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Abstra
t. We present deadlo
k-free pa
ket/wormhole routing algorithms basedon multidimensional interval s
hemes for 
ertain hyper
ube related multipro
es-sor inter
onne
tion networks and give their analysis in terms of the 
ompa
tness(i.e. the maximum number of intervals per link) and the bu�er-size (i.e. the ma-ximum number of bu�ers per node/link). The issue of a simultaneous redu
tionof the 
ompa
tness and the bu�er-size is fundamental, worth to investigate and ofpra
ti
al importan
e, sin
e the interval routing and wormhole routing have beenindustrialy realized in INMOS Transputer C104 Router 
hips.In this paper we give an eviden
e that for some well-known inter
onne
tion net-works there are eÆ
ient deadlo
k-free multidimensional interval routing s
hemes(DFMIRS) despite of a provable nonexisten
e of eÆ
ient deterministi
 shortest pathinterval routing s
hemes (IRS). For d-dimensional hyper
ubes (tori) we present ad-dimensional DFMIRS of 
ompa
tness 1 and size 2 (of 
ompa
tness 1 and size 4),while for shortest path IRS we 
an a
hieve the redu
tion to 2 (to at most 5) bu�ersper node with 
ompa
tness 2d�1 (with 
ompa
tness O(nd�1)). For d-dimensionalgeneralized butter
ies we give a d-dimensional DFMIRS with 
ompa
tness 2 andsize 3, while ea
h shortest path IRS is of the 
ompa
tness at least superpolynomialin d. For d-dimensional 
ube-
onne
ted 
y
les we show a d-dimensional DFMIRSwith 
ompa
tness and size polynomial in d, while ea
h shortest path IRS needs
ompa
tness at least 2d=2.We also present a non
onstant lower bound (in the form pd) on the size ofdeadlo
k-free pa
ket routing (based on a
y
li
 orientation 
overing) for a set ofmonotone routing paths on d-dimensional hyper
ubes.Keywords: Interval routing, pa
ket routing, deadlo
k avoidan
e, inter
onne
tionnetworks1 INTRODUCTIONInterval routing is an attra
tive spa
e-eÆ
ient routing method for 
ommuni
ationnetworks whi
h has found industrial appli
ations in INMOS T9000 transputer de-sign. As it is a simple, uniform and low laten
y te
hnique that uses only limitedaddress spa
e and does not modify message headers during the routing (i.e. it re-quires no extra ele
tro/opti
 
onversions), it is also of interest for routing in opti
alnetworks. Survey of prin
ipal 
hara
terization and eÆ
ien
y results about intervalrouting and its variants 
an be found in [27, 11, 20℄.Interval routing is based on 
ompa
t routing tables, where the set of nodesrea
hable via outgoing links is represented by intervals. The spa
e eÆ
ien
y 
an bemeasured by 
ompa
tness, i.e. the maximum number of intervals per link.Previous work mostly 
on
entrated on shortest path interval routing s
hemes(IRS). Shortest path IRS of 
ompa
tness 1 are known to exist for a number of well-known inter
onne
tion networks in
luding trees, rings, 
omplete bipartite graphs,grids, and hyper
ubes. There are, however, inter
onne
tion networks that are known



to have no shortest path IRS even for large 
ompa
tness, whi
h in
lude shu�e-ex
hange, 
ube-
onne
ted 
y
les, butter
y, DeBruijn, and star graphs. Several ge-neralizations of IRS were therefore proposed.Multidimensional interval routing s
hemes (MIRS) were introdu
ed in [8℄ andwere used to represent all the shortest paths information. MIRS with low memoryrequirements were proposed for hyper
ubes, grids, tori and 
ertain types of 
hordalrings [8℄.Another interesting aspe
t of the routing problem is related to deadlo
ks. Adeadlo
k refers to a situation in whi
h a set of messages is blo
ked forever be
auseea
h message in the set o

upies bu�er in a node or on a link whi
h is also required byanother message. Deadlo
k-free routing is relevant in the framework of pa
ket andwormhole routing proto
ols [4, 5, 18, 24, 25℄. The �rst study dealing with deadlo
k-free IRS appeared in [23℄. Further results were presented in [22, 28, 29℄. We followthe model of bu�ered deadlo
k-free IRS introdu
ed in [7℄ based on the notion ofa
y
li
 orientation 
overing. An s-bu�ered deadlo
k-free IRS with 
ompa
tness k isdenoted as (k; s)-DFIRS. Some results were already presented in [7℄. For d-dimen-sional tori there exists a shortest path (2; 2d+ 1)-DFIRS; the redu
tion to 5 bu�ers
an be a
hieved with 
ompa
tness O(nd�1). For d-dimensional hyper
ubes there isa shortest path (1; d + 1)-DFIRS; the redu
tion to 2 bu�ers 
an be a
hieved with
ompa
tness 2d�1.We extend the model in [7℄ to bu�ered deadlo
k-free multidimensional inter-val routing. We show that for some inter
onne
tion networks there are eÆ
ientdeadlo
k-free MIRS even in the 
ase when there does not exist eÆ
ient shortestpath IRS. For butter
ies of dimension d we give a deadlo
k-free d-dimensional MIRSwith 
onstant 
ompa
tness and size, while ea
h shortest path IRS needs 
ompa
t-ness at least 2d=2. For 
ube-
onne
ted 
y
les of order d we present a deadlo
k-freed-dimensional MIRS with 
ompa
tness and size polynomial in d, while ea
h shortestpath IRS needs 
ompa
tness at least 2d=2. For d-dimensional hyper
ubes we give adeadlo
k-free d-dimensional MIRS of 
ompa
tnes 1 and size 2, and for d-dimensionaltori we show a deadlo
k-free d-dimensional MIRS of 
ompa
tness 1 and size 4.There exist only few lower bounds on the size of deadlo
k-free pa
ket routing,even for those based on spe
i�
 strategies. The best lower bound is 3 (see [4℄). Wegive the �rst non
onstant lower bound (in the form pd) on the size of deadlo
k-freepa
ket routing (based on a
y
li
 orientation 
overing) for a spe
ial set of routingpaths on d-dimensional hyper
ubes. As a 
onsequen
e, the set of routing pathsindu
ed by 1-IRS on the hyper
ube proposed in [1℄ is not suitable for the eÆ
ientdeadlo
k-free pa
ket routing based on a
y
li
 orientation 
overing 
on
ept.The stru
ture of the paper is the following. In Se
tion 2 we introdu
e some basi
notions and present deadlo
k-free routing model. In Se
tion 3 we present eÆ
ientdeadlo
k-free MIRS on hyper
ubes, tori, generalized butter
ies and 
ube-
onne
ted
y
les. We also give a non
onstant lower bound on the size of a
y
li
 orientation
overing on hyper
ubes and the lower bound on 
ompa
tness for IRS in generalizedbutter
y networks. In Se
tion 4 we 
on
lude our results and dis
uss the impa
t ofgraph operators on the 
ompa
tness of interval routing.



2 DEFINITIONS2.1 Basi
 NotionsAn inter
onne
tion network is modeled by a 
onne
ted undire
ted graphG = (V;E),where V is a set of nodes and E is a set of links of the network. Assume jV j = n.Ea
h node has a �nite set of bu�ers for temporarily storing messages. The set of allbu�ers in the network G is denoted as B.A 
ommuni
ation request is a pair of nodes in G. A 
ommuni
ation pattern R isa set of 
ommuni
ation requests. We will 
onsider 
ertain signi�
ant 
ommuni
ationpatterns in G. A stati
 one-to-all 
ommuni
ation pattern is a set f(v; w) j w 2 V gfor a given sour
e node v. A dynami
 one-to-all 
ommuni
ation pattern is a setf(v; w) j w 2 V g for some (not given in advan
e) sour
e node v. An all-to-all
ommuni
ation pattern is a set f(v; w) j v; w 2 V g. A permutation 
ommuni
ationpattern is a set of 
ommuni
ation requests realizing a permutation. A 
olle
tion Pof paths in G satis�es the 
ommuni
ation pattern R if there is at least one pathin G beginning in u and ending in v for ea
h 
ommuni
ation request (u; v) 2 R.The routing problem for a network G and a 
ommuni
ation pattern R is a prob-lem of spe
ifying a path 
olle
tion P satisfying R. A path 
olle
tion is simple if nopath 
ontains the same link more than on
e, and it is a shortest path 
olle
tion iffor ea
h (u; v) 2 R only shortest paths from u to v in G are 
onsidered. Satisfyinga 
ommuni
ation request 
onsists of routing a message along a 
orresponding pathin P . In this paper, the routing problem is solved by a path 
olle
tion indu
ed byinterval routing s
hemes. In what follows we shall 
onsider all-to-all 
ommuni
ationpatterns only unless otherwise spe
i�ed.2.2 Layered NetworksA graphG = (V;E) is h-layerable if there exist h disjoint (non-empty) sets of verti
esV1; :::; Vh, where Vi is the set of verti
es in the layer i, su
h that V = V1 [ ::: [ Vhand every edge in E 
onne
ts verti
es of two adja
ent layers. We shall 
all a graphwith given V1; :::; Vh an h-layered graph. Let the layer with index 1 be the top layer,and the layer with index h the bottom layer.The graph 
an be layered in many di�erent ways. For example, ea
h bipartitegraph 
an be layered using just two layers. In what follows, we shall 
onsider only\naturally" layered graphs in the sense to be apparent later.Some well-known inter
onne
tion networks used in parallel 
omputing 
an beviewed as layered graphs. Examples are grids, hyper
ubes, butter
ies, Bene�s graphs,mesh of trees or fat trees. On the other hand, examples of non-layerable networksare 
y
les of odd length or odd-dimensional 
ube-
onne
ted 
y
les.Let G1 = (V1; E1) and G2 = (V2; E2) be two h-layered graphs, where V1 =V (1)1 [: : :[V (1)h and V2 = V (2)1 [: : :[V (2)h : The Layered Cross Produ
t (LCP for short)of the two h-layered multipli
ands G1; G2 is an h-layered graph G = (V;E), where



V = V1 [ : : : [ Vh and Vi is the 
artesian produ
t of V (1)i and V (2)i , 1 � i � h, andan edge ((a1; a2); (b1; b2)) belongs to E if and only if (a1; b1) 2 E1 and (a2; b2) 2 E2.We are interested only in h-layered inter
onne
tion networks, in whi
h everyvertex is on a path of length h 
onne
ting a vertex of the top layer with a vertexof the bottom layer. Two layered graphs are 
onsidered to be equal if they areisomorphi
, and the isomorphism preserves the layer to whi
h a vertex belongs.Under this assumption, the LCP operation is 
ommutative and asso
iative. Thus,we may 
onsider the LCP of more than two layered graphs (all with the samenumber h of layers) without regard to the order in whi
h they are written, or theorder in whi
h the binary operation is applied. A simple h-layered path serves asthe identity element of the LCP operation.By the LCP of trees one 
an obtain some interesting inter
onne
tion networks,as butter
ies, mesh of trees or fat trees. Globe graphs [12℄ 
an be 
onstru
ted asthe LCP of 
y
les. Multi-globe graphs [26℄ 
an be 
omposed as the LCP of 
y
lesand trees.2.3 Interval RoutingAn Interval Labeling S
heme (ILS) is given by labeling ea
h node in a graph Gby a unique integer from the set f1; 2; : : : ; ng and ea
h link by an interval [a; b℄,where a; b 2 f1; 2; : : : ; ng. We allow 
y
li
 intervals [a; b℄ su
h that [a; b℄ = fa; a+1; : : : ; n; 1; : : : ; bg for a > b. The set of all intervals asso
iated with the links in
identwith a node must form a partition of the set f1; 2; : : : ; ng. Messages to a destinationnode having a label l are routed via the link labeled by the interval [a; b℄ su
h thatl 2 [a; b℄. An ILS is valid if the set of paths spe
i�ed by this ILS satis�es the all-to-all 
ommuni
ation pattern. (Thus, if, for all nodes u and v in G, messages sentfrom u to v rea
h v 
orre
tly, not ne
essarily via the shortest paths.) A valid ILSis also 
alled an Interval Routing S
heme (IRS). An IRS thus spe
i�es for ea
h pairof distin
t nodes u and v in G a (unique) path from u to v.In a k-ILS ea
h link is labeled with up to k intervals, always under the assump-tion that at every node, all intervals asso
iated with links outgoing from the nodeform a partition of f1; : : : ; ng. At any given node a message with destination nodelabeled l is routed via the link labeled by the interval 
ontaining l. If k-ILS doesnot use 
y
li
 intervals, the k-ILS is 
alled linear or simply k-LILS. Valid k-ILS andk-LILS are 
alled k-IRS and k-LIRS, respe
tively. A k-IRS (k-LIRS) is said to beoptimal if it represents a shortest path 
olle
tion 
ontaining exa
tly one shortestpath between any pair of nodes.2.4 Multidimensional Interval RoutingMultidimensional interval routing s
hemes (MIRS for short) are an extention ofinterval routing s
hemes. In (k,d)-MIRS every node is labeled by a unique d-tuple(l1; : : : ; ld), where ea
h li is from the set f1; : : : ; nig (1 � ni � n). Ea
h link islabeled by up to k d-tuples of 
y
li
 intervals (I1;1; : : : ; Id;1); : : : ; (I1;k; : : : ; Id;k). In



any node a message with destination (l1; : : : ; ld) is routed along any outgoing link
ontaining a d-tuple of 
y
li
 intervals (I1; : : : ; Id) su
h that li 2 Ii for all i. In this
ase, multiple paths are represented by the s
heme, so the intervals on the links ofa given node may overlap, i.e. they do not form a partition of the nodes in V .As noted, MIRS 
an be multipath. A routing based on a multipath routings
heme must 
hoose one link from the eligible ones. If a s
heme represents allshortest paths it is 
alled a full information shortest path routing s
heme.2.5 Deadlo
k-free Routing ModelWe intend to model the pa
ket routing, i.e. the so 
alled store-and-forward messagepassing in whi
h the message from u to v passing via w has to be stored at thenode w before it is sent further towards v. We shall assume ea
h node 
ontainsa �nite number of bu�ers. For a message to pass via a link (x; y) it means, that ithas to be moved from a bu�er at node x to a bu�er at node y. This assumes theexisten
e of an available (i.e., empty) bu�er at y.We follow the notions introdu
ed in [7℄. In pa
ket routing, ea
h message isrepresented by its sour
e-destination pair. For a given message m = (u; v) anda bu�er b 
ontainingm, a 
ontrollerC : V �V �B 7! 2B spe
i�es the subset C(u; v; b)of bu�ers whi
h 
an 
ontain m in the next step along the path to its destination v.(We assume C(u; v; b) = ; if b never stores a message m = (u; v).) We say thata 
ontroller C is deadlo
k-free if it does not yield any deadlo
k 
on�guration. Thisproperty 
an be guaranteed if the resulting bu�er dependen
ies graph is a
y
li
. Inbu�er dependen
ies graph [18℄, ea
h node represents a bu�er and there is a dire
tededge between bi and bj if there is at least one message m = (u; v) su
h that bj 2C(u; v; bi).Let us by su denote the number of bu�ers used by a 
ontroller C at the node u.In wormhole routing as su;v the number of bu�ers assigned at a node u to the in
identlink (u; v). For a network G = (V;E) and a 
ontroller C for G, we de�ne the size sof C as s = maxu2V (su) (resp. s = max(u;v)2A(su;v + sv;u) in wormhole routing).Assume a path � = v1; : : : ; vr 
onne
ting v1 to vr. We say that the 
ontroller C
overs � if there exist r bu�ers b1; : : : ; br su
h that for ea
h i, 1 � i � r, bi belongsto vi and for ea
h i, 1 � i � r � 1, bi+1 2 C(v1; vr; bi). Similarly, the 
ontroller C
overs � in wormhole routing if there exist r � 1 bu�ers b1; : : : ; br�1 s.t. for ea
h i,1 � i � r� 1, bi belongs at vi to link (vi; vi+1) and for ea
h i, 1 � i � r� 2, it holdsbi+1 2 C(v1; vr; bi).We need to extend the standard k-IRS to deadlo
k-free k-IRS. Noti
e that ea
hk-IRS uniquely indu
es the set of simple paths, one for ea
h pair of nodes in G.A (k; s)-DFIRS (deadlo
k-free IRS ) for a graph G is a k-IRS for G together witha deadlo
k-free routing 
ontroller of size s for G whi
h 
overs the set of pathsrepresented by the k-IRS. The (k; s)-DFIRS is optimal if the k-IRS is optimal.All 
ontrollers 
onsidered in this paper are based on the 
on
ept of an a
y
li
orientation 
overing. An a
y
li
 orientation of a graph G = (V;E) is an a
y
li
dire
ted graph DG = (V;DE) obtained by orienting all links in E. Let G =



hDG1; :::; DGsi be a sequen
e of (not ne
essarily distin
t) a
y
li
 orientations ofa graph G and let � = v1; : : : ; vr be a simple path in G. We say that G 
overs �if there exists a sequen
e of positive integers j1; : : : ; jr�1 su
h that 1 � j1 � : : : �jr�1 � s and for every i, 1 � i � r � 1, (vi; vi+1) belongs to DGji .Note that a path � need not be 
overed by G in a unique way. There 
ould bedi�erent sequen
es k1; : : : ; kr�1 su
h that (vi; vi+1) belongs to DGki ; but there existsa unique sequen
e su
h that the 
orresponding (r�1)-tuple (k1; : : : ; kr�1) is minimal(w.r.t. the lexi
ographi
al ordering). We assume that the deadlo
k-free 
ontrollerbased on G works with minimal tuples. Su
h a 
ontroller is 
alled greedy.Let P be a set of simple paths 
onne
ting every pair of nodes in G. A sequen
eof orientations G = hDG1; : : : ; DGsi is said to be an a
y
li
 orientation 
overingfor P of size s if G 
overs at least one path � 2 P for ea
h pair of nodes in G.A ((k; d); s)-DFMIRS (deadlo
k-free MIRS ) for a graph G is a (k; d)-MIRS for Gtogether with a deadlo
k-free 
ontroller of size s for G whi
h 
overs the set of pathsindu
ed by the (k; d)-MIRS.The main problem 
overed is to design the deterministi
 pa
ket routing proto
olbased on a possibly nondeterministi
 (k; d)-MIRS with a deadlo
k-free routing 
on-troller (based on a
y
li
 orientation 
overing G = hDG1; : : : ; DGsi) of size s for G.In this paper we solve this problem by applying the greedy mode. At the sour
enode, the message destined for the node labeled l is routed via a link e having theinterval 
ontaining l and satisfying e 2 DG1. Only if su
h a possibility does not existit 
hooses the next orientation DG2. Generally, at an arbitrary node, the proto
ol�rst 
hooses a link in the 
urrent orientation DGj a

ording to (k; d)-MIRS andonly if su
h a link does not exist, it swit
hes to the next a
y
li
 orientation DGj+1in G. We 
all this strategy a greedy one. All ((k; d); s)-DFMIRS in this paper areworking with the greedy strategy.The importan
e of a
y
li
 orientation 
overings is stated by the following 
las-si
al result (see [23℄) formulated for all-to-all 
ommuni
ation patterns: given a net-work G and a set of simple paths P 
onne
ting all pairs of nodes in G, if an a
y
li
orientation 
overing of size s for P exists, then there also exists a deadlo
k-freepa
ket (wormhole) routing 
ontroller of size s for G whi
h 
overs P .3 RESULTSThe size of deadlo
k-free 
ontrollers for the optimal (shortest paths) pa
ket routingon arbitrary networks strongly depends on the stru
ture of 
ommuni
ation patterns.The following fa
t for all-to-all 
ommuni
ation patterns 
an be found e.g. in [23℄: forany network G and a set of n:(n� 1) shortest paths 
onne
ting every pair of nodesin G, there is a deadlo
k-free 
ontroller (based on an a
y
li
 orientation 
overing)of size D + 1, where D is the diameter of G. The best lower bound on the size ofdeadlo
k-free 
ontrollers is 3 [4℄.Considering all-to-all 
ommuni
ation patterns on arbitrary networks, the prob-lem is to determine non
onstant lower bound on the size of a deadlo
k-free 
ontroller



(based on a
y
li
 orientation 
overing 
on
ept) ne
essary for the optimal (shortestpaths) pa
ket routing.For a spe
i�
 set of routing paths in d-dimensional hyper
ubes we prove (inTheorem 7) the lower bound pd on the size of deadlo
k-free 
ontrollers (basedon a
y
li
 orientation 
overing). This is the �rst non
onstant lower bound on thesize of 
ontrollers and it is useful in proving noneÆ
ien
y of 
ertain 1-LIRS [1℄ fordeadlo
k-free pa
ket routing.However, if we assume stati
 one-to-all 
ommuni
ation patterns, the require-ments for the size of deadlo
k-free 
ontrollers are mu
h lower. Namely, for any net-work G and a set of n�1 shortest paths 
onne
ting a node with all other nodes in G,there is a deadlo
k-free 
ontroller (based on a
y
li
 orientation 
overing) of size 1.For other types of 
ommuni
ation patterns the problems are again unsolved.What is the number of bu�ers suÆ
ient to realize dynami
 one-to-all or permutation
ommuni
ation patterns? Can we do better than D + 1 bu�ers per node?We shall now 
on
entrate on spe
i�
 networks. We shall study the relationshipbetween the size and the 
ompa
tness of deadlo
k-free pa
ket routing, based oninterval routing s
hemes, for 
ertain inter
onne
tion networks in
luding hyper
ubes,tori, butter
ies and 
ube 
onne
ting 
y
les.3.1 Hyper
ubesA d-dimensional hyper
ube Hd is the 
artesian produ
t of d 
omplete graphs K2.3.1.1 Deadlo
k-free IRSLemma 1. There exists a deadlo
k-free 
ontroller of size 2 for the optimal pa
ketrouting on a d-dimensional hyper
ube.Proof. A hyper
ube Hd is a node symmetri
 graph, so we 
an �x an arbitrary nodeas the initiator of Hd and assign it the string 0d. Let the unique strings of the nodesin Hd be from f0; 1gd su
h that two nodes are neighbors if and only if their stringsdi�er in exa
tly one bit. De�ne the a
y
li
 orientation 
overing G = hDH1; DH2i ofa hyper
ube su
h that in DH1 all links are oriented from all the nodes towards theinitiator and in DH2 the orientation is opposite.It is easy to verify that G forms a greedy deadlo
k-free 
ontroller of size 2for Hd. There exists a 
olle
tion of shortest paths between all pairs of verti
es inHd, 
overed by G. Given any two nodes u and v in Hd with 
orresponding strings �and �, a shortest path from u to v follows� in the �rst pla
e the links (in arbitrary order) 
hanging bit 1 to 0 in all positionsin whi
h � has 1 and � has 0, and� later on the links (in arbitrary order) 
hanging bit 0 to 1 in all positions in whi
h� has 0 and � has 1. 2



When we 
onsider dynami
 one-to-all 
ommuni
ation patterns instead of all-to-all 
ommuni
ation patterns, we get the following 
onsequen
e of the previouslemma.Corollary 2. There exists a deadlo
k-free 
ontroller of size 2 for the optimal pa
ketrouting on a d-dimensional hyper
ube with dynami
 one-to-all 
ommuni
ation pat-terns.The next two results are from [7℄. When we 
onsider linear interval routings
hemes, the size d + 1 
an be obtained with 
ompa
tness 1, and the redu
tion tothe size 2 
an be a
hieved with the 
ompa
tness 2d�1.Lemma 3. For every i (1 � i � d) there exists a (2i�1; dd=ie + 1)-DFLIRS fora d-dimensional hyper
ube.Corollary 4. There exists a (1; d+ 1)-DFLIRS on a d-dimensional hyper
ube.3.1.2 Deadlo
k-free MIRSWe now show that using d-dimensional interval routing s
hemes (see [8℄) the size 2
an be a
hieved with 
ompa
tness just 1.Theorem 5. For every i (1 � i � d) there exists a ((2i�1; dd=ie); 2)-DFMIRS fora d-dimensional hyper
ube.Proof. Consider a d-dimensional hyper
ube Hd = (V;E), given as the produ
t ofbd=i
 sub
ubes of dimension i and a sub
ube of dimension d mod i. For simpli
ity,assume d mod i = 0. Observe that ea
h of these d=i sub
ubes H(j)i = (Vj; Ej),1 � j � d=i, of dimensions i admits a (d2i�1=ie; 1)-MIRS.We label ea
h node in V by the d-tuple(l1;1; : : : ; l1;i; l2;1; : : : ; l2;i; : : : ; ld=i;1; : : : ; ld=i;i)(lp;q 2 f0; 1g; 1 � p � d=i; 1 � q � i) where for ea
h j, (lj;1; : : : ; lj;i) is the label ofa node in Vj in the (d2i�1=ie; 1)-MIRS of H(j)i .We label ea
h link e = ((l1; : : : ; lh; : : : ; ld); (l1; : : : ; l̂h; : : : ; ld)) in E, l̂h = 1 � lh,by d2i�1=ie d=i-tuples(I1;1; : : : ; I1;d=i); : : : ; (Id2i�1=ie;1; : : : ; Id2i�1=ie;d=i)where (k � 1) � i + 1 � h � k � i (for some k 2 f1; : : : ; d=ig), and for ea
h msu
h that either m < (k � 1):i + 1 or m > k:i, I1;dm=ie = I2;dm=ie = : : : =Id2i�1=ie;dm=ie is the interval 
ontaining the dm=ie-th dimensional 
omponent of allnode labels, and I1;dh=ie; : : : ; Id2i�1=ie;dh=ie are the d2i�1=ie intervals asso
iated atthe node (l1; : : : ; lh; : : : ; ld) to the link ((l1; : : : ; lh; : : : ; ld); (l1; : : : ; l̂h; : : : ; ld)) in the(d2i�1=ie; 1)-MIRS for H(j)i , 1 � j � d=i.



It is easy to verify that the des
ribed s
heme 
orre
tly transmits messages viathe shortest paths. At ea
h link the number of intervals is at most d2i�1=ie, hen
eit 
an be no worse than 2i�1 for ea
h i. The dimension of the produ
t 
ube Hd is
learly the sum of dimensions of all the sub
ubes, i.e. d=i. Following the proof ofLemma 1 we get a deadlo
k-free 
ontroller of size 2 working in the greedy mode forthe optimal pa
ket routing on Hd. 2Corollary 6. There is a ((1; d); 2)-DFMIRS on a d-dimensional hyper
ube.In Lemma 1 we proved that there exists a deadlo
k-free 
ontroller, for pa
ketrouting on a hyper
ube, whi
h uses only two bu�ers in ea
h node and allowsmessagesto be routed via the shortest paths. Tel [23℄ posed the question whether it is possibleto obtain the set of the paths used by means of a (linear) interval routing s
heme.We argue that there is no (1; 2)-DFLIRS (based on a
y
li
 orientation 
ontroller)on a d-dimensional hyper
ube. (It is suÆ
ient to show the nonexisten
e of (1; 2)-DFLIRS on d-dimensional hyper
ubes for a small 
onstant dimension.)3.1.3 Lower Bound on the Size of A
y
li
 Orientation CoverThere exists an a
y
li
 orientation 
overing of size d + 1 for the set of all shortestpaths between all pairs of nodes in Hd. We show that the relevant lower boundis pd.Re
all that the d-dimensional hyper
ube has a node set 
onsisting of all binarystrings of length d with two nodes being 
onne
ted if and only if they di�er in exa
tlyone bit. Thus every path in the hyper
ube 
orresponds to a sequen
e of 
hanges ofsome bits. If the bits are 
hanged in order from left to right then the path is 
alledmonotone.Theorem 7. Let P be a path system of a d-dimensional hyper
ube su
h that ea
hpath between any node v and its 
omplement v in P is monotone. Every a
y
li
orientation 
overing for P has size of at least pd.Proof. A movement of a message along the monotone path 
onne
ting a node v andits 
omplement v 
an be simulated by a devi
e 
onsisting of a tape with d 
ells anda 
ursor whi
h 
an be positioned either between any two neighboring 
ells or at thetwo ends of the tape. Initially the tape 
ontains the string v and the 
ursor is onthe left end of the tape. Moving a message along one link of the path 
orrespondsto moving the 
ursor over one 
ell to the right and inverting the 
ontent of that 
ell.Rea
hing the destination is equivalent to rea
hing the right end of the tape. If we aregiven some a
y
li
 orientation of the hyper
ube then we allow the 
ursor to advan
eonly if the 
orresponding link is properly oriented in the 
urrent orientation.If a sequen
e hDG1; : : : ; DGsi of a
y
li
 orientations of the hyper
ube is ana
y
li
 orientation 
overing for P then if we start the devi
e on any node v and movethe 
ursor a

ording toDG1; : : : ; DGs (in this order, using the greedy strategy) thenthe 
ursor rea
hes the right end of the tape.



Let us assume we shall start the devi
e on all 2d nodes simultaneously and
onsider the positions of 
ursors following the use of ea
h a
y
li
 orientation. Animportant observation is that for any a
y
li
 orientation only few 
ursors 
an makelong movements. For any positions of 
ursors a; b 2 f0; : : : ; dg; a < b and any a
y
li
orientation there are at most 2d=(b� a+ 1) 
ursors that move between positions aand b in this orientation. For the sake of 
ontradi
tion suppose that for some a; bthere are more than 2d=(b� a+1) 
ursors moving between positions a and b. Fromnow on we 
onsider only these 
ursors and their devi
es. For ea
h devi
e and for ea
hof the b� a+1 
ursor positions between a and b the tape of the devi
e has di�erent
ontents. Therefore there must be two devi
es that have the same tape 
ontent withboth 
ursors between a and b. Let this 
ontent be w1w2w3, the 
ursor of the �rstdevi
e being between w1 and w2 and the 
ursor of the se
ond devi
e being betweenw2 and w3. In this orientation the �rst devi
e will move from w1jw2w3 to w1w2jw3and the se
ond devi
e moved from w1jw2w3 to w1w2jw3. Therefore there is a 
y
lein the a
y
li
 orientation between w1w2w3 and w1w2w3 whi
h is a 
ontradi
tion.Now we are ready to prove that after the i-th orientation at least �1� ipd� 2d
ursors are at most at position ipd. For i = 0 the 
laim holds sin
e at the beginingall 
ursors are at position 0. Let the 
laim holds after the i-th orientation. Based onthe observation above at most 2d=pd 
ursors 
an advan
e more than pd positionsto the right in the (i+1)-st orientation. Thus the 
laim holds also after the (i+1)-storientation. Clearly the 
laim implies the theorem. 2In the 1-LIRS of the hyper
ube proposed in [1℄ every path between a node andits 
omplement is monotone. The 
onsequen
e of the previous theorem is that this1-LIRS is not suitable for the eÆ
ient deadlo
k-free pa
ket routing (based on a
y
li
orientation 
overing).One 
an observe that there exists a general deadlo
k-free 
ontroller of 
onstantsize 
overing the set of routing paths P from Theorem 7.3.2 ToriA d-dimensional torus Tn1;:::;nd is the 
artesian produ
t of d rings R1; : : : ; Rd, inwhi
h ea
h Ri has ni nodes.Lemma 8. There exists a deadlo
k-free 
ontroller of size 4 for the optimal pa
ketrouting on a d-dimensional torus.Proof. For simpli
ity, we will assume the 
ase of 2 dimensions. The 
ase of d dimen-sions is handled in a similar fashion. Fix an arbitrary node w of an n�m torus Tn;m.For simpli
ity, 
onsider n;m even. Say w = (n=2;m=2). De�ne the a
y
li
 orienta-tion 
overing G = hDT1; DT2; DT1; DT2i of a 2-dimensional tori Tn;m su
h that inDT1 the links are oriented from (i; j) to (i+1; j) for i = 1; 2; : : : ; n=2�2; n=2; : : : ; nand 1 � j � m and from (i; j) to (i; j + 1) for 1 � i � n, j = 1; 2; : : : ;m=2 � 2;m=2; : : : ;m and the links are oriented from (n=2; j) to (n=2� 1; j) for 1 � j � m



and from (i;m=2) to (i;m=2 � 1) for 1 � i � n. In DT2 all links are in oppositeorientation. Edges ((n=2� 1; j); (n=2; j)) for 1 � j � m and ((i;m=2� 1); (i;m=2))for 1 � i � n form row and 
olumn frontiers, respe
tively.It is easy to verify that G forms a deadlo
k-free 
ontroller of size 4 for Tn;m. Thereis a 
olle
tion of the shortest paths between all pairs of nodes in Tn;m that 
an be
overed by G. Given any two nodes u and v in Tn;m with 
oordinates (i; j) and (k; l),respe
tively, there exists a shortest path from u to v that 
an be partitioned intofour subpaths (where some of them may be empty) su
h that these subpaths are
ontained in 
overingsDT1; DT2; DT1; DT2, respe
tively. If the shortest path from uto v does not 
ross frontiers, the routing from u to v 
an be done using DT1; DT2.If the shortest path from u to v 
rosses one or two frontiers, the routing from u 
anrea
h frontiers using either DT1 or DT1; DT2, then routing through frontiers 
an beperformed with the next orientation in G and �nally routing to v 
an be done withthe next orientation in G. 2The question remains whether it is possible to indu
e the set of paths a
hievedby deadlo
k-free 
ontrollers of size 4 by means of eÆ
ient interval routing s
hemes.The next two results are from [7℄. When we 
onsider linear interval routings
hemes, the size 2d+1 
an be obtained with the 
ompa
tness 2, and the restri
tionto the size 5 
an be a
hieved with the 
ompa
tness O(nd�1).Lemma 9. There exists a (2; 2d+ 1)-DFLIRS for a d-dimensional torus.Lemma 10. For every n and i (1 < i < d) there exists a (dni=2e; 2:dd=ie + 1)-DFLIRS on a d-dimensional torus.On the other hand, when using d-dimensional interval routing s
hemes (see [8℄)the size 4 
an be a
hieved with 
ompa
tness of only 1.Theorem 11. For every n and i (1 � i � d) there exists a ((ni�1; dd=ie); 4)-DFMIRS on a d-dimensional torus.Proof. Consider a d-dimensional torus, given as the produ
t of bd=i
 subtori of di-mension i and a subtorus of dimension d mod i. For simpli
ity, assume d mod i = 0.Observe that ea
h of these d=i subtori of dimension i admits (ni�1; 1)-MIRS. Now,the proof follows in a similar way as the proof of Theorem 5 for hyper
ubes. Fol-lowing the proof of Lemma 8 we get a deadlo
k-free 
ontroller of size 4 workingin the greedy mode for the optimal pa
ket routing on d-dimensional tori, based on(ni�1; dd=ie)-MIRS. 2Corollary 12. There exists a ((1; d); 4)�DFMIRS on a d-dimensional torus.3.3 Generalized Butter
iesWe start by introdu
ing some basi
 layered graphs. By an h-layered top-tree(bottom-tree) we mean a rooted tree for whi
h the root is in the top (bottom)



layer 1 (h) and ea
h path from the root to a leaf passes through de
reasing (in-
reasing) layers. The LCP of the (h + 1)-layered 
omplete d-ary top-tree and the(h+ 1)-ary layered 
omplete d-ary bottom-tree 
an be viewed as a generalized but-ter
y graph.A generalized butter
y graph of the degree h and alphabet size d (denoted asGBF (h; d)) 
onsists of h + 1 layers, ea
h layer 
ontaining dh verti
es, ea
h ofthem labeled by a unique d-ary string of length h. An edge 
onne
ts two verti
esin GBF (h; d) if and only if they are in the 
onse
utive p-th and (p + 1)-st layer,respe
tively, and their labels are either equal or di�er only in the p-th position.Let � = ah : : : a1 be a d-ary string (ai 2 f0; 1; : : : ; d � 1g) and let p, 1 � p �h + 1, be an index of a layer. Operations L(i); R(i) are de�ned as L(i)((p; �)) =(p+1; ah : : : b(i)p : : : a1), and R(i)((p+1; �)) = (p; ah : : : b(i)p : : : a1), respe
tively, whereb(i)p = (ap + i) mod (d � 1): An edge (u; v) in GBF (h; d) is 
alled an L(i)-edge,R(i)-edge, if L(i)(u) = v, R(i)(u) = v, respe
tively, 0 � i < d.Formally, GBF (h; d) is a graph (V;E), whereV = fu j u 2 f1; : : : ; h+ 1g � f0; 1; : : : ; d� 1ghgand E = f(u; v) j L(i)(u) = v or R(i)(u) = v for 0 � i � d� 1g.3.3.1 Compa
tness Lower Bound for IRSFirst we show that there does not exist an eÆ
ient IRS for generalized butter
ynetworks.Let G = (V;E) be a simple 
onne
ted graph with maximum degree �: Fora vertex v 2 V and an ar
 e outgoing from v, denote S(v; e) the subset of verti
esw 2 V whi
h 
an be rea
hed optimally from v over its outgoing ar
 e.In the following lemma we present a lower bound on the number of intervals foran optimal interval routing s
heme in G. The idea of the proof te
hnique is basedon the so 
alled wq-property : Given a graph G, the aim is to 
hoose two disjoint setsof verti
es W and Q su
h that for any distin
t verti
es wi; wj 2 W there is a vertexv 2 Q su
h that in any optimal routing s
heme the messages sent by v to wi and wjare routed along di�erent outgoing ar
s.Lemma 13. [16℄ Let G be a graph with maximum degree � and let us have anoptimal k-IRS on G. Let Q and W be disjoint vertex subsets of G satisfying thewq-property, that means for wi; wj 2 W , wi 6= wj , there is v 2 Q su
h that for ea
har
 e outgoing from v it holds wi 62 S(v; e) or wj 62 S(v; e). Then it holdsk � jW j�jQj .The previous lemma proved to be quite powerfull tool for 
ertain inter
onne
tionnetworks. It 
an be e�e
tivelly applied when there is a \large" setW and a relatively



\small" set Q su
h that the system of all shortest paths between all pairs of verti
esfrom Q �W satis�es the wq-property. In [16℄, this argument has been applied tosome well-known 
onstant degree inter
onne
tion networks (like shu�e-ex
hange,binary De Bruijn, 
ube-
onne
ted 
y
les, butter
y) to obtain superpolynomial lowerbounds w.r.t. the diameter of the networks as well as to obtain near-optimal lowerbounds for some non-
onstant degree inter
onne
tion networks (like star).Now we show that the argument is also suitable for the 
lass of networks, 
on-stru
ted as the LCP of 
omplete regular trees.Theorem 14. Let G = (V;E) be the LCP of an (h + 1)-layered 
omplete d1-arytop-tree and an (h + 1)-layered 
omplete d2-ary bottom-tree, where d1 � d2 > 1.Then every optimal k-IRS on G requiresk � dh�114dbh2 
+12 .Proof. Consider a d1-ary alphabet A = f0A; : : : ; (d1 � 1)Ag and a d2-ary alpha-bet B = f0B; : : : ; (d2 � 1)Bg: Then every vertex in the i-th (0 � i � h) layerof G 
an be labeled by a string hx1; : : : ; xi; yh�i�1; : : : ; y1i, where ea
h xj 2 A andea
h yj 2 B. The edges 
onne
t verti
es of the form hx1; : : : ; xi; yh�i�1; : : : ; y1i andhx1; : : : ; xi; xi+1; yh�i�2; : : : ; y1i.Let h = p + q + 1 where p = bh2
. Consider the following sets Q and W :Q = [p�1i=1 fhx1; : : : ; xi; 0B; : : : ; 0Big [ [q�1j=1fh0A; : : : ; 0A; yj; : : : ; y1igW = fhx1; : : : ; xp; 1A; yh�p�2; : : : ; y1igjW j = dp1dq2, jQj = dp1�d1d1�1 + dq2�d2d2�1 , � = d1 + d2, jV j = dh+11 �dh+12d1�d2 if d1 > d2 andjV j = (h+ 1)dh if d1 = d2 = d.We show thatW andQ satisfy the wq-property expressed in the previous lemma.Let w1 and w2 be arbitrary verti
es from W . W.l.o.g. suppose that w1 and w2di�er somewhere to the left of the middle 1. Then for some j�j � p � 1 it holdsw1 = h�aAr1i and w2 = h�bAr2i. Choose v 2 Q as v = h�0B : : :0Bi.Clearly every shortest path from v to w1 must start with an edge that 
hanges0B to aA and every shortest path from v to w2 must start with an edge that 
hanges0B to bA.As a 
onsequen
e of the previous lemma it holdsk � jW j�jQj = dp1dq2(d1 + d2) �dp1�d1d1�1 + dq2�d2d2�1 � .If d1 = d2 = d we get k � 14dq�1. W.l.o.g. suppose that d1 > d2, then we getk � dp+q14dp+12 . 2



Note that the same argument as in the previous theorem 
an be used to prove (re-prove) lower bounds on the 
ompa
tness k for butter
y [16℄ in the form
(qn= logn),wrap-around butter
y in the form 
((n= logn)1=4), fat tree [6℄ in the form 
(pn)and globe graph [16℄ in the form 
(pn), where n is the size of the topology.3.3.2 Deadlo
k-free MIRSFirst we give an eÆ
ient multidimensional interval routing s
heme for generalizedbutter
y networks.Consider the following GBF-ma
hine. It has a work tape with h 
ells and a headwhi
h 
an be positioned between 
ells or at any of the ends of the tape. Ea
h 
ell
ontains one d-ary digit (from f0; 1; : : : ; d� 1g). In one step, the head moves to theleft or to the right over a 
ell and writes a digit from f0; 1; : : : ; d � 1g to this 
ell.The state diagram of a GBF-ma
hine with verti
es 
orresponding to the states andar
s 
orresponding to the steps forms exa
tly the GBF (h; d) graph. This allows usto 
onsider the verti
es of the GBF (h; d) graph as being the states of the des
ribedma
hine.Proposition 15. Given the GBF (h; d) graph, let w be a vertex of the form (p; u�v),where p = ju�j, � 2 f0; 1; : : : ; d � 1g: There exists a shortest path from w to avertex z starting with an ar
 e 
orresponding to moving the head to the left andwriting zero if and only if the vertex z is of the form (A): (q; w1w2), w1 6= u�,q � p = jw1j or of the form (B): (q; w30v), q � p = jw30j.If we want to design a full information shortest path routing s
heme, it mustroute messages destinated to those verti
es pre
isely along the ar
 e. The 
hara
-terization of verti
es whose messages are to be routed along ar
s of other types issimilar.Now we brie
y des
ribe a h2; 3i-MIRS of the GBF (h; d).Lemma 16. There exists a full information shortest path h2; 3i-MIRS on theGBF (h; d).Proof. Let us label the verti
es in the individual dimensions as follows: The �rstdimension of the label represents the number written on the tape, the se
ond di-mension represents the number written on the tape read ba
kwards and the thirddimension represents the position of the head.For any vertex w and any ar
 e from the previous Proposition it is possible tosele
t verti
es of the forms (A) and (B) using two triples of intervals. The �rsttriple sele
ts the verti
es not starting with u� (these form a 
y
li
 interval in the1st dimension) and not having the head to the left of w's head (these form a 
y
li
interval in the 3rd dimension). The se
ond triple sele
ts the verti
es ending with 0v(these form a 
y
li
 interval in the 2nd dimension) and having the head to the left ofw's head. For other types of ar
s the 
onstru
tion is similar. The bit length of thelabels of the des
ribed routing s
heme is 2h+ logh and therefore the spa
e requiredper vertex in bits is O(h). 2



In [15℄ it is proved that the rank is at most 4 for the smallest 
lass of graphswhi
h 
ontains layered trees and layered series-parallel graphs and is 
losed underthe LCP. As a 
onsequen
e we get the following lemma.Lemma 17. There exists a deadlo
k-free 
ontroller of size 4 for the optimal pa
ketrouting on a GBF (h; d).Corollary 18. There is a ((2; 3); 4)-DFMIRS on a GBF (h; d).3.4 Cube-
onne
ted Cy
lesLet u = (a0 : : : ad�1; p) be a tuple 
onsisting of a binary string and a 
ursor positionfrom f0; : : : ; d � 1g. The operations of shifting 
ursor 
y
li
ally to the left and tothe right on u are denoted as L(u) and R(u), respe
tively, and the shu�e operationis de�ned as S(u) = (a0 : : : âp : : : ad�1; p), where âp = 1� ap.A d-dimensional 
ube-
onne
ted 
y
les (denoted as CCCd) is a network (V;E),where V = fu j u 2 f0; 1gd � f0; : : : ; d� 1gg and E = f(u; v) j R(u) = v or L(u) =v or S(u) = vg.Lemma 19. There exists an a
y
li
 orientation 
overing of size 2d+6 for the systemof all shortest paths between all pairs of nodes in CCCd.Proof. Consider the following a
y
li
 orientation DC1: for ea
h binary string � =a0 : : : ad�1 the 
y
le (�; 0); : : : ; (�; d� 1) is oriented (�; 0) ! : : : ! (�; d� 1) and(�; 0) ! (�; d � 1); the remaining links are oriented arbitrarily provided that theresulting orientation is a
y
li
. The 
overing G 
onsists of an alternating sequen
eof DC1 and its opposite DC2 of length 2d+ 6.Consider an arbitrary shortest path � = (�0; p0); : : : ; (�k; pk). It 
learly 
ontainsat most d S-links (su
h that pi = pi+1). By 
y
le segment we mean maximalsubpath of � that 
ontains no S-link. If a 
y
le segment does not 
ontain a link(�; 0); (�; d� 1) for some � then the entire segment is 
overed either by DC1 or byDC2. Call this segment as non-zero segment. Ea
h zero segment 
onsists of at mostthree paths su
h that ea
h of them is 
overed either by DC1 or by DC2.Be
ause ea
h shortest path 
ontains at most two verti
es (�1; p); (�2; p) with thesame 
ursor position p, there are at most two zero segments.Thus � 
onsists of at most 2d+ 5 parts (i.e. d S-links, d� 1 non-zero segmentsand two zero segments ea
h of three paths) all of whi
h are 
overed either by DC1or by DC2. Hen
e � is 
overed by G. 2Corollary 20. There exists a deadlo
k-free 
ontroller of size 2d+6 for the optimalpa
ket routing on a d-dimensional 
ube 
onne
ted 
y
les network.It was shown in [16℄ that there does not exist an eÆ
ient shortest paths IRSfor CCCd (more pre
isely, superpolynomial 
ompa
tness in d is required!).Lemma 21. Ea
h optimal k-IRS for a d-dimensional 
ube-
onne
ted 
y
les networkneeds k = 
(2d=2).



Now we show that there are eÆ
ient d-dimensional IRS on CCCd with 
om-pa
tness and size polynomial in d.Theorem 22. There exists a ((2d3; d); 2d+ 6)-DFMIRS on CCCd.Proof. Let us de�ne a ma
hine whose state diagram is the d-dimensional 
ube-
onne
ted-
y
les graph. Its working tape is a 
ir
ular strip 
onsisting of d 
ells.The head 
an be positioned above any 
ell. Ea
h 
ell 
an 
ontain one binary digit.In one step the head 
an 
hange the 
ontent of the 
ell read or move one positionto the left or to the right. Again we 
onsider nodes being the states of the ma
hinedes
ribed.Let u; v be two nodes of the CCCd. Take u XOR v (the tape is unwound onthe pi
ture): v0s head u0s head5 5part B part A| {z }l part BDenote a; b and a0 the lengths of the longest runs of 
onse
utive zeros in parts A;Band A0(= A without the rightmost 
ell) respe
tively and b0 the length of the runof 
onse
utive zeros in part B starting immediately to the right of the position ofu's head. There exists a shortest path from u to v starting with the left ar
 e if andonly if either:A: a0 = a and 2(l + b� a) � dorB: b0 = b and 2(l+ b� a) � d and u; v do not di�er in the 
ell s
anned by u's head.The 
ondition for the existen
e of a shortest path starting with the right ar
 issymmetri
. There exists a shortest path from u to v starting with the shu�e ar
 ifand only if u and v di�er in the 
ell s
anned by u's head. Now we brie
y des
ribethe (2d3; d)-MIRS of CCCd.The verti
es in the i-th dimension (i 2 f1; : : : ; dg) have numbers 1; : : : ; d a
-
ording to the following lexi
ographi
 ordering:� the �rst 
riterion is the position of the head� the se
ond 
riterion is the number written on the tape after the 
y
li
 rotationby i bits to the left.In this labeling the verti
es having the same position of the head form a blo
kin ea
h dimension. Another important property of the labeling is that sele
tingverti
es having the head at any given position and 
ontaining (resp. not 
ontaining)any given binary substring at any given position of the tape 
an be done using atmost two intervals in one blo
k of one dimension. The dimension in whi
h intervalsare used is determined by the position of the substring.



Let u be any vertex of the CCCd graph. Labeling the shu�e ar
 emanatingfrom u is easy, as exa
tly messages to the verti
es having a di�erent symbol at theposition of u0s head are to be routed along it. As there exists a dimension su
h thatin ea
h of its blo
ks su
h verti
es form a 
y
li
 interval, we need only d intervals perdimension.Labeling the left ar
 is more 
ompli
ated. We sele
t verti
es whose messagesare to be routed along this ar
 for ea
h position of their head independently. If forea
h given position we need at most q intervals per dimension to sele
t su
h verti
esthen in total we need at most dq intervals per dimension.Verti
es satisfying the rule A and having the head at a given position are to besele
ted as follows:� We 
hoose the length a0 of the longest run of 
onse
utive zeros in the part A0of u XOR v (len(A0) + 1 possibilities).� We 
hoose the position of this run (len(A0)� a0 + 1 possibilities).� Given a0 and the position of the run, the verti
es{ having run of a0 zeros at the 
hoosen position{ not having longer run of zeros in the part A{ not having run of zeros in the part B longer than a+ d�2l2
an be sele
ted using two intervals per dimension, be
ause we 
an ful�ll these
onditions by sele
ting the verti
es having, or not having 
ertain substrings atdi�erent positions.Verti
es satisfying the rule B and having the head at a given position are to besele
ted as follows:� We 
hoose the length b0 of the run of 
onse
utive zeros in the part B startingimmediately to the right of the position of u's head. (len(B) + 1 possibilities)� Given b0, the verti
es{ having run of b0 zeros in the part B starting immediately to the right of theposition of u's head{ not having longer run of zeros in the part B{ not having run of zeros in the part A longer than b+ 2l�d2{ not di�ering from u in the 
ell s
anned by u's head
an be sele
ted using two intervals per dimension, using the same reasoning asin the previous 
ase.It holds (len(A0)+1)(len(A0)+1)+ len(B)+1� d2, therefore we have used in totalat most 2d3 intervals per dimension whi
h gives us the (2d3; d)-MIRS. 2



4 CONCLUSIONS AND DISCUSSIONInterval routing is a signi�
ant representative of 
ompa
t routing methods. It isa simple, spa
e-eÆ
ient, and uniform te
hnique suitable for hardware realizationand in fa
t it has been adopted as routing method in a 
ommer
ial router 
hips.Moreover, as low laten
y te
hnique, not rewriting message headers upon retrans-mission (i.e. without ele
tro/opti
 
onversions) it is also of interest in ultra-high
apa
ity networks (see [3, 30℄). Therefore, interval routing has attra
ted a fairamount of attention in re
ent years.We have presented eÆ
ient deadlo
k-free MIRS on hyper
ubes, tori, generalizedbutter
ies and 
ube-
onne
ted 
y
les. These results 
an be transformed also toan analogous wormhole routing model as formulated in Subse
tion 2.5. The mainquestion remains whether there are eÆ
ient deadlo
k-free MIRS also for wider 
lassesof graphs, e.g. symmetri
 graphs, planar graphs et
.We have also presented a non
onstant lower bound on the size of deadlo
k-free
ontrollers (based on a
y
li
 orientation 
overing) for a spe
ial set of routing pathsin d-dimensional hyper
ubes. This is the �rst nontrivial lower bound on spe
i�

ontrollers. Moreover, this set of routing paths 
an be 
overed by general deadlo
k-free 
ontrollers of 
onstant size, thus giving the �rst example of di�eren
es betweensizes of general and spe
i�
 
ontrollers. The question is to determine non
onstantlower bounds on the size of deadlo
k-free 
ontrollers for general networks and togive size di�eren
es between general and spe
i�
 deadlo
k-free 
ontrollers.There are still many unresolved questions 
on
erning DFMIRS (some of them arementioned in Se
tion 3). It would be ni
e to have a trade-o� between 
ompa
tnessand bu�er-size for deadlo
k-free MIRS on general graphs.We 
on
lude by dis
ussion 
on
erning the impa
t of graph operators on the
ompa
tness of interval routing. Certain graph operators have been found interestingin the design of 
ommuni
ation networks. The impa
t of some graph operators onthe 
ompa
tness of interval routing has been previously studied [12, 10, 19℄. Theseresults 
hara
terize the e�e
t of the 
artesian produ
t, the 
omposition, and thejoin of graphs on the minimum number of linear intervals needed for the optimaldeterministi
 routing.We have presented the study of another graph-theoreti
 operation, namely thelayered 
ross produ
t of graphs. LCP was introdu
ed [6℄ as a te
hnique for 
on-stru
ting some more 
omplex inter
onne
tion networks on the basis of stru
turallysimple multipli
ands. Certain useful properties of networks de
omposable as the lay-ered 
ross produ
t of simple graphs have been already exploited. In [2℄ an eÆ
ient
ompa
t routing proto
ol was introdu
ed for the LCP of trees. In [15℄ deadlo
k-freepa
ket and wormhole routing proto
ols have been 
onsidered for inter
onne
tion net-works 
onstru
ted as the layered 
ross produ
t of trees and series-parallel graphs.In this paper we have 
onsidered the 
lass of networks 
onstru
ted as the layered
ross produ
t of regular 
omplete trees. This 
lass of networks is of interest, as itin
ludes among others butter
ies, mesh of trees, and fat trees. We �rst provedthat the 
lassi
al shortest path interval routing s
hemes do not work eÆ
iently on



the 
lass of inter
onne
tion networks, 
onstru
ted as the LCP of regular 
ompletetrees. However, we have shown that there are eÆ
ient full information shortest pathmultidimensional interval routing s
hemes for this 
lass of networks. By [21℄ thereare other well-known inter
onne
tion networks for whi
h multidimensional s
hemesdo not work eÆ
iently. These are not known to be 
omposable by the LCP operation.Our results thus indi
ate a possible explanation why improvement in the eÆ
ien
yby using the multidimensional approa
h (instead of the deterministi
 unidimensionalapproa
h) is obtained for some well-known inter
onne
tion networks.It would be a step forward in understanding the 
omplexity of multidimensionalrouting in order to identify other 
lasses of networks with eÆ
ient MIRS and to
hara
terize the exa
t border between the eÆ
ien
y and ineÆ
ien
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