
Train Tracks and Confluent Drawings

Peter Hui1, Marcus Schaefer1, and Daniel Štefankovič2

1 Department of Computer Science, DePaul University, Chicago, Illinois 60604
phui@students.depaul.edu, mschaefer@cti.depaul.edu

2 Department of Computer Science, University of Chicago, Chicago, Illinois 60637
stefanko@cs.uchicago.edu

Abstract. Confluent graphs capture the connection properties of train
tracks, offering a very natural generalization of planar graphs, and –
as the example of railroad maps shows – are an important tool in graph
visualization. In this paper we continue the study of confluent graphs, in-
troducing strongly confluent graphs and tree-confluent graphs. We show
that strongly confluent graphs can be recognized in NP (the complex-
ity of recognizing confluent graphs remains open). We also give a natu-
ral elimination ordering characterization of tree-confluent graphs which
shows that they form a subclass of the chordal bipartite graphs, and can
be recognized in polynomial time.

1 Introduction

The area of graph drawing deals with the visualization of graphs, where the
visualization meets certain aesthetic or technical constraints [1]. Typically, the
goal of the drawing of a graph is to minimize some parameter such as the cross-
ing number, or, for grid drawings, the area, the number of times an edge bends,
or the total length of the edges. Among these parameters, the crossing number
has probably drawn the most attention. A crossing number of zero corresponds
to planarity, for which linear time algorithms are known, but, in general, deter-
mining the crossing number of a graph is NP-complete [4], making it a hard
parameter to minimize. Recently, Dickerson, Eppstein, Goodrich, and Meng [2]
suggested an extension of the notion of planarity called confluency that, while
allowing crossings, hides them in the drawing. At the core is an idea similar to
the train tracks of Thurston [6]: we allow edges in the drawing to merge, like
train tracks, into a single track. The merging device is called a switch. Figure 1
shows how to draw complete graphs and complete bipartite graphs confluently.

Dickerson, Eppstein, Goodrich, and Meng [2] identified several classes and
families of graphs which are confluent, including interval graphs and cographs.
They also gave examples for graphs which are not confluent (their smallest ex-
ample is obtained from the Petersen graph by removing a single vertex), and a
heuristic algorithm to recognize whether a graph is confluent or not. Interest-
ingly, they did not study the complexity of the recognition problem.

The main contribution of this paper is to show that a natural strengthening
of confluency in graphs can be recognized in NP. In Section 2 we define the

Train Tracks and Confluent Drawings 319

Fig. 1. How to draw K6 and K5,3 confluently.

notions of confluency and strong confluency. Their relationship is investigated in
Section 3 by studying their underlying train tracks. Section 4 shows that strong
confluency can be recognized in NP by giving a polynomial upper bound on the
number of switches necessary to represent a graph. We think it is not unlikely
that the problem will turn out to be NP-complete.

If confluency does turn out to be NP-hard, it will be of interest to identify
large, and natural, subclasses which can be recognized efficiently. One immediate
way of obtaining interesting classes of confluent graphs is by taking well-known
graph classes whose definition depends on planarity, and replace planarity with
confluency. In that manner we obtain outer-confluent graphs (see Section 6), and
tree-confluent graphs, whose confluent drawings are treelike. In Section 5 we will
show that the tree-confluent graphs can be recognized efficiently with the help
of an elimination order characterization.

2 Train Tracks and Confluent Drawings

Definition 1. A curve is a continuous mapping of [0, 1] into the Euclidean
plane; we often identify a curve and its image. A curve is smooth, if it is dif-
ferentiable (intuitively, it cannot make sharp turns). A smooth curve which does
not self-intersect is called locally monotone [2].

Definition 2. A train track drawing with vertices V and switches S is a subset
D of the Euclidean plane such that (i) V ∩S = ∅, (ii) there is a injective mapping
of V

.∪ S into D (we identify a point in V
.∪ S with its image), (iii) any curve in

D not containing a switch must be smooth, and (iv) any two overlapping curves
in D must have a common tangent at any point of overlap; that is, they have to
join smoothly.

A curve in a train track drawing which shares exactly its two endpoints with
V

.∪ S is called a branch.

Based on this notion of a train track drawing, we derive two graph drawing
concepts.

Definition 3. We call a graph G = (V, E) confluent, if there is a train-track
drawing D on V such that uv ∈ E if and only if there is a locally monotone
curve in D with endpoints u and v that does not contain any other points of V .
In this case we call D a confluent drawing of G.

320 Peter Hui, Marcus Schaefer, and Daniel Štefankovič

c

a b

d

Fig. 2. K4 or K4 − e?

For an example, consider the train track drawing in Figure 2. We can easily
trace locally monotone curves connecting all pairs of vertices – with the exception
of a and b. There is a smooth curve connecting a to b, but it is not locally
monotone, since it has to self-intersect. Hence, the train track drawing in Figure 2
is a confluent drawing of a K4 − e.

When tracing a train track drawing visually, the requirement to avoid self-
intersections seems to force a reader to backtrack to determine whether two
points are connected. Removing this requirement leads to the following notion.

Definition 4. We call a graph G = (V, E) strongly confluent, if there is a train
track drawing D on V such that uv ∈ E if and only if there is a smooth curve in
D with endpoints u and v that does not contain any other points of V . In this
case we call D a strongly confluent drawing of G.

Using this new definition, we would say that the train track drawing in Fig-
ure 2 is a strongly confluent drawing of a K4.

Remark 1. The notion of confluency was introduced by Dickerson, Eppstein,
Goodrich, and Meng in [2]; at a first glance it might seem that confluency is
a stronger requirement than strong confluency. The opposite, however, is true;
every strongly confluent graph is confluent (as we will see in Corollary 1), and
there is a confluent graph which is not strongly confluent.

By definition, any point of D at which several curves combine is a switch. A
switch has two sides, each with an arbitrary number of incoming curves. Every
such switch can be replaced by a series of simple switches, where a simple switch
is a switch in which two curves merge into a single curve. For example, the
drawing of K6 in Figure 1 uses simple switches, whereas the drawing of K5,3 in
the same figure uses a single switch which is not simple. Figure 3 shows how to
draw K5,3 using only simple switches.

For the rest of the paper we will use switch synonymously with simple switch,
unless explicitly stated otherwise.

3 Train Tracks

We want to capture the combinatorial structure of a train track drawing D in
graph-theoretic terms, abstracting from the particular embedding. To this end,
we call a vertex-labelled graph H = (V

.∪ S, F, o) a train track if the following
holds:

Train Tracks and Confluent Drawings 321

Fig. 3. How to draw K5,3 using only simple switches.

(i) The vertex set of H consists of two types of vertices V and S, we call
vertices and switches of H ,

(ii) switches have degree 3,
(iii) o(s) ∈ V

.∪ S is one of the three neighbors of s (for every switch s ∈ S).

Remark 2. We will often consider H as a directed graph, for example to specify
in which direction the undirected edge uv is traversed. In that case we will write
(u, v) or (v, u), and we will tacitly consider the graph as symmetric; that is, for
every directed edge, the reverse edge also belongs to the graph.

We think of o(s) as determining the orientation of the switch s: if we enter
the switch s coming from o(s), it forks into two branches. A curve in a train
track drawing now corresponds to a walk in the train track which respects the
orientation of the switches in the sense that for every part (u, s, v) of the walk s
is a switch, and o(s) is either u or v (and u and v are different from each other).
We call such a walk acceptable. We can now rephrase our notions of confluency
and strong confluency in terms of train tracks.

Lemma 1. A graph G = (V, E) is confluent if there is a planar train track H
such that uv ∈ E if and only if there is an acceptable path from u to v in H. The
graph is strongly confluent if there is a planar train track H such that uv ∈ E if
and only if there is an acceptable walk from u to v in H.

Proof. Consider a train track drawing D with vertices V and switches S. Con-
struct a train track H as follows: V

.∪ S will make up the vertex set of H . Include
an edge (u, v) in F if in D there is a curve from u to v which does not cross
through any vertices or switches. We assumed that switches are simple, hence
there are three branches leaving s. Let o(s) be the endpoint (other than s) of the
edge corresponding to the branch that extends the other two branches smoothly.
Then H is a planar train track in which every acceptable walk corresponds to a
smooth curve in D, and every acceptable path to a locally monotone curve.

Remark 3. Given a train track, the graph it represents can be found in polyno-
mial time. In the case of strong confluency this is obvious, for confluency the
problem can be reduced to a matching problem [3].

Theorem 1. If G = (V, E) is strongly confluent, then it is represented by a
planar train track H = (V

.∪ S, F, o) such that ab ∈ E if and only if there is an
acceptable path Pab in H from a to b.

322 Peter Hui, Marcus Schaefer, and Daniel Štefankovič

We omit the proof of Theorem 1. Together with Lemma 1 it immediately
implies a relationship between the two notions of confluency we introduced.

Corollary 1. Any strongly confluent graph is confluent.

The inclusion is strict, consider for example the graph drawn in Figure 4.
By adding some more vertices and edges on the outside, we can force that all
the switches occur within the circle. The resulting graph is confluent, but not
strongly confluent (since vertex 6 will always be connected to vertex 4 in a
strongly confluent drawing).

1

2
3

4

5

6

7

8
9

10

11

12

Fig. 4. Construction for graph which is confluent but not strongly confluent.

4 Strong Confluency in NP

Lemma 2. If G = (V, E) is confluent, then there is a train track H representing
G, and acceptable paths Pe for every edge e ∈ E such that the following condition
holds:

If P is a longest path contained in both some Pe and some Pf , then P
is a single edge.

Proof. We need a measure of overlap between two paths Pe and Pf . To this end,
we introduce the numbers

oef :=
∑

P maximal subpath of Pe ∩ Pf

|P |2.

With this we can establish the following claim:

Suppose H is chosen to minimize the number oef . In that case, if P is a
path contained in both Pe and Pf , then P is a single edge.

If the conclusion of the claim is false, there is a path (u, x, v) belonging to both
Pe and Pf . Let y be the endpoint of the third edge incident to x; without loss
of generality, we can assume that o(x) = u. Since Pe and Pf are paths, the
edge xy cannot belong to either of them. Modify H as follows: remove edges ux
and xv and add two new vertices u′, v′ and edges uu′, u′v′, v′v, u′x and xv′; set
o(u′) = u, o(v′) = v, and o(x) = u′. Modify Pe and Pf such that one of them uses

Train Tracks and Confluent Drawings 323

(u, u′, x′, v′, v) and the other (u, u′, v′, v). This will split the maximal common
subpath of Pe ∩ Pf containing (u, x, v) into two parts. Since (i + j)2 > i2 + j2

for i, j ≥ 1, this strictly reduces oef showing that H did not minimize it. This
establishes the claim.

In the modification made to H in the proof of the claim, we can route any
other Pg through (u, u′, v′, v) if it used (u, x, y) or through (u, u′, x, y) if it used
(u, x, v); in either case the length of another Pg path will be increased by at
most one.

More importantly, if any maximal subpath of Pg and Ph is an edge, then
the modification to H will not change that: if Pg and Ph were affected by the
modification and shared a single edge on the vertices u, x, v, and y, it must have
been ux, and one of Pg and Ph must have used xv and the other xy; hence, after
the modification they will only share uu′.

Let e1f1, e2f2, . . . , ekfk be an ordering of all pairs of distinct edges of G. The
above observation immediately implies that if we choose H so as to minimize
(in lexicographic ordering) the vector

(oe1f1 , oe2f2 , ..., oekfk
)

then any paths Pe and Pf intersect in isolated edges.

For the rest of this section we will concentrate on strongly confluent graphs.
Because of Corollary 1, we can still apply Lemma 2 in that case, concluding that
overlap between a Pe and a Pf consists of non-adjacent edges. Moreover, these
overlaps between Pe and Pf correspond to crossings in a planar drawing of H .
That is, if we have the path (ue, s, t, ve), part of Pe and (uf , s, t, vf), part of Pf

then ue and ve cannot be on the same side of st in the planar drawing of H ,
since otherwise we could have reduced oef by having two separate paths (ue, ve)
and (uf , vf) as shown in Figure 5.

There is one scenario which would prohibit the application of the move shown
in Figure 5, namely if there was a third Pg making use of the edge st. This,
however, is not possible, since one pair from Pe, Pf , Pg would share a path of
length ≥ 2.(Note that this operation would not be valid if the representation was
just confluent, since lifting the path could introduce new connections between
vertices not possible before.)

Our goal is to show that we can assume the number of switches in H to be
polynomial in the number of vertices. To this end we equip the train track with
an edge labelling that contains connectivity information.

Given a train track H = (V
.∪ S, F, o) for G = (V, E) we define a labelling of

the directed edges of H as follows:

�(u, v) = {a ∈ V : there is an acceptable walk from a to v in H

passing through (u, v)}.

uf

s t
vf

ue ve

uf vf

ue ve

Fig. 5. Lifting a path (in a strongly confluent representation).

324 Peter Hui, Marcus Schaefer, and Daniel Štefankovič

From the definition it follows that � is the minimal labelling fulfilling

(i) a ∈ �(a, u) for any edge (a, u) ∈ F ∩ (V, V
.∪ S),

(ii) NG(a) =
⋃

(u,a)∈F �(u, a) for any a ∈ V , where NG(a) = {b : ab ∈ E} is
the neighborhood of a in G,

(iii) for any switch s ∈ S and its neighbors u = o(s), v, w:

�(u, s) ⊆ �(s, v) ∩ �(s, w), and

�(s, u) ⊇ �(s, v) ∪ �(w, s).

By the results proved so far we know that if G = (V, E) is strongly confluent,
then there is H = (V

.∪ S, F, o) such that ab ∈ E if and only if there is an
acceptable path Pab from a to b in H .

Lemma 3. If G = (V, E) is strongly confluent, then it is represented by a train
track H with O(|V |)6 vertices and switches.

Let uv ∈ E. Consider a path Puv in H whose inner vertices are all switches,
and the function �(−→e) as we move the directed edge e along Puv from u to v.
This yields a monotone function, namely, if e occurs before f on Puv and both
edges are directed towards v, then �(−→e) ⊆ �(−→f). Therefore, �(−→e) can take on at
most |V |+1 different values along Puv. Similarly, if we move an edge←−e directed
towards u along Puv from u to v, the corresponding label sets are monotonously
decreasing, and, hence, also take at most |V | + 1 different values along Puv.
Consequently, the expression (�(−→e), �(←−e)) can change value less than 2(|V |+1)
times as we travel along Puv from u to v.

For each uv ∈ E we color those switches at which (�(−→e), �(←−e)) changes red,
and the remaining switches blue. Note that at most (2|V | + 1)|E| switches are
colored red. We call the maximal segments of Puv which do not contain red
switches blue segments. There are at most 4(|V |+ 1)|E| blue segments. We will
show that there is a drawing such that any two blue segments intersect at most
once. Hence there is a drawing with at most (2|V |+ 1)|E|+ 2(4(|V |+ 1)|E|)2 =
O(|V |6) switches.

Consider two edges e and f in H that are adjacent crossings of a blue segment
P with other blue segments. There are two possible scenarios depending on
whether the crossings are parallel or not (as earlier, the sharp angles represent
the forking part of a switch, and thus define o). Figure 6 shows how the order
of two parallel crossings can be swapped.

We can use a similar move for non-parallel crossings, as shown in Figure 7.

Fig. 6. How to swap two parallel crossings.

Train Tracks and Confluent Drawings 325

Fig. 7. How to swap two non-parallel crossings.

Note that in both cases we can extend the labelling of H to the newly intro-
duced edges so that the graph represented by H remains the same: we simply
label the new edges with (�(−→e), �(←−e)).

Suppose that two blue segments P and R cross more than once. Let e1, e2

be crossings of P and R such that there are no crossings of P and R between
e1 and e2 on R. There may be crossings of P and R between e1 and e2 on P .
Label them by i if after cutting R between e1 and e2 they would be in the same
component of R as ei. There is a pair of neighboring crossings f1, f2 labeled by
1, 2, respectively. Using the swap moves on edges intersecting R we can make
e1, e2 adjacent on R and then shortcut P eliminating half of the intersections
created by the swap moves. Similarly using the swap moves on edges intersecting
P we can make f1, f2 adjacent on P and then shortcut R eliminating half of the
intersection created by the swap moves. In one of the cases we decrease the
total number of intersections while preserving the property that any two paths
intersect in paths of length 1. Hence there is a train track in which any two blue
segments intersect at most once.
Corollary 2. Strong confluency can be tested in NP.

Proof. Corollary 2 shows that if G is strongly confluent, then there is a train
track representing G of size polynomial in |G|. In NP we can guess any such
train track, and verify that it represents G.

5 Tree-Confluent Graphs

We call a train track drawing D tree-like, if it does not contain a closed curve (the
curve would not have to be smooth or locally monotone). For example, Figure 8
shows a tree-like train track drawing. On the other hand, Figure 1 shows a train
track drawing representing K6 which is not tree-like. We call a confluent graph
which can be represented by a tree-like train track drawing tree-confluent (the
strong case being the same). We will see later that all tree-confluent graphs are
bipartite, so there is no tree-like train track drawing representing K6.

In graph theoretic terms, the underlying abstract train track of a tree-con-
fluent graph has to be a tree. A graph is tree-confluent if and only if it is rep-
resented by a planar train track which is a tree. We now give a characterization
of tree confluent graphs in terms of a vertex elimination ordering. This charac-
terization leads to a fast recognition algorithm.

Theorem 2. A graph is tree confluent if and only if repeatedly removing (i)
vertices of degree 1, and (ii) vertices u such that there is another vertex v with
N(u) = N(v)
= ∅, leads to the trivial graph (containing only a single vertex).

326 Peter Hui, Marcus Schaefer, and Daniel Štefankovič

Fig. 8. A tree-like train track drawing.

Proof. First observe that if G is tree confluent then it will still be tree confluent
after the removal of vertices of type (i) or (ii). Furthermore, if G is not tree
confluent, it cannot become tree confluent by removing a vertex of type (i) or
(ii): if G− {v} were tree confluent and v has degree 1 in G, then it has degree
1 in the underlying train track, hence G is tree confluent; similarly if G − {v}
is tree confluent, and G contains another vertex u with N(u) = N(v), then we
can replace u in the train track for G− {v} by a switch that branches to u and
v, showing that G is tree confluent (note that G does not contain the edge uv,
since N(u) = N(v)).

Since the trivial graph is tree confluent, this observation implies that any
graph which can be reduced to the trivial graph by removing vertices of type (i)
and (ii) is tree confluent.

Furthermore, for the other direction, the observation shows that the order of
removal is irrelevant, and it is sufficient to show that if G is tree confluent, there
is some order E in which to remove vertices of type (i) and (ii) such that we end
up with the trivial graph.

Suppose G = (V, E) is tree confluent; then there is a planar train track
H = (V

.∪ S, F, o) which represents G. Consider F as a set of directed edges. We
define a function p from F to N as follows:

p(u, v) = |{w ∈ V : there is a walk from v to w that does not use u}|.
Figure 9 shows an example of p.

Using p we define a second function r from S to N. Let the neighbors of s be
u, v, w, then

r(s) = min{p(s, u) + p(s, v), p(s, u) + p(s, w), p(s, v) + p(s, w)}.

1

1

1

1
2

5

7

2
1

5 4 4

5

1
1

2
5

2

7 1

1

Fig. 9. A train track. Every edge is labelled with the number of vertices contained in
the portion of the train track to which the edge points.

Train Tracks and Confluent Drawings 327

We begin the construction of E by repeatedly removing vertices of degree 1
in G until there are no such vertices left. If G has not turned into the trivial
graph at that point, it has to contain at least one switch (otherwise it would be
a tree on its vertices and would have to contain a vertex of degree 1).

Choose the switch s with minimal r(s). We claim that r(s) = 2. First note
that r(s) ≥ 2, because p is always at least 1. Now suppose that r(s) > 2. Then
s must be adjacent to at least one edge su such that p(s, u) ≥ 2, since otherwise
r(s) would equal 2. The portion of the train track to which su leads cannot
contain any switches, for if it contained a switch t, then r(t) would be strictly
less than r(s) violating the minimality of r(s). Therefore, the vertices in the
portion of H to which (s, u) leads must form a tree. However, the leaves of this
tree would have degree 1, and we already eliminated all those vertices.

Let s be a switch with r(s) = 2. Then there are u and v such that p(s, u) +
p(s, v) = 2, and therefore p(s, u) = p(s, v) = 1. Hence, u and v have to be
vertices of G. Since neither of them can have degree 1 in G, the switch s must
be oriented to fork into u and v which implies that N(u) = N(v). Hence we can
continue the construction of E by selecting u, for example.

We continue in this fashion, eliminating vertices of degree 1 as long as pos-
sible, and then identifying leaf vertices of switches s with r(s) = 2. We showed
that the only reason such a switch would not exist is that the graph G has turned
into the trivial graph, which is what we had to show.

The elimination characterization of Theorem 2 leads to a randomized linear
time algorithm for recognizing tree-confluent graphs.

In [5], Golumbic and Goss introduced the now well-known class of graphs
known as the chordal bipartite graphs, which are those bipartite graphs in which
every cycle of length at least 6 contains a chord (that is, no cycle of length
at least 6 is induced). Removing a vertex of degree 1 or a vertex u such that
there is another vertex v for which N(u) = N(v) from a graph does not change
the property of a graph being chordal bipartite. This observation gives us the
following lemma.

Lemma 4. Every tree confluent graph is chordal bipartite.

The reverse is not true as witnessed by a C6 with a single chord.

6 Open Problems

While we have shown that strong confluency can be recognized in NP, we cur-
rently have no such result for confluency. Although the two notions are very
similar, their combinatorial nature seems to be quite different. At this point we
cannot even rule out the possibility that a confluent graph needs an exponential
number of switches to be realized (although that would not necessarily affect
membership in NP, as witnessed by the example of string graphs [7]).

Identifying large classes of confluent graphs remains a challenging task. We
suggest the notion of outer-confluency (confluent graphs that can be drawn in
a disk with all the vertices on the boundary of the disk). As in the case of

328 Peter Hui, Marcus Schaefer, and Daniel Štefankovič

confluency there are examples of graphs that are outer-confluent but not strongly
outer-confluent (see Figure 4). Dickerson, Eppstein, Goodrich, and Meng [2]
showed – in effect – that all cographs are outer-confluent (even strongly outer-
confluent), thereby also showing that outer-confluency is a strict superclass of
tree-confluency. It does not seem unlikely that outer-confluent graphs can be
recognized in polynomial time.

We seem to have a good understanding of tree-confluent graphs; the main
missing piece is a deterministic linear time recognition algorithm.

References

1. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

2. Matthew T. Dickerson, David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng.
Confluent drawings: visualizing non-planar diagrams in a planar way. In Proc.
11th Int. Symp. Graph Drawing (GD 2003), Lecture Notes in Computer Science.
Springer-Verlag, 2003.

3. David Eppstein, 2004. personal communication.
4. Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM

Journal on Algebraic and Discrete Methods, 4(3):312–316, 1983.
5. M. Golombic and C. F. Goss. Perfect elimination and chordal bipartite graphs. J.

Graph Theory, 2:155–163, 1978.
6. R. C. Penner and J. L. Harer. Combinatorics of train tracks, volume 125 of Annals

of mathematics studies. Princeton University Press, 1992.
7. Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing string graphs

in NP. J. Comput. System Sci., 67(2):365–380, 2003. Special issue on STOC2002
(Montreal, QC).

	1 Introduction
	2 Train Tracks and Confluent Drawings
	3 TrainTracks
	4 Strong Confluency in NP
	5 Tree-Confluent Graphs
	6 Open Problems
	References

