
On Counting Perfect Matchings
in General Graphs

Daniel Štefankovič1, Eric Vigoda2, and John Wilmes2(B)

1 University of Rochester, Rochester, USA
stefanko@cs.rochester.edu

2 Georgia Institute of Technology, Atlanta, USA
{vigoda,wilmesj}@gatech.edu

Abstract. Counting perfect matchings has played a central role in the
theory of counting problems. The permanent, corresponding to bipar-
tite graphs, was shown to be #P-complete to compute exactly by
Valiant (1979), and a fully polynomial randomized approximation scheme
(FPRAS) was presented by Jerrum, Sinclair, and Vigoda (2004) using a
Markov chain Monte Carlo (MCMC) approach. However, it has remained
an open question whether there exists an FPRAS for counting perfect
matchings in general graphs. In fact, it was unresolved whether the same
Markov chain defined by JSV is rapidly mixing in general. In this paper,
we show that it is not. We prove torpid mixing for any weighting scheme
on hole patterns in the JSV chain. As a first step toward overcoming this
obstacle, we introduce a new algorithm for counting matchings based on
the Gallai−Edmonds decomposition of a graph, and give an FPRAS for
counting matchings in graphs that are sufficiently close to bipartite. In
particular, we obtain a fixed-parameter tractable algorithm for counting
matchings in general graphs, parameterized by the greatest “order” of a
factor-critical subgraph.

1 Introduction

Counting perfect matchings is a fundamental problem in the area of count-
ing/sampling problems. For an undirected graph G = (V,E), let P denote the
set of perfect matchings of G. Can we compute (or estimate) |P| in time poly-
nomial in n = |V |? For which classes of graphs?

A polynomial-time algorithm for the corresponding decision and optimization
problems of determining if a given graph contains a perfect matching or finding
a matching of maximum size was presented by Edmonds [2]. For the counting
problem, a classical algorithm of Kasteleyn [9] gives a polynomial-time algorithm
for exactly computing |P| for planar graphs.

For bipartite graphs, computing |P| is equivalent to computing the perma-
nent of n × n (0, 1)-matrices. Valiant [14] proved that the (0, 1)-Permanent is
#P-complete. Subsequently attention turned to the Markov Chain Monte Carlo
(MCMC) approach. A Markov chain where the mixing time is polynomial in n
is said to be rapidly mixing, and one where the mixing time is exponential in

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77404-6_63&domain=pdf

874 D. Štefankovič et al.

Ω(n) is referred to as torpidly mixing. A rapidly mixing chain yields an FPRAS
(fully polynomial-time randomized approximation scheme) for the corresponding
counting problem of estimating |P| [8].

For dense graphs, defined as those with minimum degree >n/2, Jerrum and
Sinclair [6] proved rapid mixing of a Markov chain defined by Broder [1], which
yielded an FPRAS for estimating |P|. The Broder chain walks on the collection
Ω = P ∪N of perfect matchings P and near-perfect matchings N ; a near-perfect
matching is a matching with exactly 2 holes or unmatched vertices. Jerrum and
Sinclair [6], more generally, proved rapid mixing when the number of perfect
matchings is within a poly(n) factor of the number of near-perfect matchings,
i.e., |P|/|N | ≥ 1/poly(n). A simple example, referred to as a “chain of boxes”
which is illustrated in Fig. 1, shows that the Broder chain is torpidly mixing.
This example was a useful testbed for catalyzing new approaches to solving the
general permanent problem.

Jerrum et al. [7] presented a new Markov chain on Ω = P ∪ N with a
non-trivial weighting scheme on the matchings based on the holes (unmatched
vertices). They proved rapid mixing for any bipartite graph with the requisite
weights used in the Markov chain, and they presented a polynomial-time algo-
rithm to learn these weights. This yielded an FPRAS for estimating |P| for all
bipartite graphs. That is the current state of the art (at least for polynomial-
time, or even sub-exponential-time algorithms).

Could the JSV-Markov chain be rapid mixing on non-bipartite graphs? Pre-
viously there was no example for which torpid mixing was established, it was
simply the case that the proof in [7] fails. We present a relatively simple exam-
ple where the JSV-Markov chain fails for the weighting scheme considered in [7].
More generally, the JSV-chain is torpidly mixing on our class of examples for
any weighting scheme based on the hole patterns, see Theorem 3 in Sect. 2 for a
formal statement following the precise definition of the JSV-chain.

A natural approach for non-bipartite graphs is to consider Markov chains
that exploit odd cycles or blossoms in the manner of Edmonds’ algorithm. We
observe that a Markov chain which considers all blossoms for its transitions
is intractable since sampling all blossoms is NP-hard, see Theorem 5. On the
other hand, a chain restricted to minimum blossoms is not powerful enough to
overcome our torpid mixing examples. See Sect. 3 for a discussion.

Finally we utilize the Gallai−Edmonds graph decomposition into factor-
critical graphs [2–4,12] to present new algorithmic insights that may overcome
the obstacles in our classes of counter-examples. In Sect. 4, we describe how the
Gallai−Edmonds decomposition can be used to efficiently estimate |P|, the num-
ber of perfect matchings, in graphs whose factor-critical subgraphs have bounded
order (Theorem 7), as well as in the torpid mixing example graphs (Theorem8).

Although all graphs are explicitly defined in the text below, figures depicting
these graphs are deferred to the appendix.

1.1 Markov Chains

Consider an ergodic Markov chain with transition matrix P on a finite state
space Ω, and let π denote the unique stationary distribution. We will usually

On Counting Perfect Matchings in General Graphs 875

assume the Markov chain is time reversible, i.e., that it satisfies the detailed
balance condition π(x)P (x, y) = π(y)P (x, y) for all states x, y ∈ Ω.

For a pair of distributions μ and ν on Ω we denote their total variation
distance as dTV(μ, ν) = 1

2

∑
x∈Ω |μ(x) − ν(x)|. The standard notion of mixing

time Tmix is the number of steps from the worst starting state X0 = i to reach
total variation distance ≤1/4 of the stationary distribution π, i.e., we write
Tmix = maxi∈Ω min{t : dTV(P t(i, ·), π) ≤ 1/4}.

We use conductance to obtain lower bounds on the mixing time. For a set
S ⊂ Ω its conductance is defined as:

Φ(S) =

∑
x∈S,y/∈S π(x)P (x, y)

∑
x∈S π(x)

.

Let Φ∗ = minS⊂Ω:π(S)≤1/2 Φ(S). Then (see, e.g., [10,13])

Tmix ≥ 1
4Φ∗

. (1)

1.2 Factor-Critical Graphs

A graph G = (V,E) is factor-critical if for every vertex v ∈ V , the graph
induced on V \ {v} has a perfect matching. (In particular, |V | is odd.)

Factor-critical graphs are characterized by their “ear” structure. The quo-
tient G/H of a graph G by a (not necessarily induced) subgraph H is derived
from G by deleting all edges in H and contracting all vertices in H to a sin-
gle vertex vH (possibly creating loops or multi-edges). An ear of G relative a
subgraph H of G is simply a cycle in G/H containing the vertex vH .

Theorem 1 (Lovász [11]). A graph G is factor-critical if and only if there is
a decomposition G = C0 ∪ · · · ∪ Cr such that C0 is a single vertex, and Ci is an
odd-length ear in G relative to

⋃
j<i Cj, for all 0 < i ≤ r.

Furthermore, if G is factor critical, there exists such a decomposition for
every choice of vertex C0, and the order r of the decomposition is independent
of all choices.

Since the number of ears in the ear decomposition of a factor-critical graph
depends only on the graph, and not on the choice made in the decomposition,
we say the order of the factor-critical graph G is the number r of ears in any
ear decomposition of G.

Factor-critical graphs play a central role in the Gallai−Edmonds structure
theorem for graphs. We state an abridged version of the theorem below.

Given a graph G, let D(G) be the set of vertices that remain unmatched in at
least one maximum matching of G. Let A(G) be the set of vertices not in D(G)
but adjacent to at least one vertex of D(G). And let C(G) denote the remaining
vertices of G.

876 D. Štefankovič et al.

Theorem 2 (Gallai−Edmonds Structure Theorem). The connected com-
ponents of D(G) are factor-critical. Furthermore, every maximum matching of
G induces a perfect matching on C(G), a near-perfect matching on each con-
nected component of D(G), and matches all vertices in A(G) with vertices from
distinct connected components of D(G).

2 The Jerrum−Sinclair−Vigoda Chain

We recall the definition of the original Markov chain proposed by Broder [1].
The state space of the chain is Ω = P ∪⋃

u,v N (u, v) where P is the collection of
perfect matchings and N (u, v) are near-perfect matchings with holes at u and v
(i.e., vertices u and v are the only unmatched vertices). The transition rule for
a matching M ∈ Ω is as follows:

1. If M ∈ P, randomly choose an edge e ∈ M and transition to M \ {e}.
2. If M ∈ N (u, v), randomly choose a vertex x ∈ V . If x ∈ {u, v} and u is

adjacent to v, transition to M ∪ {(u, v)}. Otherwise, let y ∈ V be the vertex
matched with x in M , and randomly choose w ∈ {u, v}. If x is adjacent to
w, transition to the matching M ∪ {(x,w)} \ {(x, y)}.

The chain XB is symmetric, so its stationary distribution is uniform. In partic-
ular, when |P|/|Ω| is at least inverse-polynomial in n, we can efficiently generate
uniform samples from P via rejection sampling, given access to samples from the
stationary distribution of XB.

In order to sample perfect matchings even when |Ω|/|P| is exponentially
large, Jerrum et al. [7] introduce a new chain XJSV that changes the stationary
distribution of XB by means of a Metropolis filter. The new stationary distri-
bution is uniform across hole patterns, and then uniform within each hole pat-
tern, i.e., for every M ∈ Ω, the stationary probability of M is proportional to
1/|N (u, v)| if M ∈ N (u, v), and proportional to 1/|P| if M ∈ P.

We define XJSV in greater detail. For M ∈ Ω, define the weight function

w(M) =

{
1

|P| if M ∈ P
1

|N (u,v)| if M ∈ N (u, v) (2)

Definition 1. The chain XJSV has the same state space as XB. The transition
rule for a matching M ∈ Ω is as follows:

1. First, choose a matching M ′ ∈ Ω to which M may transition, according to
the transition rule for XB.

2. With probability min{1, w(M ′)/w(M)}, transition to M ′. Otherwise, stay
at M .

In their paper, Jerrum et al. [7] in fact analyze a more general version of
the chain XJSV that allows for arbitrary edge weights in the graph. They show
that the chain is rapidly mixing for bipartite graphs G. (They also study the

On Counting Perfect Matchings in General Graphs 877

separate problem of estimating the weight function w, and give a “simulating
annealing” algorithm that allows the weight function w to be estimated by grad-
ually adjusting edge weights to obtain an arbitrary bipartite graph G from the
complete bipartite graph.) Their analysis of the mixing time uses a canonical
paths argument that crucially relies on the bipartite structure of the graph.
However, it remained an open question whether a different analysis of the same
chain XJSV, perhaps using different canonical paths, might generalize to non-
bipartite graphs. We rule out this approach.

In fact, we rule out a more general family of Markov chains for sampling
perfect matchings. We say a Markov chain is “of XJSV type” if it has the same
state space as XJSV, with transitions as defined in Definition 1, for some weight
function w(M) (not necessarily the same as in Eq. (2)) depending only the hole
pattern of the matching M .

Theorem 3. There exists a graph G on n vertices such that for any Markov
chain X of XJSV type on G, either the stationary probability of P is at most
exp(−Ω(n)), or the mixing time of X is at least exp(Ω(n)).

The graph G of Theorem 3 is constructed from several copies of a smaller
gadget H, which we now define.

Definition 2. The chain of boxes gadget Bk of length k is the graph on
4k vertices depicted in Fig. 1. To construct Bk, we start with a path P2k−1 =
v0, v1, . . . , v2k of length 2k − 1. Then, for every even edge {v2i, v2i+1} on the
path, we add two additional vertices ai, bi, along with edges to form a path
v2i, ai, bi, v2i+1 of length 3.

v0

a0 b0

v1 v2

a1 b1

v3
. . .

v2k

ak bk

v2k+1

Fig. 1. The “chain of boxes” gadget Bk, which has 2k perfect matchings, but only a
single matching in N (v0, v2k+1).

Observation 4. The chain of boxes gadget Bk has 2k perfect matchings, but
only one matching in N (v0, v2k+1).

Definition 3. The torpid mixing gadget Hk is the graph depicted in Fig. 2.
To construct H, first take a C12 and label two antipodal vertices as a and b. Add
an edge between a and b, and label the two vertices farthest from a and b as u
and v. Label the neighbor of u closest to a as w1, and the other neighbor of u as
w2. Label the neighbor of v closest to a as z1 and the other neighbor of v as z2.
Finally, add four chain-of-boxes gadgets Bk, identifying the vertices v0 and v2k

of the gadgets with w1 and a, with a and z1, with w2 and b, and with b and z2,
respectively.

878 D. Štefankovič et al.

Note that in Figs. 2 and 3, one “box” from each copy of Bk in the torpid
mixing gadget is left undrawn, for visual clarity.

u

w1 x1
a

x2w2

y1 z1

v

z2y2

. . .

. . .

. . .

. . .

Fig. 2. The torpid mixing gadget Hk. The unique matching M ∈ N (u, v) is depicted
with thick edges.

x1

v

. . .

. . .

. . .

. . .

Fig. 3. A matching M ′ ∈ N (x1, v). There are exponentially many matchings with the
same hole pattern, obtained by alternating the 4-cycles above x1.

Lemma 1. The torpid mixing gadget H = Hk has 16k + 4 vertices and exactly
2 perfect matchings. Furthermore, |NH(u, v)| = 1 and NH(x1, v) ≥ 2k.

The unique matching in NH(u, v) is depicted in Fig. 2, and an example of a
matching in NH(x1, v), which generalizes easily to the entire family, is depicted
in Fig. 3. The details of the proof are deferred to the full version of the paper.

The torpid mixing gadget already suffices on its own to show that the Markov
chain XXJSV defined in [7] is torpidly mixing. In particular, the conductance out
of the set NH(x1, v) ⊆ Ω(H) is 2−Ω(k). In order to prove the stronger claim
of Theorem 3, that every Markov chain of XJSV-type fails to efficiently sample
perfect matchings, we construct a slightly larger graph from copies of the torpid
mixing gadgets.

On Counting Perfect Matchings in General Graphs 879

Definition 4. The counterexample graph Gk is the graph depicted in Fig. 4.
It is defined by replacing every third edge of the twelve-cycle C12 with the gad-
get Hk defined in Fig. 2. Specifically, let {ui, vi} be the 3i-th edge of C12 for
i ∈ {1, . . . , 4}. We delete each edge {ui, vi} and replace it with a copy of H,
identifying the vertices u and v of H with vertices ui and vi of C12. The result-
ing graph is Gk. Thus, of the 12 original vertices in C12, 8 of the corresponding
vertices in Gk participate in a copy of the gadget H, and 4 do not. These 4
vertices of Gk which do not participate in any copy of the gadget H are labeled
t1, . . . , t4 in cyclic order, and the copies of the gadget H are labeled H1, . . . H4 in
cyclic order, with H1 coming between t1 and t2, and so on. Thus, t1 is adjacent
to u1 and v4, ti is adjacent to ui and vi−1 for i ∈ {2, . . . , 4}, and Hi contains
both ui and vi.

t1
u1 v1 t2

u2

v2

t3u3v3t4

u3

v3

Hk

Hk

Hk

Hk

Fig. 4. The “counterexample graph” Gk on which XJSV is torpidly mixing. The boxes
labeled Hk represent copies of the torpid mixing gadget of Definition 3.

In particular, Gk has 4|V (H)| + 4 = 64k + 8 vertices.
The perfect and near-perfect matchings of Gk are naturally divided into

four intersecting families. For i ∈ {1, . . . , 4} we define Si to be the collection of
(perfect and near-perfect) matchings M ∈ Ω(Gk) such that the restriction of M
to Hi has two holes, at ui and vi, i.e., such that the vertices ui and vi either
have holes in M or are matched outside of Hi.

Lemma 2. The counterexample graph Gk has exactly 8 perfect matchings. Of
these, 4 are in S1 ∩ S3 \ (S2 ∪ S4) and 4 are in S2 ∩ S4 \ (S1 ∪ S3).

The proof of this lemma is deferred to the full version of the paper.
In the proof below, we use the notation N (M) denote the collection of

matchings with the hole pattern as M . That is, N (M) = P if M ∈ P, and
N (M) = N (u, v) if M ∈ N (u, v).

880 D. Štefankovič et al.

Proof (Proof of Theorem 3). Let Gk be the counterexample graph of Definition 4.
We will show that the set S1 ∪ S3 ⊆ Ω(Gk) has poor conductance, unless the
stationary probability of PGk

is small. We will write A = S1 ∪ S3 and A =
Ω(Gk) \ (S1 ∪ S3).

Let M ∈ A and M ′ ∈ A be such that P (M,M ′) > 0. We claim that neither
M nor M ′ are perfect matchings. Assume without loss of generality that M ∈ S1.
If M ∈ S1 is a perfect matching, then M ∈ P2 and so M ∈ S3. The only legal
transitions from M to Ω \ S1 are those that introduce additional holes within
H1, but none of these transitions to a matching outside of S3. Hence, M cannot
be perfect. But if M ′ is perfect, then M ′ ∈ P1, and so M ′ induces a perfect
matching on S1. But then the transition from M to M ′ must simultaneously
affect u1 and v1, and no such transition exists.

We denote by ∂A the set of matchings M ′ ∈ A such that there exists a
matching M ∈ A with P (M,M ′) > 0. We claim that for every matching M ′ ∈ A,
we have

|N (M ′) ∩ ∂A| ≤ 2k−1|N (M ′)| . (3)

Let M ′ ∈ ∂A, and let M ∈ A be such that P (M,M ′) > 0. Suppose first that
M ∈ S1. Label the vertices of H1 as in Fig. 2, identifying u1 with u and v1
with v. Let N be the matching on H = H1 induced by M , and let N ′ be the
matching on H1 induced by M ′. We have N ∈ NH(u1, v1). But by Lemma 1, we
have |NH(u1, v1)| = 1, i.e., N is exactly the matching depicted in Fig. 2. The
only transitions that remove the hole at u are the two that shift the hole to x1

or x2, and the only transitions that remove the hole at v are the two that shift
the hole to y1 or y2. So, without loss of generality, by the symmetry of Gk, we
have N ′ ∈ NH(x1, v1). By Lemma 1, |NH(x1, v1)| ≥ 2k, but only one matching
in NH(x1, v1) has a legal transition to N . Therefore, if we replace the restriction
of M ′ to H1 with any other matching in NH(x1, v1), we obtain another matching
M ′′ ∈ N (M ′), but M ′′ has no legal transition to any matching in N (M). Hence,
only a 2−k-fraction of N (M ′) has a legal transition to S1, and similarly only a
2−k-fraction of N (M ′) has a legal transition to S3. In particular, we have proved
Eq. (3).

From Eq. (3), it immediately follows that the stationary probability of ∂A is

π(∂A) =
∑

M ′∈∂A

π(M ′) =
∑

M ′∈A

π(M ′)
|N (M ′) ∩ ∂A|

|N (M ′)| = 2−k+1π(A) (4)

We now compute
∑

M∈A,M ′∈A
P (M,M ′)>0

π(M)P (M,M ′) =
∑

M∈A,M ′∈A
P (M,M ′)>0

π(M ′)P (M ′,M) ≤ π(∂(A))

< 2−k+1π(A),

where we first use the detailed balance condition and then Eq. (4).

On Counting Perfect Matchings in General Graphs 881

Now by (1) and the definition of conductance, we have

1
4τX

< Φ(A) < 2−k π(A)
π(A)

.

In particular, if τX < 2k/2−2, then π(A) > 2k/2+1π(A). Suppose this is the case.
By Lemma 2, half of the perfect matchings of Gk belong to A. In particular,
π(PGk

) ≤ 2π(A) < 2−k/2+2. Hence, either the stationary probability of P is
at most 2−k/2+2 = exp(−Ω(n)), or the mixing time of X is at least 2k/2−2 =
exp(Ω(n)). 	

We remark that the earlier Markov chain studied by Broder [1] and Jer-
rum and Sinclair [6] is also torpidly mixing on the counterexample graph of
Definition 4, since the ratio of near-perfect matchings to perfect matchings is
exponential [6].

3 Chains Based on Edmonds’ Algorithm

Given that Edmonds’ classical algorithm for finding a perfect matching in a
bipartite graph requires the careful consideration of odd cycles in the graph,
it is reasonable to ask whether a Markov chain for counting perfect matchings
should also somehow track odd cycles. In this section, we briefly outline some of
the difficulties of such an approach.

A blossom of length k in a graph G equipped with a matching M is simply
an odd cycle of length 2k + 1 in which k of the edges belong to M . Edmonds’
algorithm finds augmenting paths in a graph by exploring the alternating tree
rooted at an unmatched vertex, and contracting blossoms to a vertex as they are
encountered. Given a blossom B containing an unmatched vertex u, there is an
alternating path of even length to every vertex v ∈ B. Rotating B to v means
shifting the hole at u to v by alternating the u-v path in B.

Adding rotation moves to a Markov chain in the style of XJSV is an attractive
possible solution to the obstacles presented in the previous section. Indeed, if it
were possible to rotate the 7-cycle containing u and a in the graph in Fig. 2, it
might be possible to completely avoid problematic holes at x1 or x2.

The difficulty in introducing such an additional move the Markov chain XJSV

is in defining the set of feasible blossoms that may be rotated, along with a
probability distribution over such blossoms. In order to be useful, we must be
able to efficiently sample from the feasible blossoms at a given near-perfect
matching M . Furthermore, the feasible blossoms must respect time reversibility:
if B is feasible when the hole is at u ∈ B, then it must also be feasible after
rotating the hole to v ∈ B; reversibility of the Markov chain is needed so that
we understand its stationary distribution. Finally, the feasible blossoms must be
rich enough to avoid the obstacles outlined in the previous section.

The set of “minimum length” blossoms at a given hole vertex u satisfies the
first criterion of having an efficient sampling algorithm. But it is easy to see that
if only minimum length blossoms are feasible, then the obstacles outlined in the

882 D. Štefankovič et al.

previous section will still apply (simply by adding a 3-cycle at every vertex).
Moreover, families blossoms characterized by minimality may struggle to satisfy
the second criterion of time-reversibility. In Fig. 5, there is a unique blossom
containing u, but after rotating the hole to v, it is no longer minimal.

u

v

Fig. 5. After rotating the blossom so that the hole is moved from u to v, the blossom
is no longer “minimal”.

On the other hand, the necessity of having an efficient sampling algorithm
for the feasible blossoms already rules out the simplest possibility, namely, the
uniform distribution over all blossoms containing a given hole vertex u. Indeed,
if we could efficiently sample from the uniform distribution over all blossoms con-
taining a given vertex u, then by an entropy argument we could find arbitrarily
large odd cycles in the graph, which is NP-hard.

Theorem 5. Let Sampling Blossoms problem be defined as follows. The input
is an undirected graph G and a near-perfect matching M with holes at w, r ∈
V (G). The output is a uniform sample from the uniform distribution of blossoms
containing w. Unless NP=RP there is no randomized polynomial-time sampler
for Sampling Blossoms.

The proof is deferred to the full version of the paper.

4 A Recursive Algorithm

We now explore a new recursive algorithm for counting matchings, based on
the Gallai−Edmonds decomposition. In the worst case, this algorithm may still
require exponential time. However, for graphs that have additional structural
properties, for example, those that are “sufficiently close to bipartite” in a sense
that will be made precise, our recursive algorithm runs in polynomial time. In
particular, it will run efficiently on examples similar to those used to prove torpid
mixing of Markov chains in the previous section.

We now state the algorithm. It requires as a subroutine an algorithm for
computing the permanent of the bipartite adjacency matrix of a bipartite graph
G up to accuracy ε. We denote this subroutine by Permanent(G, ε). The
Permanent subroutine requires time polynomial in |V (G)| and 1/ε using the
algorithm of Jerrum et al. [7], but we use it as a black-box.

We first argue the correctness of the algorithm.

On Counting Perfect Matchings in General Graphs 883

Algorithm 1. Recursive algorithm for approximately counting the number of
perfect matchings in a graph
1: procedure Recursive-Count(G, ε)
2: If V (G) = ∅, return 1.
3: Choose u ∈ V (G).
4: Compute the Gallai−Edmonds decomposition of G − u.
5: for all v ∈ D(G − u) do
6: Hv ← the connected component of G − u containing v
7: mv ← Recursive-Count(Hv − v, ε/(2n))
8: end for
9: mC ← Recursive-Count(C(G − u), ε/3)

10: Let X = A(G − u) ∪ {u}, and let Y be the set of connected components in
D(G − u). Let G′ be the bipartite graph on (X, Y) defined as follows: for every
x ∈ X and H ∈ Y , if x has any neighbors in H in G′, add an edge {x, H} in G′

with weight

w(x, H) =
∑

v∈N(x)∩H

mv .

11: return mC ∗ Permanent(G′, ε/3)
12: end procedure

Theorem 6. Algorithm1 computes the number of perfect matchings in G to
within accuracy ε.

Proof. We show that the algorithm is correct for graphs on n vertices, assuming
it is correct for all graphs on at most n − 1 vertices.

We claim that permanent of the incidence matrix of G′ defined on line 10
equals the number of perfect matchings in G. Indeed, every perfect matching M
of G induces a maximum matching Mu on G−u. By the Gallai−Edmonds theo-
rem, Mu matches each element of A(G′) with a vertex from a distinct component
of D(G′), leaving one component of D(G′) unmatched. Vertex u must therefore
be matched in M with a vertex from the remaining component of D(G′). There-
fore, M induces a perfect matching M ′ on G′. Now let Hx ∈ Y be the vertex of
G′ matched to x for each x ∈ X. Then the number of distinct matchings of G
inducing the same matching M ′′ on G′′ is exactly

∏

x∈X

∑

v∈N(x)∩Hx

mv =
∏

x∈X

w(x,Hx)

which is the contribution of M ′ to the permanent of G′. Similarly, from an arbi-
trary matching M ′ of G′, with Hx defined as above, we obtain

∏
x∈X w(x,Hx)

matchings of G, proving the claim.
Hence, it suffices to to compute the permanent of the incidence matrix of G′

up to accuracy ε. We know the entries of the incidence matrix up to accuracy
ε/(2n), and (1+ε/(2n))n/2 < 1+ε/3 for ε sufficiently small. Therefore, it suffices
to compute the permanent of our approximation of the incidence matrix up to
accuracy ε/3 to get overall accuracy better than ε. 	

884 D. Štefankovič et al.

The running time of Algorithm1 is sensitive to the choice of vertex u on line
3. If u can be chosen so that each component of D(G − u) is small, then the
algorithm is an efficient divide-and-conquer strategy. More generally, if u can
be chosen so that each component of D(G − u) is in some sense “tractable”,
then an efficient divide-and-conquer strategy results. In particular, since it is
possible to exactly count the number of perfect matchings in a factor-critical
graph of bounded order in polynomial time, we obtain an efficient algorithm
for approximately counting matchings in graphs whose factor-critical subgraphs
have bounded order. This is the sense in which Algorithm1 is efficient for graphs
“sufficiently close” to bipartite.

Theorem 7. Suppose every factor-critical subgraph of G has order at most k.
Then the number of perfect matchings in G can be counted to within accuracy ε
in time 2O(k)poly(n, 1/ε).

The essential idea of the proof is to first observe that a factor-critical graph
can be shrunk to a graph with O(k) edges having the same number of perfect
matchings after deleting any vertex. The number of perfect matchings can then
be counted by brute force in time 2O(k)poly(n). This procedure replaces the
recursive calls on line 6 of the algorithm. The details of the proof are deferred
to the full version of the paper.

We note that Theorem 7 is proved by eliminating recursive calls in the algo-
rithm. Although the recursive calls of Algorithm1 can be difficult to analyze,
they can also be useful, as we now demonstrate by showing that Algorithm 1
runs as-is in polynomial time on the counterexample graph of Definition 4, for
appropriate choice of the vertex u on the line 3 of the algorithm.

Theorem 8. Algorithm1 runs in polynomial time on the counterexample graph
of Definition 4, for appropriate choice of the vertex u on the line 3 of the
algorithm.

The proof is given in the full version of the paper.

Acknowledgements. This research was supported in part by NSF grants CCF-
1617306, CCF-1563838, CCF-1318374, and CCF-1717349. The authors are grateful
to Santosh Vempala for many illuminating conversations about Markov chains and the
structure of factor-critical graphs.

References

1. Broder, A.Z.: How hard is it to marry at random? (On the approximation of the
permanent). In: Proceedings of the 18th Annual ACM Symposium on Theory of
Computing (STOC), pp. 50–58 (1986). Erratum in Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, p. 551 (1988)

2. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
3. Gallai, T.: Kritische Graphen II. Magyar Tud. Akad. Mat. Kutató Int. Kőzl. 8,

273–395 (1963)

On Counting Perfect Matchings in General Graphs 885

4. Gallai, T.: Maximale systeme unabhängiger kanten. Magyar Tud. Akad. Mat.
Kutató Int. Kőzl 9, 401–413 (1964)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

6. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6),
1149–1178 (1989)

7. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with non-negative entries. J. ACM 51(4), 671–697
(2004)

8. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci. 43(2–3), 169–188
(1986)

9. Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theo-
retical Physics, pp. 43–110, Academic Press, London (1967)

10. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American
Mathematical Society, Providence (2009)

11. Lovász, L.: A note on factor-critical graphs. Stud. Sci. Math. Hungar 7(11), pp.
279–280 (1972)

12. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)
13. Sinclair, A.J.: Algorithms for Random Generation and Counting: A Markov Chain

Approach. Birkhäuser, Basel (1988)
14. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.

8(2), 189–201 (1979)

	On Counting Perfect Matchings in General Graphs
	1 Introduction
	1.1 Markov Chains
	1.2 Factor-Critical Graphs

	2 The Jerrum-Sinclair-Vigoda Chain
	3 Chains Based on Edmonds' Algorithm
	4 A Recursive Algorithm
	References

