shemes(IRS). Shortest path IRS of ompatness 1 are known to exist for a number of well-known interonnetion networks inluding trees, rings, omplete bipartite graphs,grids, and hyperubes. There are, however, interonnetion networks that are known



to have no shortest path IRS even for large ompatness, whih inlude shu�e-exhange, ube-onneted yles, buttery, DeBruijn, and star graphs. Several ge-neralizations of IRS were therefore proposed.Multidimensional interval routing shemes (MIRS) were introdued in [8℄ andwere used to represent all the shortest paths information. MIRS with low memoryrequirements were proposed for hyperubes, grids, tori and ertain types of hordalrings [8℄.Another interesting aspet of the routing problem is related to deadloks. Adeadlok refers to a situation in whih a set of messages is bloked forever beauseeah message in the set oupies bu�er in a node or on a link whih is also required byanother message. Deadlok-free routing is relevant in the framework of paket andwormhole routing protools [4, 5, 18, 24, 25℄. The �rst study dealing with deadlok-free IRS appeared in [23℄. Further results were presented in [22, 28, 29℄. We followthe model of bu�ered deadlok-free IRS introdued in [7℄ based on the notion ofayli orientation overing. An s-bu�ered deadlok-free IRS with ompatness k isdenoted as (k; s)-DFIRS. Some results were already presented in [7℄. For d-dimen-sional tori there exists a shortest path (2; 2d+ 1)-DFIRS; the redution to 5 bu�ersan be ahieved with ompatness O(nd�1). For d-dimensional hyperubes there isa shortest path (1; d + 1)-DFIRS; the redution to 2 bu�ers an be ahieved withompatness 2d�1.We extend the model in [7℄ to bu�ered deadlok-free multidimensional inter-val routing. We show that for some interonnetion networks there are eÆientdeadlok-free MIRS even in the ase when there does not exist eÆient shortestpath IRS. For butteries of dimension d we give a deadlok-free d-dimensional MIRSwith onstant ompatness and size, while eah shortest path IRS needs ompat-ness at least 2d=2. For ube-onneted yles of order d we present a deadlok-freed-dimensional MIRS with ompatness and size polynomial in d, while eah shortestpath IRS needs ompatness at least 2d=2. For d-dimensional hyperubes we give adeadlok-free d-dimensional MIRS of ompatnes 1 and size 2, and for d-dimensionaltori we show a deadlok-free d-dimensional MIRS of ompatness 1 and size 4.There exist only few lower bounds on the size of deadlok-free paket routing,even for those based on spei� strategies. The best lower bound is 3 (see [4℄). Wegive the �rst nononstant lower bound (in the form pd) on the size of deadlok-freepaket routing (based on ayli orientation overing) for a speial set of routingpaths on d-dimensional hyperubes. As a onsequene, the set of routing pathsindued by 1-IRS on the hyperube proposed in [1℄ is not suitable for the eÆientdeadlok-free paket routing based on ayli orientation overing onept.The struture of the paper is the following. In Setion 2 we introdue some basinotions and present deadlok-free routing model. In Setion 3 we present eÆientdeadlok-free MIRS on hyperubes, tori, generalized butteries and ube-onnetedyles. We also give a nononstant lower bound on the size of ayli orientationovering on hyperubes and the lower bound on ompatness for IRS in generalizedbuttery networks. In Setion 4 we onlude our results and disuss the impat ofgraph operators on the ompatness of interval routing.



2 DEFINITIONS2.1 Basi NotionsAn interonnetion network is modeled by a onneted undireted graphG = (V;E),where V is a set of nodes and E is a set of links of the network. Assume jV j = n.Eah node has a �nite set of bu�ers for temporarily storing messages. The set of allbu�ers in the network G is denoted as B.A ommuniation request is a pair of nodes in G. A ommuniation pattern R isa set of ommuniation requests. We will onsider ertain signi�ant ommuniationpatterns in G. A stati one-to-all ommuniation pattern is a set f(v; w) j w 2 V gfor a given soure node v. A dynami one-to-all ommuniation pattern is a setf(v; w) j w 2 V g for some (not given in advane) soure node v. An all-to-allommuniation pattern is a set f(v; w) j v; w 2 V g. A permutation ommuniationpattern is a set of ommuniation requests realizing a permutation. A olletion Pof paths in G satis�es the ommuniation pattern R if there is at least one pathin G beginning in u and ending in v for eah ommuniation request (u; v) 2 R.The routing problem for a network G and a ommuniation pattern R is a prob-lem of speifying a path olletion P satisfying R. A path olletion is simple if nopath ontains the same link more than one, and it is a shortest path olletion iffor eah (u; v) 2 R only shortest paths from u to v in G are onsidered. Satisfyinga ommuniation request onsists of routing a message along a orresponding pathin P . In this paper, the routing problem is solved by a path olletion indued byinterval routing shemes. In what follows we shall onsider all-to-all ommuniationpatterns only unless otherwise spei�ed.2.2 Layered NetworksA graphG = (V;E) is h-layerable if there exist h disjoint (non-empty) sets of vertiesV1; :::; Vh, where Vi is the set of verties in the layer i, suh that V = V1 [ ::: [ Vhand every edge in E onnets verties of two adjaent layers. We shall all a graphwith given V1; :::; Vh an h-layered graph. Let the layer with index 1 be the top layer,and the layer with index h the bottom layer.The graph an be layered in many di�erent ways. For example, eah bipartitegraph an be layered using just two layers. In what follows, we shall onsider only\naturally" layered graphs in the sense to be apparent later.Some well-known interonnetion networks used in parallel omputing an beviewed as layered graphs. Examples are grids, hyperubes, butteries, Bene�s graphs,mesh of trees or fat trees. On the other hand, examples of non-layerable networksare yles of odd length or odd-dimensional ube-onneted yles.Let G1 = (V1; E1) and G2 = (V2; E2) be two h-layered graphs, where V1 =V (1)1 [: : :[V (1)h and V2 = V (2)1 [: : :[V (2)h : The Layered Cross Produt (LCP for short)of the two h-layered multipliands G1; G2 is an h-layered graph G = (V;E), where



V = V1 [ : : : [ Vh and Vi is the artesian produt of V (1)i and V (2)i , 1 � i � h, andan edge ((a1; a2); (b1; b2)) belongs to E if and only if (a1; b1) 2 E1 and (a2; b2) 2 E2.We are interested only in h-layered interonnetion networks, in whih everyvertex is on a path of length h onneting a vertex of the top layer with a vertexof the bottom layer. Two layered graphs are onsidered to be equal if they areisomorphi, and the isomorphism preserves the layer to whih a vertex belongs.Under this assumption, the LCP operation is ommutative and assoiative. Thus,we may onsider the LCP of more than two layered graphs (all with the samenumber h of layers) without regard to the order in whih they are written, or theorder in whih the binary operation is applied. A simple h-layered path serves asthe identity element of the LCP operation.By the LCP of trees one an obtain some interesting interonnetion networks,as butteries, mesh of trees or fat trees. Globe graphs [12℄ an be onstruted asthe LCP of yles. Multi-globe graphs [26℄ an be omposed as the LCP of ylesand trees.2.3 Interval RoutingAn Interval Labeling Sheme (ILS) is given by labeling eah node in a graph Gby a unique integer from the set f1; 2; : : : ; ng and eah link by an interval [a; b℄,where a; b 2 f1; 2; : : : ; ng. We allow yli intervals [a; b℄ suh that [a; b℄ = fa; a+1; : : : ; n; 1; : : : ; bg for a > b. The set of all intervals assoiated with the links inidentwith a node must form a partition of the set f1; 2; : : : ; ng. Messages to a destinationnode having a label l are routed via the link labeled by the interval [a; b℄ suh thatl 2 [a; b℄. An ILS is valid if the set of paths spei�ed by this ILS satis�es the all-to-all ommuniation pattern. (Thus, if, for all nodes u and v in G, messages sentfrom u to v reah v orretly, not neessarily via the shortest paths.) A valid ILSis also alled an Interval Routing Sheme (IRS). An IRS thus spei�es for eah pairof distint nodes u and v in G a (unique) path from u to v.In a k-ILS eah link is labeled with up to k intervals, always under the assump-tion that at every node, all intervals assoiated with links outgoing from the nodeform a partition of f1; : : : ; ng. At any given node a message with destination nodelabeled l is routed via the link labeled by the interval ontaining l. If k-ILS doesnot use yli intervals, the k-ILS is alled linear or simply k-LILS. Valid k-ILS andk-LILS are alled k-IRS and k-LIRS, respetively. A k-IRS (k-LIRS) is said to beoptimal if it represents a shortest path olletion ontaining exatly one shortestpath between any pair of nodes.2.4 Multidimensional Interval RoutingMultidimensional interval routing shemes (MIRS for short) are an extention ofinterval routing shemes. In (k,d)-MIRS every node is labeled by a unique d-tuple(l1; : : : ; ld), where eah li is from the set f1; : : : ; nig (1 � ni � n). Eah link islabeled by up to k d-tuples of yli intervals (I1;1; : : : ; Id;1); : : : ; (I1;k; : : : ; Id;k). In



any node a message with destination (l1; : : : ; ld) is routed along any outgoing linkontaining a d-tuple of yli intervals (I1; : : : ; Id) suh that li 2 Ii for all i. In thisase, multiple paths are represented by the sheme, so the intervals on the links ofa given node may overlap, i.e. they do not form a partition of the nodes in V .As noted, MIRS an be multipath. A routing based on a multipath routingsheme must hoose one link from the eligible ones. If a sheme represents allshortest paths it is alled a full information shortest path routing sheme.2.5 Deadlok-free Routing ModelWe intend to model the paket routing, i.e. the so alled store-and-forward messagepassing in whih the message from u to v passing via w has to be stored at thenode w before it is sent further towards v. We shall assume eah node ontainsa �nite number of bu�ers. For a message to pass via a link (x; y) it means, that ithas to be moved from a bu�er at node x to a bu�er at node y. This assumes theexistene of an available (i.e., empty) bu�er at y.We follow the notions introdued in [7℄. In paket routing, eah message isrepresented by its soure-destination pair. For a given message m = (u; v) anda bu�er b ontainingm, a ontrollerC : V �V �B 7! 2B spei�es the subset C(u; v; b)of bu�ers whih an ontain m in the next step along the path to its destination v.(We assume C(u; v; b) = ; if b never stores a message m = (u; v).) We say thata ontroller C is deadlok-free if it does not yield any deadlok on�guration. Thisproperty an be guaranteed if the resulting bu�er dependenies graph is ayli. Inbu�er dependenies graph [18℄, eah node represents a bu�er and there is a diretededge between bi and bj if there is at least one message m = (u; v) suh that bj 2C(u; v; bi).Let us by su denote the number of bu�ers used by a ontroller C at the node u.In wormhole routing as su;v the number of bu�ers assigned at a node u to the inidentlink (u; v). For a network G = (V;E) and a ontroller C for G, we de�ne the size sof C as s = maxu2V (su) (resp. s = max(u;v)2A(su;v + sv;u) in wormhole routing).Assume a path � = v1; : : : ; vr onneting v1 to vr. We say that the ontroller Covers � if there exist r bu�ers b1; : : : ; br suh that for eah i, 1 � i � r, bi belongsto vi and for eah i, 1 � i � r � 1, bi+1 2 C(v1; vr; bi). Similarly, the ontroller Covers � in wormhole routing if there exist r � 1 bu�ers b1; : : : ; br�1 s.t. for eah i,1 � i � r� 1, bi belongs at vi to link (vi; vi+1) and for eah i, 1 � i � r� 2, it holdsbi+1 2 C(v1; vr; bi).We need to extend the standard k-IRS to deadlok-free k-IRS. Notie that eahk-IRS uniquely indues the set of simple paths, one for eah pair of nodes in G.A (k; s)-DFIRS (deadlok-free IRS ) for a graph G is a k-IRS for G together witha deadlok-free routing ontroller of size s for G whih overs the set of pathsrepresented by the k-IRS. The (k; s)-DFIRS is optimal if the k-IRS is optimal.All ontrollers onsidered in this paper are based on the onept of an ayliorientation overing. An ayli orientation of a graph G = (V;E) is an aylidireted graph DG = (V;DE) obtained by orienting all links in E. Let G =



hDG1; :::; DGsi be a sequene of (not neessarily distint) ayli orientations ofa graph G and let � = v1; : : : ; vr be a simple path in G. We say that G overs �if there exists a sequene of positive integers j1; : : : ; jr�1 suh that 1 � j1 � : : : �jr�1 � s and for every i, 1 � i � r � 1, (vi; vi+1) belongs to DGji .Note that a path � need not be overed by G in a unique way. There ould bedi�erent sequenes k1; : : : ; kr�1 suh that (vi; vi+1) belongs to DGki ; but there existsa unique sequene suh that the orresponding (r�1)-tuple (k1; : : : ; kr�1) is minimal(w.r.t. the lexiographial ordering). We assume that the deadlok-free ontrollerbased on G works with minimal tuples. Suh a ontroller is alled greedy.Let P be a set of simple paths onneting every pair of nodes in G. A sequeneof orientations G = hDG1; : : : ; DGsi is said to be an ayli orientation overingfor P of size s if G overs at least one path � 2 P for eah pair of nodes in G.A ((k; d); s)-DFMIRS (deadlok-free MIRS ) for a graph G is a (k; d)-MIRS for Gtogether with a deadlok-free ontroller of size s for G whih overs the set of pathsindued by the (k; d)-MIRS.The main problem overed is to design the deterministi paket routing protoolbased on a possibly nondeterministi (k; d)-MIRS with a deadlok-free routing on-troller (based on ayli orientation overing G = hDG1; : : : ; DGsi) of size s for G.In this paper we solve this problem by applying the greedy mode. At the sourenode, the message destined for the node labeled l is routed via a link e having theinterval ontaining l and satisfying e 2 DG1. Only if suh a possibility does not existit hooses the next orientation DG2. Generally, at an arbitrary node, the protool�rst hooses a link in the urrent orientation DGj aording to (k; d)-MIRS andonly if suh a link does not exist, it swithes to the next ayli orientation DGj+1in G. We all this strategy a greedy one. All ((k; d); s)-DFMIRS in this paper areworking with the greedy strategy.The importane of ayli orientation overings is stated by the following las-sial result (see [23℄) formulated for all-to-all ommuniation patterns: given a net-work G and a set of simple paths P onneting all pairs of nodes in G, if an ayliorientation overing of size s for P exists, then there also exists a deadlok-freepaket (wormhole) routing ontroller of size s for G whih overs P .3 RESULTSThe size of deadlok-free ontrollers for the optimal (shortest paths) paket routingon arbitrary networks strongly depends on the struture of ommuniation patterns.The following fat for all-to-all ommuniation patterns an be found e.g. in [23℄: forany network G and a set of n:(n� 1) shortest paths onneting every pair of nodesin G, there is a deadlok-free ontroller (based on an ayli orientation overing)of size D + 1, where D is the diameter of G. The best lower bound on the size ofdeadlok-free ontrollers is 3 [4℄.Considering all-to-all ommuniation patterns on arbitrary networks, the prob-lem is to determine nononstant lower bound on the size of a deadlok-free ontroller



(based on ayli orientation overing onept) neessary for the optimal (shortestpaths) paket routing.For a spei� set of routing paths in d-dimensional hyperubes we prove (inTheorem 7) the lower bound pd on the size of deadlok-free ontrollers (basedon ayli orientation overing). This is the �rst nononstant lower bound on thesize of ontrollers and it is useful in proving noneÆieny of ertain 1-LIRS [1℄ fordeadlok-free paket routing.However, if we assume stati one-to-all ommuniation patterns, the require-ments for the size of deadlok-free ontrollers are muh lower. Namely, for any net-work G and a set of n�1 shortest paths onneting a node with all other nodes in G,there is a deadlok-free ontroller (based on ayli orientation overing) of size 1.For other types of ommuniation patterns the problems are again unsolved.What is the number of bu�ers suÆient to realize dynami one-to-all or permutationommuniation patterns? Can we do better than D + 1 bu�ers per node?We shall now onentrate on spei� networks. We shall study the relationshipbetween the size and the ompatness of deadlok-free paket routing, based oninterval routing shemes, for ertain interonnetion networks inluding hyperubes,tori, butteries and ube onneting yles.3.1 HyperubesA d-dimensional hyperube Hd is the artesian produt of d omplete graphs K2.3.1.1 Deadlok-free IRSLemma 1. There exists a deadlok-free ontroller of size 2 for the optimal paketrouting on a d-dimensional hyperube.Proof. A hyperube Hd is a node symmetri graph, so we an �x an arbitrary nodeas the initiator of Hd and assign it the string 0d. Let the unique strings of the nodesin Hd be from f0; 1gd suh that two nodes are neighbors if and only if their stringsdi�er in exatly one bit. De�ne the ayli orientation overing G = hDH1; DH2i ofa hyperube suh that in DH1 all links are oriented from all the nodes towards theinitiator and in DH2 the orientation is opposite.It is easy to verify that G forms a greedy deadlok-free ontroller of size 2for Hd. There exists a olletion of shortest paths between all pairs of verties inHd, overed by G. Given any two nodes u and v in Hd with orresponding strings �and �, a shortest path from u to v follows� in the �rst plae the links (in arbitrary order) hanging bit 1 to 0 in all positionsin whih � has 1 and � has 0, and� later on the links (in arbitrary order) hanging bit 0 to 1 in all positions in whih� has 0 and � has 1. 2



When we onsider dynami one-to-all ommuniation patterns instead of all-to-all ommuniation patterns, we get the following onsequene of the previouslemma.Corollary 2. There exists a deadlok-free ontroller of size 2 for the optimal paketrouting on a d-dimensional hyperube with dynami one-to-all ommuniation pat-terns.The next two results are from [7℄. When we onsider linear interval routingshemes, the size d + 1 an be obtained with ompatness 1, and the redution tothe size 2 an be ahieved with the ompatness 2d�1.Lemma 3. For every i (1 � i � d) there exists a (2i�1; dd=ie + 1)-DFLIRS fora d-dimensional hyperube.Corollary 4. There exists a (1; d+ 1)-DFLIRS on a d-dimensional hyperube.3.1.2 Deadlok-free MIRSWe now show that using d-dimensional interval routing shemes (see [8℄) the size 2an be ahieved with ompatness just 1.Theorem 5. For every i (1 � i � d) there exists a ((2i�1; dd=ie); 2)-DFMIRS fora d-dimensional hyperube.Proof. Consider a d-dimensional hyperube Hd = (V;E), given as the produt ofbd=i sububes of dimension i and a subube of dimension d mod i. For simpliity,assume d mod i = 0. Observe that eah of these d=i sububes H(j)i = (Vj; Ej),1 � j � d=i, of dimensions i admits a (d2i�1=ie; 1)-MIRS.We label eah node in V by the d-tuple(l1;1; : : : ; l1;i; l2;1; : : : ; l2;i; : : : ; ld=i;1; : : : ; ld=i;i)(lp;q 2 f0; 1g; 1 � p � d=i; 1 � q � i) where for eah j, (lj;1; : : : ; lj;i) is the label ofa node in Vj in the (d2i�1=ie; 1)-MIRS of H(j)i .We label eah link e = ((l1; : : : ; lh; : : : ; ld); (l1; : : : ; l̂h; : : : ; ld)) in E, l̂h = 1 � lh,by d2i�1=ie d=i-tuples(I1;1; : : : ; I1;d=i); : : : ; (Id2i�1=ie;1; : : : ; Id2i�1=ie;d=i)where (k � 1) � i + 1 � h � k � i (for some k 2 f1; : : : ; d=ig), and for eah msuh that either m < (k � 1):i + 1 or m > k:i, I1;dm=ie = I2;dm=ie = : : : =Id2i�1=ie;dm=ie is the interval ontaining the dm=ie-th dimensional omponent of allnode labels, and I1;dh=ie; : : : ; Id2i�1=ie;dh=ie are the d2i�1=ie intervals assoiated atthe node (l1; : : : ; lh; : : : ; ld) to the link ((l1; : : : ; lh; : : : ; ld); (l1; : : : ; l̂h; : : : ; ld)) in the(d2i�1=ie; 1)-MIRS for H(j)i , 1 � j � d=i.



It is easy to verify that the desribed sheme orretly transmits messages viathe shortest paths. At eah link the number of intervals is at most d2i�1=ie, heneit an be no worse than 2i�1 for eah i. The dimension of the produt ube Hd islearly the sum of dimensions of all the sububes, i.e. d=i. Following the proof ofLemma 1 we get a deadlok-free ontroller of size 2 working in the greedy mode forthe optimal paket routing on Hd. 2Corollary 6. There is a ((1; d); 2)-DFMIRS on a d-dimensional hyperube.In Lemma 1 we proved that there exists a deadlok-free ontroller, for paketrouting on a hyperube, whih uses only two bu�ers in eah node and allowsmessagesto be routed via the shortest paths. Tel [23℄ posed the question whether it is possibleto obtain the set of the paths used by means of a (linear) interval routing sheme.We argue that there is no (1; 2)-DFLIRS (based on ayli orientation ontroller)on a d-dimensional hyperube. (It is suÆient to show the nonexistene of (1; 2)-DFLIRS on d-dimensional hyperubes for a small onstant dimension.)3.1.3 Lower Bound on the Size of Ayli Orientation CoverThere exists an ayli orientation overing of size d + 1 for the set of all shortestpaths between all pairs of nodes in Hd. We show that the relevant lower boundis pd.Reall that the d-dimensional hyperube has a node set onsisting of all binarystrings of length d with two nodes being onneted if and only if they di�er in exatlyone bit. Thus every path in the hyperube orresponds to a sequene of hanges ofsome bits. If the bits are hanged in order from left to right then the path is alledmonotone.Theorem 7. Let P be a path system of a d-dimensional hyperube suh that eahpath between any node v and its omplement v in P is monotone. Every ayliorientation overing for P has size of at least pd.Proof. A movement of a message along the monotone path onneting a node v andits omplement v an be simulated by a devie onsisting of a tape with d ells anda ursor whih an be positioned either between any two neighboring ells or at thetwo ends of the tape. Initially the tape ontains the string v and the ursor is onthe left end of the tape. Moving a message along one link of the path orrespondsto moving the ursor over one ell to the right and inverting the ontent of that ell.Reahing the destination is equivalent to reahing the right end of the tape. If we aregiven some ayli orientation of the hyperube then we allow the ursor to advaneonly if the orresponding link is properly oriented in the urrent orientation.If a sequene hDG1; : : : ; DGsi of ayli orientations of the hyperube is anayli orientation overing for P then if we start the devie on any node v and movethe ursor aording toDG1; : : : ; DGs (in this order, using the greedy strategy) thenthe ursor reahes the right end of the tape.



Let us assume we shall start the devie on all 2d nodes simultaneously andonsider the positions of ursors following the use of eah ayli orientation. Animportant observation is that for any ayli orientation only few ursors an makelong movements. For any positions of ursors a; b 2 f0; : : : ; dg; a < b and any ayliorientation there are at most 2d=(b� a+ 1) ursors that move between positions aand b in this orientation. For the sake of ontradition suppose that for some a; bthere are more than 2d=(b� a+1) ursors moving between positions a and b. Fromnow on we onsider only these ursors and their devies. For eah devie and for eahof the b� a+1 ursor positions between a and b the tape of the devie has di�erentontents. Therefore there must be two devies that have the same tape ontent withboth ursors between a and b. Let this ontent be w1w2w3, the ursor of the �rstdevie being between w1 and w2 and the ursor of the seond devie being betweenw2 and w3. In this orientation the �rst devie will move from w1jw2w3 to w1w2jw3and the seond devie moved from w1jw2w3 to w1w2jw3. Therefore there is a ylein the ayli orientation between w1w2w3 and w1w2w3 whih is a ontradition.Now we are ready to prove that after the i-th orientation at least �1� ipd� 2dursors are at most at position ipd. For i = 0 the laim holds sine at the beginingall ursors are at position 0. Let the laim holds after the i-th orientation. Based onthe observation above at most 2d=pd ursors an advane more than pd positionsto the right in the (i+1)-st orientation. Thus the laim holds also after the (i+1)-storientation. Clearly the laim implies the theorem. 2In the 1-LIRS of the hyperube proposed in [1℄ every path between a node andits omplement is monotone. The onsequene of the previous theorem is that this1-LIRS is not suitable for the eÆient deadlok-free paket routing (based on ayliorientation overing).One an observe that there exists a general deadlok-free ontroller of onstantsize overing the set of routing paths P from Theorem 7.3.2 ToriA d-dimensional torus Tn1;:::;nd is the artesian produt of d rings R1; : : : ; Rd, inwhih eah Ri has ni nodes.Lemma 8. There exists a deadlok-free ontroller of size 4 for the optimal paketrouting on a d-dimensional torus.Proof. For simpliity, we will assume the ase of 2 dimensions. The ase of d dimen-sions is handled in a similar fashion. Fix an arbitrary node w of an n�m torus Tn;m.For simpliity, onsider n;m even. Say w = (n=2;m=2). De�ne the ayli orienta-tion overing G = hDT1; DT2; DT1; DT2i of a 2-dimensional tori Tn;m suh that inDT1 the links are oriented from (i; j) to (i+1; j) for i = 1; 2; : : : ; n=2�2; n=2; : : : ; nand 1 � j � m and from (i; j) to (i; j + 1) for 1 � i � n, j = 1; 2; : : : ;m=2 � 2;m=2; : : : ;m and the links are oriented from (n=2; j) to (n=2� 1; j) for 1 � j � m



and from (i;m=2) to (i;m=2 � 1) for 1 � i � n. In DT2 all links are in oppositeorientation. Edges ((n=2� 1; j); (n=2; j)) for 1 � j � m and ((i;m=2� 1); (i;m=2))for 1 � i � n form row and olumn frontiers, respetively.It is easy to verify that G forms a deadlok-free ontroller of size 4 for Tn;m. Thereis a olletion of the shortest paths between all pairs of nodes in Tn;m that an beovered by G. Given any two nodes u and v in Tn;m with oordinates (i; j) and (k; l),respetively, there exists a shortest path from u to v that an be partitioned intofour subpaths (where some of them may be empty) suh that these subpaths areontained in overingsDT1; DT2; DT1; DT2, respetively. If the shortest path from uto v does not ross frontiers, the routing from u to v an be done using DT1; DT2.If the shortest path from u to v rosses one or two frontiers, the routing from u anreah frontiers using either DT1 or DT1; DT2, then routing through frontiers an beperformed with the next orientation in G and �nally routing to v an be done withthe next orientation in G. 2The question remains whether it is possible to indue the set of paths ahievedby deadlok-free ontrollers of size 4 by means of eÆient interval routing shemes.The next two results are from [7℄. When we onsider linear interval routingshemes, the size 2d+1 an be obtained with the ompatness 2, and the restritionto the size 5 an be ahieved with the ompatness O(nd�1).Lemma 9. There exists a (2; 2d+ 1)-DFLIRS for a d-dimensional torus.Lemma 10. For every n and i (1 < i < d) there exists a (dni=2e; 2:dd=ie + 1)-DFLIRS on a d-dimensional torus.On the other hand, when using d-dimensional interval routing shemes (see [8℄)the size 4 an be ahieved with ompatness of only 1.Theorem 11. For every n and i (1 � i � d) there exists a ((ni�1; dd=ie); 4)-DFMIRS on a d-dimensional torus.Proof. Consider a d-dimensional torus, given as the produt of bd=i subtori of di-mension i and a subtorus of dimension d mod i. For simpliity, assume d mod i = 0.Observe that eah of these d=i subtori of dimension i admits (ni�1; 1)-MIRS. Now,the proof follows in a similar way as the proof of Theorem 5 for hyperubes. Fol-lowing the proof of Lemma 8 we get a deadlok-free ontroller of size 4 workingin the greedy mode for the optimal paket routing on d-dimensional tori, based on(ni�1; dd=ie)-MIRS. 2Corollary 12. There exists a ((1; d); 4)�DFMIRS on a d-dimensional torus.3.3 Generalized ButteriesWe start by introduing some basi layered graphs. By an h-layered top-tree(bottom-tree) we mean a rooted tree for whih the root is in the top (bottom)



layer 1 (h) and eah path from the root to a leaf passes through dereasing (in-reasing) layers. The LCP of the (h + 1)-layered omplete d-ary top-tree and the(h+ 1)-ary layered omplete d-ary bottom-tree an be viewed as a generalized but-tery graph.A generalized buttery graph of the degree h and alphabet size d (denoted asGBF (h; d)) onsists of h + 1 layers, eah layer ontaining dh verties, eah ofthem labeled by a unique d-ary string of length h. An edge onnets two vertiesin GBF (h; d) if and only if they are in the onseutive p-th and (p + 1)-st layer,respetively, and their labels are either equal or di�er only in the p-th position.Let � = ah : : : a1 be a d-ary string (ai 2 f0; 1; : : : ; d � 1g) and let p, 1 � p �h + 1, be an index of a layer. Operations L(i); R(i) are de�ned as L(i)((p; �)) =(p+1; ah : : : b(i)p : : : a1), and R(i)((p+1; �)) = (p; ah : : : b(i)p : : : a1), respetively, whereb(i)p = (ap + i) mod (d � 1): An edge (u; v) in GBF (h; d) is alled an L(i)-edge,R(i)-edge, if L(i)(u) = v, R(i)(u) = v, respetively, 0 � i < d.Formally, GBF (h; d) is a graph (V;E), whereV = fu j u 2 f1; : : : ; h+ 1g � f0; 1; : : : ; d� 1ghgand E = f(u; v) j L(i)(u) = v or R(i)(u) = v for 0 � i � d� 1g.3.3.1 Compatness Lower Bound for IRSFirst we show that there does not exist an eÆient IRS for generalized butterynetworks.Let G = (V;E) be a simple onneted graph with maximum degree �: Fora vertex v 2 V and an ar e outgoing from v, denote S(v; e) the subset of vertiesw 2 V whih an be reahed optimally from v over its outgoing ar e.In the following lemma we present a lower bound on the number of intervals foran optimal interval routing sheme in G. The idea of the proof tehnique is basedon the so alled wq-property : Given a graph G, the aim is to hoose two disjoint setsof verties W and Q suh that for any distint verties wi; wj 2 W there is a vertexv 2 Q suh that in any optimal routing sheme the messages sent by v to wi and wjare routed along di�erent outgoing ars.Lemma 13. [16℄ Let G be a graph with maximum degree � and let us have anoptimal k-IRS on G. Let Q and W be disjoint vertex subsets of G satisfying thewq-property, that means for wi; wj 2 W , wi 6= wj , there is v 2 Q suh that for eahar e outgoing from v it holds wi 62 S(v; e) or wj 62 S(v; e). Then it holdsk � jW j�jQj .The previous lemma proved to be quite powerfull tool for ertain interonnetionnetworks. It an be e�etivelly applied when there is a \large" setW and a relatively



\small" set Q suh that the system of all shortest paths between all pairs of vertiesfrom Q �W satis�es the wq-property. In [16℄, this argument has been applied tosome well-known onstant degree interonnetion networks (like shu�e-exhange,binary De Bruijn, ube-onneted yles, buttery) to obtain superpolynomial lowerbounds w.r.t. the diameter of the networks as well as to obtain near-optimal lowerbounds for some non-onstant degree interonnetion networks (like star).Now we show that the argument is also suitable for the lass of networks, on-struted as the LCP of omplete regular trees.Theorem 14. Let G = (V;E) be the LCP of an (h + 1)-layered omplete d1-arytop-tree and an (h + 1)-layered omplete d2-ary bottom-tree, where d1 � d2 > 1.Then every optimal k-IRS on G requiresk � dh�114dbh2 +12 .Proof. Consider a d1-ary alphabet A = f0A; : : : ; (d1 � 1)Ag and a d2-ary alpha-bet B = f0B; : : : ; (d2 � 1)Bg: Then every vertex in the i-th (0 � i � h) layerof G an be labeled by a string hx1; : : : ; xi; yh�i�1; : : : ; y1i, where eah xj 2 A andeah yj 2 B. The edges onnet verties of the form hx1; : : : ; xi; yh�i�1; : : : ; y1i andhx1; : : : ; xi; xi+1; yh�i�2; : : : ; y1i.Let h = p + q + 1 where p = bh2. Consider the following sets Q and W :Q = [p�1i=1 fhx1; : : : ; xi; 0B; : : : ; 0Big [ [q�1j=1fh0A; : : : ; 0A; yj; : : : ; y1igW = fhx1; : : : ; xp; 1A; yh�p�2; : : : ; y1igjW j = dp1dq2, jQj = dp1�d1d1�1 + dq2�d2d2�1 , � = d1 + d2, jV j = dh+11 �dh+12d1�d2 if d1 > d2 andjV j = (h+ 1)dh if d1 = d2 = d.We show thatW andQ satisfy the wq-property expressed in the previous lemma.Let w1 and w2 be arbitrary verties from W . W.l.o.g. suppose that w1 and w2di�er somewhere to the left of the middle 1. Then for some j�j � p � 1 it holdsw1 = h�aAr1i and w2 = h�bAr2i. Choose v 2 Q as v = h�0B : : :0Bi.Clearly every shortest path from v to w1 must start with an edge that hanges0B to aA and every shortest path from v to w2 must start with an edge that hanges0B to bA.As a onsequene of the previous lemma it holdsk � jW j�jQj = dp1dq2(d1 + d2) �dp1�d1d1�1 + dq2�d2d2�1 � .If d1 = d2 = d we get k � 14dq�1. W.l.o.g. suppose that d1 > d2, then we getk � dp+q14dp+12 . 2



Note that the same argument as in the previous theorem an be used to prove (re-prove) lower bounds on the ompatness k for buttery [16℄ in the form
(qn= logn),wrap-around buttery in the form 
((n= logn)1=4), fat tree [6℄ in the form 
(pn)and globe graph [16℄ in the form 
(pn), where n is the size of the topology.3.3.2 Deadlok-free MIRSFirst we give an eÆient multidimensional interval routing sheme for generalizedbuttery networks.Consider the following GBF-mahine. It has a work tape with h ells and a headwhih an be positioned between ells or at any of the ends of the tape. Eah ellontains one d-ary digit (from f0; 1; : : : ; d� 1g). In one step, the head moves to theleft or to the right over a ell and writes a digit from f0; 1; : : : ; d � 1g to this ell.The state diagram of a GBF-mahine with verties orresponding to the states andars orresponding to the steps forms exatly the GBF (h; d) graph. This allows usto onsider the verties of the GBF (h; d) graph as being the states of the desribedmahine.Proposition 15. Given the GBF (h; d) graph, let w be a vertex of the form (p; u�v),where p = ju�j, � 2 f0; 1; : : : ; d � 1g: There exists a shortest path from w to avertex z starting with an ar e orresponding to moving the head to the left andwriting zero if and only if the vertex z is of the form (A): (q; w1w2), w1 6= u�,q � p = jw1j or of the form (B): (q; w30v), q � p = jw30j.If we want to design a full information shortest path routing sheme, it mustroute messages destinated to those verties preisely along the ar e. The hara-terization of verties whose messages are to be routed along ars of other types issimilar.Now we briey desribe a h2; 3i-MIRS of the GBF (h; d).Lemma 16. There exists a full information shortest path h2; 3i-MIRS on theGBF (h; d).Proof. Let us label the verties in the individual dimensions as follows: The �rstdimension of the label represents the number written on the tape, the seond di-mension represents the number written on the tape read bakwards and the thirddimension represents the position of the head.For any vertex w and any ar e from the previous Proposition it is possible toselet verties of the forms (A) and (B) using two triples of intervals. The �rsttriple selets the verties not starting with u� (these form a yli interval in the1st dimension) and not having the head to the left of w's head (these form a yliinterval in the 3rd dimension). The seond triple selets the verties ending with 0v(these form a yli interval in the 2nd dimension) and having the head to the left ofw's head. For other types of ars the onstrution is similar. The bit length of thelabels of the desribed routing sheme is 2h+ logh and therefore the spae requiredper vertex in bits is O(h). 2



In [15℄ it is proved that the rank is at most 4 for the smallest lass of graphswhih ontains layered trees and layered series-parallel graphs and is losed underthe LCP. As a onsequene we get the following lemma.Lemma 17. There exists a deadlok-free ontroller of size 4 for the optimal paketrouting on a GBF (h; d).Corollary 18. There is a ((2; 3); 4)-DFMIRS on a GBF (h; d).3.4 Cube-onneted CylesLet u = (a0 : : : ad�1; p) be a tuple onsisting of a binary string and a ursor positionfrom f0; : : : ; d � 1g. The operations of shifting ursor ylially to the left and tothe right on u are denoted as L(u) and R(u), respetively, and the shu�e operationis de�ned as S(u) = (a0 : : : âp : : : ad�1; p), where âp = 1� ap.A d-dimensional ube-onneted yles (denoted as CCCd) is a network (V;E),where V = fu j u 2 f0; 1gd � f0; : : : ; d� 1gg and E = f(u; v) j R(u) = v or L(u) =v or S(u) = vg.Lemma 19. There exists an ayli orientation overing of size 2d+6 for the systemof all shortest paths between all pairs of nodes in CCCd.Proof. Consider the following ayli orientation DC1: for eah binary string � =a0 : : : ad�1 the yle (�; 0); : : : ; (�; d� 1) is oriented (�; 0) ! : : : ! (�; d� 1) and(�; 0) ! (�; d � 1); the remaining links are oriented arbitrarily provided that theresulting orientation is ayli. The overing G onsists of an alternating sequeneof DC1 and its opposite DC2 of length 2d+ 6.Consider an arbitrary shortest path � = (�0; p0); : : : ; (�k; pk). It learly ontainsat most d S-links (suh that pi = pi+1). By yle segment we mean maximalsubpath of � that ontains no S-link. If a yle segment does not ontain a link(�; 0); (�; d� 1) for some � then the entire segment is overed either by DC1 or byDC2. Call this segment as non-zero segment. Eah zero segment onsists of at mostthree paths suh that eah of them is overed either by DC1 or by DC2.Beause eah shortest path ontains at most two verties (�1; p); (�2; p) with thesame ursor position p, there are at most two zero segments.Thus � onsists of at most 2d+ 5 parts (i.e. d S-links, d� 1 non-zero segmentsand two zero segments eah of three paths) all of whih are overed either by DC1or by DC2. Hene � is overed by G. 2Corollary 20. There exists a deadlok-free ontroller of size 2d+6 for the optimalpaket routing on a d-dimensional ube onneted yles network.It was shown in [16℄ that there does not exist an eÆient shortest paths IRSfor CCCd (more preisely, superpolynomial ompatness in d is required!).Lemma 21. Eah optimal k-IRS for a d-dimensional ube-onneted yles networkneeds k = 
(2d=2).



Now we show that there are eÆient d-dimensional IRS on CCCd with om-patness and size polynomial in d.Theorem 22. There exists a ((2d3; d); 2d+ 6)-DFMIRS on CCCd.Proof. Let us de�ne a mahine whose state diagram is the d-dimensional ube-onneted-yles graph. Its working tape is a irular strip onsisting of d ells.The head an be positioned above any ell. Eah ell an ontain one binary digit.In one step the head an hange the ontent of the ell read or move one positionto the left or to the right. Again we onsider nodes being the states of the mahinedesribed.Let u; v be two nodes of the CCCd. Take u XOR v (the tape is unwound onthe piture): v0s head u0s head5 5part B part A| {z }l part BDenote a; b and a0 the lengths of the longest runs of onseutive zeros in parts A;Band A0(= A without the rightmost ell) respetively and b0 the length of the runof onseutive zeros in part B starting immediately to the right of the position ofu's head. There exists a shortest path from u to v starting with the left ar e if andonly if either:A: a0 = a and 2(l + b� a) � dorB: b0 = b and 2(l+ b� a) � d and u; v do not di�er in the ell sanned by u's head.The ondition for the existene of a shortest path starting with the right ar issymmetri. There exists a shortest path from u to v starting with the shu�e ar ifand only if u and v di�er in the ell sanned by u's head. Now we briey desribethe (2d3; d)-MIRS of CCCd.The verties in the i-th dimension (i 2 f1; : : : ; dg) have numbers 1; : : : ; d a-ording to the following lexiographi ordering:� the �rst riterion is the position of the head� the seond riterion is the number written on the tape after the yli rotationby i bits to the left.In this labeling the verties having the same position of the head form a blokin eah dimension. Another important property of the labeling is that seletingverties having the head at any given position and ontaining (resp. not ontaining)any given binary substring at any given position of the tape an be done using atmost two intervals in one blok of one dimension. The dimension in whih intervalsare used is determined by the position of the substring.



Let u be any vertex of the CCCd graph. Labeling the shu�e ar emanatingfrom u is easy, as exatly messages to the verties having a di�erent symbol at theposition of u0s head are to be routed along it. As there exists a dimension suh thatin eah of its bloks suh verties form a yli interval, we need only d intervals perdimension.Labeling the left ar is more ompliated. We selet verties whose messagesare to be routed along this ar for eah position of their head independently. If foreah given position we need at most q intervals per dimension to selet suh vertiesthen in total we need at most dq intervals per dimension.Verties satisfying the rule A and having the head at a given position are to beseleted as follows:� We hoose the length a0 of the longest run of onseutive zeros in the part A0of u XOR v (len(A0) + 1 possibilities).� We hoose the position of this run (len(A0)� a0 + 1 possibilities).� Given a0 and the position of the run, the verties{ having run of a0 zeros at the hoosen position{ not having longer run of zeros in the part A{ not having run of zeros in the part B longer than a+ d�2l2an be seleted using two intervals per dimension, beause we an ful�ll theseonditions by seleting the verties having, or not having ertain substrings atdi�erent positions.Verties satisfying the rule B and having the head at a given position are to beseleted as follows:� We hoose the length b0 of the run of onseutive zeros in the part B startingimmediately to the right of the position of u's head. (len(B) + 1 possibilities)� Given b0, the verties{ having run of b0 zeros in the part B starting immediately to the right of theposition of u's head{ not having longer run of zeros in the part B{ not having run of zeros in the part A longer than b+ 2l�d2{ not di�ering from u in the ell sanned by u's headan be seleted using two intervals per dimension, using the same reasoning asin the previous ase.It holds (len(A0)+1)(len(A0)+1)+ len(B)+1� d2, therefore we have used in totalat most 2d3 intervals per dimension whih gives us the (2d3; d)-MIRS. 2



4 CONCLUSIONS AND DISCUSSIONInterval routing is a signi�ant representative of ompat routing methods. It isa simple, spae-eÆient, and uniform tehnique suitable for hardware realizationand in fat it has been adopted as routing method in a ommerial router hips.Moreover, as low lateny tehnique, not rewriting message headers upon retrans-mission (i.e. without eletro/opti onversions) it is also of interest in ultra-highapaity networks (see [3, 30℄). Therefore, interval routing has attrated a fairamount of attention in reent years.We have presented eÆient deadlok-free MIRS on hyperubes, tori, generalizedbutteries and ube-onneted yles. These results an be transformed also toan analogous wormhole routing model as formulated in Subsetion 2.5. The mainquestion remains whether there are eÆient deadlok-free MIRS also for wider lassesof graphs, e.g. symmetri graphs, planar graphs et.We have also presented a nononstant lower bound on the size of deadlok-freeontrollers (based on ayli orientation overing) for a speial set of routing pathsin d-dimensional hyperubes. This is the �rst nontrivial lower bound on spei�ontrollers. Moreover, this set of routing paths an be overed by general deadlok-free ontrollers of onstant size, thus giving the �rst example of di�erenes betweensizes of general and spei� ontrollers. The question is to determine nononstantlower bounds on the size of deadlok-free ontrollers for general networks and togive size di�erenes between general and spei� deadlok-free ontrollers.There are still many unresolved questions onerning DFMIRS (some of them arementioned in Setion 3). It would be nie to have a trade-o� between ompatnessand bu�er-size for deadlok-free MIRS on general graphs.We onlude by disussion onerning the impat of graph operators on theompatness of interval routing. Certain graph operators have been found interestingin the design of ommuniation networks. The impat of some graph operators onthe ompatness of interval routing has been previously studied [12, 10, 19℄. Theseresults haraterize the e�et of the artesian produt, the omposition, and thejoin of graphs on the minimum number of linear intervals needed for the optimaldeterministi routing.We have presented the study of another graph-theoreti operation, namely thelayered ross produt of graphs. LCP was introdued [6℄ as a tehnique for on-struting some more omplex interonnetion networks on the basis of struturallysimple multipliands. Certain useful properties of networks deomposable as the lay-ered ross produt of simple graphs have been already exploited. In [2℄ an eÆientompat routing protool was introdued for the LCP of trees. In [15℄ deadlok-freepaket and wormhole routing protools have been onsidered for interonnetion net-works onstruted as the layered ross produt of trees and series-parallel graphs.In this paper we have onsidered the lass of networks onstruted as the layeredross produt of regular omplete trees. This lass of networks is of interest, as itinludes among others butteries, mesh of trees, and fat trees. We �rst provedthat the lassial shortest path interval routing shemes do not work eÆiently on
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