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ABSTRACT
We study the complexity of approximating the value of the inde-

pendent set polynomial ZG (λ) of a graph G with maximum degree

∆ when the activity λ is a complex number.

When λ is real, the complexity picture is well-understood, and

is captured by two real-valued thresholds λ∗ and λc , which depend

on ∆ and satisfy 0 < λ∗ < λc . It is known that if λ is a real number

in the interval (−λ∗, λc ) then there is an FPTAS for approximating

ZG (λ) on graphs G with maximum degree at most ∆. On the other

hand, if λ is a real number outside of the (closed) interval, then

approximation is NP-hard. The key to establishing this picture was

the interpretation of the thresholds λ∗ and λc on the ∆-regular tree.
The “occupation ratio” of a ∆-regular tree T is the contribution to

ZT (λ) from independent sets containing the root of the tree, divided

by ZT (λ) itself. This occupation ratio converges to a limit, as the

height of the tree grows, if and only if λ ∈ [−λ∗, λc ].
Unsurprisingly, the case where λ is complex is more challenging.

It is known that there is an FPTASwhen λ is a complex number with

norm at most λ∗ and also when λ is in a small strip surrounding the

real interval [0, λc ). However, neither of these results is believed
to fully capture the truth about when approximation is possible.

Peters and Regts identified the complex values of λ for which the

occupation ratio of the ∆-regular tree converges. These values carve
a cardioid-shaped region Λ∆ in the complex plane, whose boundary

includes the critical points −λ∗ and λc . Motivated by the picture in

the real case, they askedwhetherΛ∆ marks the true approximability

threshold for general complex values λ.

∗
Research supported by NSF grant CCF-1319987. The research leading to these results

has received funding from the European Research Council under the European Union’s

Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 334828. The

paper reflects only the authors’ views and not the views of the ERC or the European

Commission. The European Union is not liable for any use that may be made of the

information contained therein. Research supported by NSF grant CCF-1563757.

Our main result shows that for every λ outside of Λ∆, the prob-

lem of approximating ZG (λ) on graphs G with maximum degree

at most ∆ is indeed NP-hard. In fact, when λ is outside of Λ∆ and

is not a positive real number, we give the stronger result that ap-

proximating ZG (λ) is actually #P-hard. Further, on the negative

real axis, when λ < −λ∗, we show that it is #P-hard to even decide

whether ZG (λ) > 0, resolving in the affirmative a conjecture of

Harvey, Srivastava and Vondrák.

Our proof techniques are based around tools from complex anal-

ysis — specifically the study of iterative multivariate rational maps.

The full version is available at arxiv.org/abs/1711.00282.
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1 INTRODUCTION
The independent set polynomial is one of the most well-studied

graph polynomials, arising in combinatorics and in computer sci-

ence. It is also known in statistical physics as the partition function

of the hard-core model. This paper studies the computational com-

plexity of evaluating the polynomial approximately when a parame-

ter, called the activity, is complex. For properties of this polynomial

in the complex plane, including connections to the Lovász Local

Lemma, see the work of Scott and Sokal [9]. For λ ∈ C and a graph

G the polynomial is defined as ZG (λ) :=
∑
I λ

|I |
, where the sum

ranges over all independent sets of G. We will be interested in the

problem of approximating ZG (λ) when the maximum degree of G
is bounded.

When λ is real, the complexity picture is well-understood. For

∆ ≥ 3, let G∆ be the set of graphs with maximum degree at most ∆.
The complexity of approximating ZG (λ) for G ∈ G∆ is captured

by two real-valued thresholds λ∗ and λc which depend on ∆ and

1234

https://doi.org/10.1145/3188745.3188788
https://doi.org/10.1145/3188745.3188788


satisfy 0 < λ∗ < λc . To be precise, λ
∗ =

(∆−1)∆−1

∆∆ and λc =
(∆−1)∆−1

(∆−2)∆
.

The known results are as follows.

(1) If λ is in the interval −λ∗ < λ < λc , there is an FPTAS for

approximatingZG (λ) on graphsG ∈ G∆. For 0 ≤ λ < λc , this
follows from the work of Weitz [12], while for −λ∗ < λ < 0

it follows from the works of Harvey, Srivastava, and Vondrák

[5] and Patel and Regts [7].

(2) If λ < −λ∗ or λ > λc , it is NP-hard to approximate |ZG (λ)|
on graphs G ∈ G∆, even within an exponential factor. For

λ > λc , this follows from the work of Sly and Sun [10], while

for λ < −λ∗ it follows from the work of Galanis, Goldberg,

and Štefankovič [3].

The key to establishing this complexity characterisation was the

following interpretation of the thresholds λ∗ and λc . Given a ∆-
regular treeT of height h with root ρ, let ph denote the “occupation

ratio” of the tree, which is given by ph =
∑
I ;ρ∈I λ |I |

ZT (λ)
, where the

sum ranges over the independent sets of T that include the root ρ.
It turns out that the occupation ratio ph converges to a limit as

h → ∞ if and only if the activity λ lies within the interval [−λ∗, λc ],
so the complexity of approximating ZG (λ) for G ∈ G∆ depends on

whether this limit converges.

Understanding the complexity picture in the case where λ ∈ C
is more challenging. If λ is a complex number with norm at most

λ∗ then there is an FPTAS for approximating ZG (λ) on graphs

G ∈ G∆. This is due to Harvey, Srivastava and Vondrák and to Patel

and Regts [5, 7]. More recently, Peters and Regts [8] showed the

existence of an FPTAS when λ is in a small strip surrounding the

real interval [0, λc ). However, neither of these results is believed
to fully capture the truth about when approximation is possible.

Motivated by the real case, Peters and Regts [8] identified the values

of λ for which the occupation ratio of the ∆-regular tree converges
(for ∆ ≥ 3). These values carve a cardioid-shaped region Λ∆ in the

complex plane, whose boundary includes the critical points −λ∗

and λc . The definition of Λ∆ is as follows (see Figure 1)
1
:

Λ∆ =
{
λ ∈ C

���∃z ∈ C : |z | ≤ 1/(∆ − 1), λ =
z

(1 − z)∆

}
. (1)

Peters and Regts showed that, for every λ in the (strict) interior of

Λ∆, the occupation ratio of the ∆-regular tree converges, and asked
whether the region Λ∆ marks the true approximability threshold

for general complex values λ.
Our main result shows that for every λ outside of the region

Λ∆, the problem of approximating ZG (λ) on graphs G ∈ G∆ is

indeed NP-hard, thus answering [8, Question 1]. In fact, when λ is

outside of Λ∆ and is not a positive real number, we establish the

stronger result that approximating ZG (λ) is actually #P-hard. We

do this by showing that an approximation algorithm for ZG (λ) can
be converted into a polynomial-time algorithm for exactly counting

independent sets. Further, on the negative real axis, when λ < −λ∗,
we show that it is #P-hard to even decide whether ZG (λ) > 0,

resolving in the affirmative a conjecture of Harvey, Srivastava, and

Vondrák [5, Conjecture 5.1].

1
Technically, the word “cardioid” refers to a curve which can be obtained by a point

on the perimeter of a circle which is rolling around a fixed circle of the same radius.

The region (1) does not formally correspond to a “cardioid” in this sense, but its shape

closely resembles a heart for all values of ∆ ≥ 3, which justifies the (slight) abuse of

terminology.

Figure 1: The cardioid-shaped region Λ∆ in the complex plane. We
show that for all λ ∈ C\(Λ∆ ∪ R≥0), approximating ZG (λ) is #P-hard.
Previously, it was known that the problem is NP-hard on the real
line in the intervals λ < −λ∗ and λ > λc . Note, we have that the
thresholds −λ∗, λc belong to Λ∆, by taking z = ±1/(∆ − 1) in (1).

We need the following notation to formally state our results.

Given a complex number x ∈ C, we use |x | to denote its norm and

Arg(x) to denote the principal value of its argument in the range

[0, 2π ). We also define arg(x) = {Arg(x)+2π j | j ∈ Z}. Fory, z ∈ C,
we use d(y, z) to denote the Ziv distance between them [13], namely

d(y, z) =
|y−z |

max( |y |, |z |) . We denote by CQ the set of complex numbers

whose real and imaginary parts are rational numbers.

We consider the problems of multiplicatively approximating the

norm of ZG (λ), additively approximating the argument of ZG (λ),

and approximating ZG (λ) by producing a complex number Ẑ such

that the Ziv distance d
(
Ẑ ,ZG (λ)

)
is small. We start with the fol-

lowing problem, which captures the approximation of the norm of

ZG (λ).

Name #BipHardCoreNorm(λ,∆,K).
Instance A bipartite graph G with maximum degree at most ∆.
Output If |ZG (λ)| = 0 then the algorithm may output any rational

number. Otherwise, it must output a rational number N̂ such

that N̂ /K ≤ |ZG (λ)| ≤ KN̂ .

Our first theorem shows that it is #P-hard to approximate |ZG (λ)|
on bipartite graphs of maximum degree ∆ within a constant factor.

Theorem 1.1. Let ∆ ≥ 3 and λ ∈ CQ be such that λ < (Λ∆∪R≥0).
Then, #BipHardCoreNorm(λ,∆, 1.01) is #P-hard.

Remark. The value “1.01” in the statement of Theorem 1.1 is not
important. In fact, for any fixed ϵ > 0we can use the theorem, together
with a standard powering argument, to show that it is #P-hard to
approximate |ZG (λ)| within a factor of 2n

1−ϵ
.

The following problem captures the approximation of the argu-

ment of ZG (λ).
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Name #BipHardCoreArg(λ,∆, ρ).
Instance A bipartite graph G with maximum degree at most ∆.
Output If ZG (λ) = 0 then the algorithm may output any rational

number. Otherwise, it must output a rational number Â such

that, for some a ∈ arg(ZG (λ)), |Â − a | ≤ ρ.

Our second theorem shows that it is #P-hard to approximate

arg(ZG (λ)) on bipartite graphs of maximum degree ∆ within an

additive constant π/3.

Theorem 1.2. Let ∆ ≥ 3 and λ ∈ CQ be such that λ < (Λ∆∪R≥0).
Then, #BipHardCoreArg(λ,∆,π/3) is #P-hard.

Theorem 1.2 also has the following immediate corollary for the

case in which λ is a negative real number, resolving in the affirma-

tive [5, Conjecture 5.1].

Corollary 1.3. Let ∆ ≥ 3 and λ ∈ Q be such that λ < −λ∗. Then,
given as input a bipartite graph G with maximum degree ∆, it is
#P-hard to decide whether ZG (λ) > 0.

Theorems 1.1 and 1.2 show as a corollary that it is #P-hard to

approximate ZG (λ)within small Ziv distance, based on the fact that

(see [4, Lemma 2.1]) that d(z′, z) ≤ ϵ implies |z′ |/|z | ≤ 1/(1 − ϵ),
see full version for details.

Name #BipComplexHardCore(λ,∆).
Instance A bipartite graph G with maximum degree at most ∆. A

positive integer R, in unary.

Output If ZG (λ) = 0 then the algorithm may output any complex

number. Otherwise, it must output a complex number z such
that d(z,ZG (λ)) ≤ 1/R.

Corollary 1.4. Let ∆ ≥ 3 and λ ∈ CQ be such that λ < (Λ∆ ∪

R≥0). Then, #BipComplexHardCore(λ,∆) is #P-hard.

Note that our #P-hardness results for λ ∈ CQ\(Λ∆ ∪ R≥0) high-
light a difference in complexity between this case and the case

where λ is a rational satisfying λ > λc . If λ is a positive rational then
ZG (λ) can be efficiently approximated in polynomial time using an

NP oracle, via the bisection technique of Valiant and Vazirani [11].

Thus, in that case approximation is NP-easy, and is unlikely to be

#P-hard. The techniques for proving hardness also differ in the two

cases.

1.1 Proof Approach
To prove our inapproximability results, we construct graph gadgets

which, when appended appropriately to a vertex, have the effect

of altering the activity λ to any complex activity λ′ that we wish,
perhaps with some small error ϵ . In fact, it is essential for our #P-
hardness results to be able to make the error ϵ exponentially small

with respect to the number of the vertices in the graph (see the

upcoming Lemma 2.2 for details).

Interestingly, our constructions are based on using tools from

complex analysis for analysing the iteration of rational maps. We

start with the observation that (∆ − 1)-ary trees of height h can be

used to “implement” activities λ′which correspond to the iterates of
the complex rational map f : x 7→ 1

1+λx∆−1 . Crucially, we show that

when λ < Λ∆, all of the fixpoints of f are repelling, i.e., applying

the map f at any point close to a fixpoint ω will push us away from

the fixpoint. In the iteration of univariate complex rational maps,

repelling fixpoints belong to the so-called Julia set of the map; a

consequence of this is that iterating f in a neighbourhood U of a

repelling fixpoint gives rise to a chaotic behaviour: after sufficiently

many iterations, one ends up anywhere in the complex plane.

This sounds promising, but how can we get close to a repelling
fixpoint of f in the first place? In fact, we need to be able to create

arbitrary points in a neighbourhood U of a repelling fixpoint and

iterating f will not get us anywhere close (since the fixpoint is

repelling). The key is to use a Fibonacci-type construction which

requires analysing a more intricate multivariate version of the map

f . Surprisingly, we can show that the iterates of the multivariate

version converge to the fixpoint ω of the univariate f with the

smallest norm. Using convergence properties of the multivariate

map around ω (and some extra work), we obtain a family of (uni-

variate) contracting
2
maps Φ1, . . . ,Φt and a small neighbourhood

U aroundω such thatU ⊆ ∪ti=1Φi (U ). The final step is to show that

“contracting maps that cover yield exponential precision”. To do

this we first show that, starting from any point in U , we can apply

(some sequence of) Φ1, . . . ,Φt at most poly(n) times to implement

any point inU with precision exp(−Ω(n)). We then show that by

iteratively applying the univariate map f and carefully tracking

the distortion introduced, we can eventually implement any point

in the complex plane with exponentially small error.

2 PROOF OUTLINE
In this section, we give a more detailed outline of the proof of our

results. We focus mainly on the case where λ ∈ CQ\(Λ∆ ∪ R). In
Section 2.7 we describe suitable modifications that will give us the

ingredients needed for negative real values λ ∈ Q\Λ∆.

Let λ ∈ C and G = (V ,E) be an arbitrary graph. We denote by

IG the set of independent sets of G. For a vertex v ∈ V , we will
denote

Z in
G,v (λ) :=

∑
I ∈IG ;v ∈I

λ |I | , Zout
G,v (λ) :=

∑
I ∈IG ;v<I

λ |I | .

Thus, Z in
G,v (λ) is the contribution to the partition function ZG (λ)

from those independent sets I ∈ IG such that v ∈ I ; similarly,

Zout
G,v (λ) is the contribution to ZG (λ) from those I ∈ IG such that

v < I .

Definition 2.1. Fix a complex number λ that is not 0. Given λ,
the graph G is said to implement the activity λ′ ∈ C with accuracy
ϵ > 0 if there is a vertex v in G such that Zout

G,v (λ) , 0 and

(1) v has degree one in G, and

(2)

���Z in
G,v (λ)

Zout
G,v (λ)

− λ′ | ≤ ϵ .

We call v the terminal of G. If Item 2 holds with ϵ = 0, then G is

said to implement the activity λ′.

The key to obtaining our #P-hardness results is to show that,

given any target activity λ′ ∈ C, we can construct in polynomial

time a bipartite graph G that implements λ′ with exponentially

small accuracy, as a function of the size of λ′. More precisely, we

2
Let Φ : C→ C be a complex map. We say that Φ is contracting on a set S ⊆ C if there

exists a real numberM < 1 such that for all x, y ∈ S it holds that |Φ(x ) − Φ(y) | ≤
M |x − y |.
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use size(λ′, ϵ) to denote the number of bits needed to represent the

complex number λ′ ∈ CQ and the rational ϵ . The implementation

that we need is captured by the following lemma.

Lemma 2.2. Let ∆ ≥ 3 and λ ∈ CQ be such that λ < Λ∆ ∪ R.
There is an algorithm which, on input λ′ ∈ CQ and rational ϵ > 0,

outputs in poly(size(λ′, ϵ)) time a bipartite graph G of maximum
degree at most ∆ with terminal v that implements λ′ with accuracy
ϵ . Moreover, the algorithm outputs the values Z in

G,v (λ),Z
out
G,v (λ).

Lemma 2.2 is extremely helpful in our reductions since it enables

us to construct other gadgets very easily, e.g., equality gadgets that

reduce the degree of a graph and gadgets that can turn it into a

bipartite graph. The proofs of Theorems 1.1 and 1.2 show how to

use these gadget to obtain #P hardness. In this proof outline, we

focus on the most difficult part which is the proof of of Lemma 2.2.

To prove Lemma 2.2, we will make use of the following multi-

variate map:

(x1, . . . ,xd ) 7→
1

1 + λx1 · · · xd
, where d := ∆ − 1. (2)

If, starting from 1, there is a sequence of operations (2) which ends

with the value x , for the purposes of this outline, we will loosely say
that “we can generate the value x” (the notion is formally defined in

Definition 38 of the full version). There is a simple correspondence

between the values that we can generate and the activities that we

can implement: in Lemma 39 of the full version, we show that if

we can generate a value x , we can also implement the activity λx
using a tree of maximum degree ∆.3

To get some insight about the map (2), the first natural step is to

look at the univariate case x1 = . . . = xd = x , where the map (2)

simplifies into

f : x 7→
1

1 + λxd
.

Even analysing the iterates of this map is a surprisingly intricate

task; fortunately there is a rich theory concerning the iteration

of complex rational maps which we can use (though much less is

known in the multivariate setting!). In the next section, we review

the basic ingredients of the theory that we need, see [1, 6] for

detailed accounts on the subject.

2.1 Iteration of Complex Rational Maps
We will use Ĉ = C ∪ {∞} to denote the Riemann sphere (complex

numbers with infinity). To handle∞, it will be convenient to con-

sider the chordal metric d(·, ·) on the Riemann sphere Ĉ, which is

given for z,w ∈ C by

d(z,w) =
2|z −w |

(1 + |z |2)1/2(1 + |w |2)1/2
,

and d(z,∞) = limw→∞ d(z,w) = 2

(1+ |z |2)1/2
. Note that d(z,w) is

bounded by an absolute constant for all z,w ∈ Ĉ.

Let f : Ĉ→ Ĉ be a complex rational map, i.e., f (z) = P(z)/Q(z)
for some coprime polynomials P ,Q . We define f (∞) as the limit of

f (z) when z → ∞. The degree of f is the maximum of the degrees

3
Note the extra factor of λ when we pass to the implementation setting which is to

ensure the degree requirement in Item 1 of Definition 2.1; while the reader should not

bother at this stage with this technical detail, the statements of our lemmas are usually

about implementing activities and therefore have this extra factor λ incorporated.

of P ,Q . A point p ∈ C is called a pole of f if Q(p) = 0; when p = ∞,

p is a pole of f if 0 is a pole of f (1/z).
Suppose that z∗ ∈ C is a fixpoint of f , i.e., f (z∗) = z∗. The

multiplier of f at z∗ is given by q = f ′(z∗). If z∗ = ∞, the multiplier

of f at z∗ is given by 1/f ′(∞). Depending on the value of |q |,
the fixpoint z∗ is classified as follows: (i) attracting if |q | < 1, (ii)

repelling if |q | > 1, and (iii) neutral if |q | = 1.

For a non-negative integern ≥ 0, we will denote by f n then-fold

iterate of f (for n = 0, we let f 0 be the identity map). Given z0 ∈ Ĉ,
the sequence of points {zn } defined by zn = f (zn−1) = f n (z0) is
called the orbit of z0.

Given a rational map f : Ĉ→ Ĉ, we will be interested in the sen-

sitivity of an orbit under small perturbations of the starting point.

A point z0 belongs to the Fatou set if, for every ϵ > 0 there exists

δ > 0 such that, for any point z′ with d(z′, z0) ≤ δ , it holds that
d(f n (z′), f n (z0)) ≤ ϵ for all positive integer n (in other words, z0
belongs to the Fatou set if the family of maps { f n }n≥1 is equicon-
tinuous at z0 under the chordal metric). A point z0 belongs to the

Julia set if z0 does not belong to the Fatou set (i.e., the Julia set is

the complement of the Fatou set).

Lemma 2.3 (e.g., [6, Lemma 4.6]). Every repelling fixpoint belongs
to the Julia set.

For z ∈ Ĉ, the grand orbit [z] is the set of points z′ whose orbit
intersects the orbit of z, i.e., for every z′ ∈ [z], there exist integers
m,n ≥ 0 such that fm (z) = fm (z′). The exceptional set of the map

f is the set of points z whose grand orbit [z] is finite. It turns out
that the exceptional set of a rational map f can have at most two

points and, in our applications, it will in fact be empty (see Lemma

23 of the full version for details).

For z0 ∈ C and r > 0, we use B(z0, r ) to denote the ball of radius

r around z0. A setU is a neighbourhood of z0 ifU contains a ball

B(z0, r ) for some r > 0. We will use the following fact.

Theorem 2.4 (see, e.g., [6, Theorem 4.10]). Let f : Ĉ → Ĉ be
a complex rational map with exceptional set Ef . Let z0 be a point in
the Julia set and letU be an arbitrary neighbourhood of z0. Then, the
union of the forward images of U , i.e., the set

⋃
n≥0 f

n (U ), contains
Ĉ\Ef .

Peters and Regts [8] used a version of Theorem 2.4 to conclude

the existence of trees T and λ’s close to the boundary of Λ∆ such

that ZT (λ) = 0. We will use Theorem 2.4 as a tool to get our #P-
hardness results for any λ outside the cardioid Λ∆.

2.2 A Characterisation of the Cardioid
To use the tools from the previous section, we will need to analyse

the fixpoints of the map f (z) = 1

1+λz∆−1 . We denote by ϑΛ∆ the

following curve (which is actually the boundary of the region Λ∆

defined in (1))
4
:

ϑΛ∆ =
{
λ ∈ C

��∃z ∈ C : |z | = 1/(∆ − 1), λ =
z

(1 − z)∆

}
. (3)

The following lemma is proved in Section 4 of the full version.

4
The fact that the curve ϑΛ∆ , as defined in (3), is the boundary of the region Λ∆

(defined in (1)) is shown in Footnote 4 of the full version.
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Lemma 2.5. Let ∆ ≥ 3 and consider the map f (z) = 1

1+λz∆−1 for
λ ∈ C. Then,

(1) For all λ ∈ Λ∆\ϑΛ∆, f has a unique attractive fixpoint; all
other fixpoints are repelling.

(2) For all λ ∈ ϑΛ∆, f has a unique neutral fixpoint; all other
fixpoints are repelling.

(3) For all λ < Λ∆, all of the fixpoints of f are repelling.

2.3 Applying the Theory
We are now in a position to discuss in detail how to apply the tools

of Section 2.1 and the result of Section 2.2.

Let λ ∈ CQ\(Λ∆ ∪ R). By Lemma 2.5, all of the fixpoints of

the map f (z) = 1

1+λz∆−1 are repelling. By Lemma 2.3, all of the

repelling fixpoints belong to the Julia set of the map, and therefore,

by applying Theorem 2.4, iteratively applying f to a neighbourhood
U of a repelling fixpoint gives the entire complex plane. Therefore, if

we want to generate an arbitrary complex value λ′ ∈ C, it suffices to

be able to generate values in a neighbourhoodU close to a repelling

fixpoint of f . Of course, in our setting we will also need to do this

efficiently, up to exponential precision. The following lemma is

therefore the next important milestone. It formalises exactly what

we need to show in order to be able to prove Lemma 2.2.

Lemma 2.6. Let ∆ ≥ 3 and λ ∈ CQ \ R, and set d := ∆ − 1. Let
ω be the fixpoint of f (x) = 1

1+λxd
with the smallest norm.5 There

exists a rational ρ > 0 such that the following holds.
There is a polynomial-time algorithm such that, on input λ′ ∈

B(λω, ρ)∩CQ and rational ϵ > 0, outputs a bipartite graphG of max-
imum degree at most ∆ with terminalv that implements λ′ with accu-
racy ϵ . Moreover, the algorithm outputs the values Z in

G,v (λ),Z
out
G,v (λ).

To briefly explain why Lemma 2.2 follows from Lemma 2.6, we

first show how to use Lemma 2.6 to implement activities λx∗ where

x∗ is close to a pole p of f (i.e., a point p which satisfies 1 + λpd =
0). For some r > 0, let U be the ball B(ω, r ) of radius r around

ω. Using Theorem 2.4, we find the first integer value of N > 0

such that a pole p∗ belongs to f N (U ); in fact, we can choose r
(see Lemma 29 of the full version) so that there exists a radius

r∗ > 0 such that B(p∗, r∗) ⊆ f N (U ). The idea of “waiting till we

hit the pole of f ” is that, up to this point, the iterates of f satisfy

Lipschitz inequalities, i.e., it can be shown that there exists a real

number L > 0 such that | f N (x1) − f N (x2)| ≤ L|x1 − x2 | for all
x1,x2 ∈ U . Therefore, for any desired target x∗ ∈ B(p∗, r∗) we can
find w∗ ∈ U such that f N (w∗) = x∗ and implement λw∗

using

Lemma 2.6 with accuracy ϵ > 0; due to the Lipschitz inequality,

this yields an implementation of λx∗ with accuracy at most λLϵ ,
i.e., just a constant factor distortion. Once we are able to create

specified activities close to λp∗ where p∗ is a pole of f , it is then
possible to first implement activities λ′with large norm by plugging

appropriate x close to p∗ in f (x) = 1

1+λxd
; in turn, this can be then

used to implement activities λ′ with small norm and finally, λ′ with
moderate value of |λ′ | as well. See the proof of Lemma 2.2 in Section

5.3 of the full version for more details.

5
Note, by Lemma 25 in the full version, all the fixpoints of f have different norms for

λ ∈ CQ \ R, so ω is well-defined.

2.4 Chasing Repelling Fixpoints
In this section, we focus on the proof of Lemma 2.6, whose proof

(given in Section 7 of the full version) requires us to delve into the

analysis of the multivariate map

(x1, . . . ,xd ) 7→
1

1 + λx1 · · · xd
, where d := ∆ − 1. (2)

Recall, in the scope of proving Lemma 2.6, our goal is to generate

points close to a repelling fixpoint of the map f : x 7→ 1

1+λxd
.

Since λ is outside the cardioid region Λ∆, the fixpoints of the map

f are repelling and therefore we cannot get close to any of them by

just iterating f . Can the multivariate map make it easier to get to a

fixpoint of f ? The answer to the question is yes, as the following

lemma asserts.

Lemma 2.7. Let ∆ ≥ 3 and λ ∈ C \R, and set d := ∆ − 1. Let ω be
the fixpoint of f (x) = 1

1+λxd
with the smallest norm. For k ≥ 0, let

xk be the sequence defined by

x0 = x1 = · · · = xd−1 = 1, xk =
1

1 + λ
∏d

i=1 xk−i
for k ≥ d .

(4)

Then, the sequence xk is well-defined (i.e., the denominator of (4) is
nonzero for all k ≥ d) and converges to the fixpoint ω as k → ∞.
Moreover, there exist infinitely many k such that xk , ω.

Note, Lemma 2.5 gurarantees that the fixpoint ω in Lemma 2.7 is

repelling when λ ∈ C\(Λ∆ ∪ R), so Lemma 2.7 indeed succeeds in

getting us glose to a repelling fixpoint in this case. It is instructive at

this point to note that the sequence in (4) corresponds to a Fibonacci-

type tree construction T0, . . . ,Tk , where for k ≥ d tree Tk consists

of a root r with subtrees Tk−d , . . . ,Tk−1 rooted at the children

of r . The trees Tk−d , . . . ,Tk−1 generate the values xk−d , . . . ,xk−1,
respectively, and the tree Tk generates the value xk .

Analysing the behaviour of multivariate recurrences such as

the one in (4) is typically an extremely complicated task and the

theory for understanding such recurrences appears to be still under

development. Fortunately, the recurrence (4) can be understood

in a surprisingly simple way by using the linear recurrence Rk
defined by R0 = · · · = Rd = 1 and Rk+1 = Rk + λRk−d for all k ≥ d ,
and observing that xk = Rk/Rk+1 for all k . By interpreting Rk as

the independent set polynomial of a claw-free graph evaluated at

λ ∈ C\R, we obtain using a result of Chudnovsky and Seymour

[2] that Rk , 0. The detailed proof of Lemma 2.7 can be found in

Section 7.1 of the full version.

2.5 Exponential Precision via Contracting
Maps that Cover

Lemma 2.7 resolves the intriguing task of getting close to a repelling

fixpoint ω of the univariate map when λ ∈ C\(Λ∆ ∪ R). But in the

context of Lemma 2.6 we need to accomplish far more: we need

to be able to generate any point which is in some (small) ball U
around the fixpoint ω, with exponentially small error ϵ .

To do this, we will focus on a small ball U around ω, i.e., U =
B(ω,δ ) for some sufficiently small δ > 0, and we will examine

how the multivariate map (2) behaves when x1, . . . ,xd ∈ U . In

particular, we show in Lemma 46 of the full version that for any
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choice of x1, . . . ,xd ∈ U it holds that

1

1 + λx1 · · · xd
≈ ω + z

(
(x1 − ω) + . . . + (xd − ω)

)
, (5)

where z satisfies 0 < |z | < 1 and z ∈ C\R. The important observa-

tion is that once we fix x1, . . . ,xd−1 ∈ B(ω,δ ), the resulting map Φ
is contracting with respect to the remaining argument xd (in the

vicinity ofω) — see Lemma 48 of the full version for a more detailed

treatment of this contraction.

The observation that Φ is contracting will form the basis of our

approach to iteratively reduce the accuracy with which we need

to generate points (by going backwards): if we need to generate a

desired x ∈ U with error at most ϵ it suffices to be able to generate

Φ−1(x) with error at most ϵ/|z | > ϵ , i.e., to generate x with good

accuracy, we only need to do the easier task of generating the point

Φ−1(x) with less restrictive accuracy. The only trouble is that, if

we use a single map Φ, after a few iterations of the process the

preimage Φ−1(x) will eventually escape U . To address this, note

that in the construction of the map Φ above, we had the freedom to

choose arbitrary x1, . . . ,xd−1 ∈ B(ω,δ ). We will make use of this

freedom and, in particular, we will use a family of contracting maps

Φ1, . . . ,Φt (for some large constant t ) instead of a single map Φ;
the large number of maps will allow us to guarantee that for all

x ∈ U , at least one of the preimages Φ−1
1
(x), . . . ,Φ−1

t (x) belongs in
U , i.e., that the images Φ1(U ), . . . ,Φt (U ) coverU . We will discuss

in Section 2.6 how to obtain the maps Φ1, . . . ,Φt , but first let us
formalise the above into the following lemma, which is the basis of

our technique for making the error exponentially small.

Lemma 2.8. Let z0 ∈ CQ, r > 0 be a rational and U be the ball
B(z0, r ). Further, suppose that λ′

1
, . . . , λ′t ∈ CQ are such that the

complex maps Φi : z 7→ 1

1+λ′iz
with i ∈ [t] satisfy the following:

(1) for each i ∈ [t], Φi is contracting on the ballU ,
(2) U ⊆

⋃t
i=1 Φi (U ).

There is an algorithm which, on input (i) a starting point x0 ∈ U ∩

CQ, (ii) a target x ∈ U ∩ CQ, and (iii) a rational ϵ > 0, outputs
in poly(size(x0,x , ϵ)) time a number x̂ ∈ U ∩ CQ and a sequence
i1, i2, . . . , ik ∈ [t] such that

x̂ = Φik (Φik−1 (· · ·Φi1 (x0) · · · )) and |x̂ − x | ≤ ϵ .

The proof of Lemma 2.8 can be carried out along the lines we

sketched above, see Section 5.1 of the full version for details. In that

section, we also pair Lemma 2.8 with a path construction which,

given the sequence of indices i1, . . . , ik , returns a path of length

k that implements λx̂ (cf. footnote 3 for the extra factor of λ), see
Lemma 27 of the full version for details.

2.6 Constructing the Maps
We next turn to the last missing piece, which is to create the maps

Φ1, . . . ,Φt which satisfy the hypotheses of Lemma 2.8 in a ball

U = B(ω,δ ) around the fixpoint ω for some small radius δ > 0

(note, we are free to make δ as small as we wish). The following

notions of “covering” and “density” will be relevant for this section.

Definition 2.9. Let U ⊆ C. A set F ⊆ U is called an ϵ-covering
of U if for every x ∈ U there exists y ∈ F such that |x − y | ≤ ϵ . A
set F ⊆ U is called dense inU if F is an ϵ-covering ofU for every

ϵ > 0.

We have seen in Section 2.5 that, for arbitrary x1, . . . ,xd ∈ U ,

we have

1

1 + λx1 · · · xd
≈ ω + z

(
(x1 − ω) + . . . + (xd − ωd )

)
, (5)

where z satisfies 0 < |z | < 1 and z ∈ C\R. We also discussed

that, if we fix arbitrary x1, . . . ,xd−1 ∈ U , the resulting map Φ(x) =
1

1+(λx1 · · ·xd−1)x
is contracting in U for all sufficently small δ > 0,

and therefore we can easily take care of the contraction properties

that we need (in the context of Lemma 2.8). The more difficult part

is to control the preimage of the map Φ. We show in Lemma 47 of

the full version that for x ,x1, . . . ,xd−1 ∈ U , it holds that

Φ−1(x) =
1

λx1 · · · xd−1

(
1

x
− 1

)
≈ ω +

(x − ω

z
−

d−1∑
j=1

(x j − ω)
)
.

Therefore to ensure that Φ−1(x) belonds toU = B(ω,δ ) we need to

ensure that x1, . . . xd−1 are such that���x − ω

z
−

d−1∑
j=1

(x j − ω)
��� < δ/2. (6)

Note that by Lemma 2.7 we can generate points arbitrarily close

to ω and hence we can make each of x2 −ω, . . . ,xd−1 −ω so small

that they are effectively negligible in (6); then, to be able to satisfy

(6), we need to be able to choose x1 so that |(x − ω)/z − (x1 − ω)|
is small, say less than δ/4. Since |(x − ω)/z | ≤ δ/|z |, the key will

therefore be to produce a (δ/4)-covering of the slightly enlarged

ball B(ω,δ/|z |). Then, we can take x1 to be one of the points in the

(δ/4)-covering.
We will in fact show the following slightly more general lemma,

which guarantees that we can indeed generate the required points

around ω for any desired precision ϵ > 0 provided that we choose

δ small enough (and can therefore implement activities around

λω). Note that the lemma can be viewed as a “relaxed" version of

Lemma 2.6 with much weaker guarantees.

Lemma 2.10. Let ∆ ≥ 3 and λ ∈ CQ \ R, and set d := ∆ − 1. Let
ω be the fixpoint of f (x) = 1

1+λxd
with the smallest norm. For any

ϵ,κ > 0 there exists a radius ρ ∈ (0,κ) such that the following holds.
For every λ′ ∈ B(λω, ρ), there exists a tree G of maximum degree at
most ∆ that implements λ′ with accuracy ρϵ .

But how can we “populate” the vicinity of ω, i.e., generate a

covering of a ballU = B(ω,δ )? Lemma 2.7 only gives us that we can

generate points arbitrarily close to ω. The key once again is to use

the multivariate map around ω and, in particular, the perturbation

estimate in the r.h.s of (5). To focus on the displacement from ω,
we will use the transformation ai = xi − ω so that (5) translates

into the following operation

(a1, . . . ,ad ) 7→ z(a1 + · · · + ad ),

i.e., if we have generated points which are displaced by a1, . . . ,ad
from ω, we can also generate a point which is roughly displaced by

z(a1 + · · · + ad ) from ω; we will only need to apply the operation a

finite number of times, so the error coming from (5) will not matter

critically and can be ignored in the following. We show in Lemma

45 of the full version that, using a sequence of such operations,

we can generate points of the form ω + zN (p)p(z) where p is an
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arbitrary polynomial with non-negative integer coefficients and

N (p) is a positive integer which is determined by the number of

operations we used to create p. We further show in Lemma 42

of the full version, that for all z ∈ C\R with |z | < 1, the values

p(z), as p ranges over all polynomials with non-negative integer

coefficients, form a dense set of C. Therefore, to obtain Lemma 2.10,

we can choose an ϵ-covering F of the unit disc using a finite set

of values p(z) and set δ = zN where N = maxp∈F N (p); then, we
can generate the points ω + δp(z) for every p ∈ F , which form an

(ϵδ )-covering of the ball U = B(ω,δ ), yielding Lemma 2.10. The

full proof is in Section 7.2 of the full version.

2.7 Fitting the Pieces Together and Proof for
the Real Case

We briefly summarise the proof of Lemma 2.6. First, we get points

close to a repelling fixpoint by showing Lemma 2.7 (discussed in

Section 2.4 and proved in Section 7.1 of the full version). Then, we

bootstrap this into a moderately dense set of points around the

fixpoint, yielding Lemma 2.10 (discussed in Section 2.6 and proved

in Section 7.2). Further, we bootstrap this into exponential preci-

sion around the fixpoint using Lemma 2.8 (discussed in Section 2.5

and proved in Section 7.3). Finally, we propagate this exponential

precision to the whole complex plane, therefore yielding Lemma 2.6

(discussed in Section 2.3 and proved in Section 5.3).

Finally, we mention the modifications needed for the real case

when λ < −λ∗. The following lemma is the analogue of Lemma 2.2

and allows us to implement real activities with exponential preci-

sion.

Lemma 2.11. Let ∆ ≥ 3 and λ ∈ Q be such that λ < −λ∗.
There is an algorithm which, on input λ′, ϵ ∈ Qwith ϵ > 0, outputs

in poly(size(λ′, ϵ)) time a bipartite graph G of maximum degree at
most ∆ with terminalv that implements λ′ with accuracy ϵ . Moreover,
the algorithm outputs the values Z in

G,v (λ),Z
out
G,v (λ).

As in the complex case, we will need a moderately dense set of

activities to get started, i.e., an analogue of Lemma 2.10; here, our

job is somewhat simplified (relative to the case where λ ∈ C\R)
since we can use the following result of [3] .

Lemma 2.12 ([3, Lemma 4]). Let ∆ ≥ 3 and λ < −λ∗. Then, for
every λ′ ∈ R, for every ϵ > 0, there exists a bipartite graph G of
maximum degree at most ∆ that implements λ′ with accuracy ϵ .

Note that Lemma 2.12 does not control the size of the graph

G with respect to the accuracy ϵ , so it does not suffice to prove

Lemma 2.11 on its own. In order to do this, we use the “contracting

maps that cover” technique to get the exponential precision, i.e.,

the analogue of Lemma 2.8 restricted to the reals (see Lemma 26 of

the full version). The proof of Lemma 2.11 is completed in Section

5.2 of the full version.

Once the proofs of Lemmas 2.2 and 2.11 are in place, we give the

proofs of our #P-hardness results in Section 6 of the full version.
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