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Abstract

We study the mixing properties of the single-site
Markov chain known as the Glauber dynamics for sam-
pling k-colorings of a sparse random graph G(n, d/n)
for constant d. The best known rapid mixing results for
general graphs are in terms of the maximum degree ∆
of the input graph G and hold when k > 11∆/6 for all
G. Improved results hold when k > α∆ for graphs with
girth ≥ 5 and ∆ sufficiently large where α ≈ 1.7632 . . .
is the root of α = exp(1/α); further improvements on
the constant α hold with stronger girth and maximum
degree assumptions.

For sparse random graphs the maximum degree is a
function of n and the goal is to obtain results in terms
of the expected degree d. The following rapid mixing
results for G(n, d/n) hold with high probability over
the choice of the random graph for sufficiently large
constant d. Mossel and Sly (2009) proved rapid mixing
for constant k, and Efthymiou (2014) improved this to
k linear in d. The condition was improved to k > 3d by
Yin and Zhang (2016) using non-MCMC methods.

Here we prove rapid mixing when k > αd where
α ≈ 1.7632 . . . is the same constant as above. More-
over we obtain O(n3) mixing time of the Glauber dy-
namics, while in previous rapid mixing results the ex-
ponent was an increasing function in d. Our proof ana-
lyzes an appropriately defined block dynamics to “hide”
high-degree vertices. One new aspect in our improved
approach is utilizing so-called local uniformity proper-
ties for the analysis of block dynamics. To analyze the
“burn-in” phase we prove a concentration inequality
for the number of disagreements propagating in large
blocks.
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1 Introduction

Sampling from Gibbs distributions is an important
problem in many contexts. For example, in theoretical
computer science sampling algorithms are often the key
element in approximate counting algorithms, in statisti-
cal physics Gibbs distributions describe the equilibrium
state of large physical systems, and in statistics they are
used for Bayesian inference. In this paper we focus on
random colorings, which are an example of a spin sys-
tem, corresponding to the zero-temperature limit of the
anti-ferromagnetic Potts model. The natural combina-
torial structure of colorings makes it a nice testbed for
studying connections to statistical physics phase transi-
tions and its study has led to many new techniques.

Given a graph G = (V,E) of maximum degree ∆
and a positive integer k, can we generate a random k-
coloring of G in time polynomial in n = |V |? To be
precise, let Ω = ΩG denote the set of proper vertex
k-colorings of G, and let π denote the uniform dis-
tribution over Ω. Our goal is to obtain an FPAUS
(fully polynomial-time approximate uniform sampling
scheme) for sampling from π: given δ > 0 in time
poly(n, log(1/δ)) generate a coloring X from a distri-
bution µ which is within variation distance ≤ δ of the
uniform distribution π.

The Glauber dynamics is a simple and well-studied
algorithm for sampling colorings, and more generally,
for spin systems it is of particular interest as a model
of how a physical system approaches equilibrium. The
dynamics is the following single-site spin update Markov
chain (Xt) with state space Ω. We present here the
heat-bath version, but our results are robust and hold
for other versions as well. The Markov chain (Xt) has
the following transitions Xt → Xt+1: from Xt, choose a
random vertex v, and a random color c not appearing in
the current neighborhood of v, i.e., from [k]\Xt(N(v)).
Update v to the new color by setting Xt+1(v) = c, and
keep the coloring the same on the rest of the graph
Xt+1(w) = Xt(w) for all w 6= v.

The dynamics is ergodic whenever k ≥ ∆ + 2
where ∆ is the maximum degree of the input graph G,
and hence since it is symmetric its unique stationary
distribution π is uniform over Ω [22]. We measure the
convergence time to the stationary distribution by the
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mixing time, which is the minimum number of steps
T , from the worst initial state X0, to ensure that the
distribution XT is within variation distance ≤ 1/4 of
the uniform distribution π. Our aim is to show that the
mixing time is polynomial in n, the size of G, in which
case we say that the dynamics is rapidly mixing. When
the mixing time is exponential in nΩ(1) then we say the
dynamics is torpidly mixing.

The study of Gibbs sampling has yielded many
beautiful results, we survey the relevant results for the
colorings problem here. The natural conjecture is that
whenever k ≥ ∆ + 2 then the Glauber dynamics is
rapidly mixing. The minimal evidence in favor of the
conjecture is that uniqueness, which is a weak form
of decay of correlations, holds on infinite ∆-regular
trees [23]. On the hardness side, [15] showed that
the dynamics is torpid mixing on random bipartite, ∆-
regular graphs for even k when k < ∆; more generally,
in this regime the approximate counting problem is
NP-hard (unless NP=RP) on triangle-free graphs of
maximum degree ∆. On the positive side, the best
known result for general graphs is O(n log n) mixing
time for k > 2∆ [22] and O(n2) for k > 11

6 ∆ [34].
Further improvements were made with various as-

sumptions about the graph such as girth or maximum
degree. Dyer and Frieze [8] utilized properties of the
stationary distribution, later termed local uniformity
properties, to prove rapid mixing on graphs with max-
imum degree ∆ = Ω(log n) and girth g = Ω(log∆)
when k > (1 + ε)α∆ where α ≈ 1.763... is the root
of α = exp(1/α). The girth and maximum degree as-
sumptions were further improved by Dyer et al. [9] to
girth g ≥ 5 and ∆ > ∆0 where ∆0 = ∆0(ε) is a suf-
ficiently large constant. Further improvements on the
constant α were made in [29, 25, 9, 21] with stronger
girth and maximum degree assumptions; however, as
we’ll outline later these improvements required more
sophisticated local uniformity properties which neces-
sitated the stronger conditions and more complicated
arguments. This same threshold α∆ appeared in the
work of Goldberg, Martin and Paterson [17] who proved
a strong form of decay of correlations on triangle-free
graphs when k > α∆, which implied rapid mixing for
amenable graphs. We utilize similar local uniformity
properties to [17, 8, 19, 9, 21] and naturally the con-
stant α arises in our work.

An intriguing case to study in this context are
sparse random graphs, namely Erdös-Rényi random
graphs G(n, d/n) for constant d > 1. Sampling from
Gibbs distributions induced by instances of G(n, d/n),
or, more generally, instances of so-called random con-
straint satisfaction problems, is at the heart of re-
cent endeavors to investigate connections between phase

transition phenomena and the efficiency of algorithms
[1, 5, 24, 16, 32].

Whereas the rapid mixing results for general graphs
bound k in terms of the maximum degree ∆, on
the other hand for sparse random graphs G(n, d/n)
it is natural to bound k it terms of the expected
degree d. This is a substantial difference since typical
instances of G(n, d/n) have maximum degree as large
as Θ(log n/ log log n), while the expected degree d is
constant (i.e., independent of n). To this end, for
deriving our results, it is necessary to argue about the
statistical properties of the underlying graph.

The performance of the Glauber dynamics has been
studied in statistical physics using sophisticated tools,
but mathematically non-rigorous. In particular, in
[24] it is conjectured that rapid mixing holds in the
uniqueness region and hence it should hold for k ≥ d+2.
Moreover, it is conceivable that there is a weak form
of a sampler down to the clustering threshold at k ≈
d/ log d [1].

The first results in this context were by Dyer et
al. [7] who proved rapid mixing of an associated
block dynamics when k = Ω(log logn/ log log log n). A
significant improvement was made by Mossel and Sly
[30] who established rapid mixing for a constant number
of colors k (though k was polynomially related to d).
This was further improved in [10] to reach k which is
linear in d, namely k > 11

2 d. Recently, a non-Markov
chain FPAUS was presented for colorings that requires
k > 3d + O(1) [35]; however this did not imply any
guarantees on the behavior of the Glauber dynamics.
We note that a significantly weaker form of a sampler
was presented for the case k ≥ (1+ ε)d for all ε > 0 [11];
this only obtains a weak approximation depending on n,
whereas an FPAUS allows arbitrary close approximation.

We further improve rapid mixing results for sparse
random graphs. What is especially notable in our
results is that the threshold on k/d is now comparable
to those on general graphs for k/∆. Our main result is
rapid mixing of the Glauber dynamics on sparse random
graphs when k > αd.

Theorem 1.1. Let α ≈ 1.763... denote the root of
α = exp(1/α). For all ε > 0, there exists d0, for all
d > d0, for k ≥ (α + ε)d, with probability 1− o(1) over
the choice of G ∼ G(n, d/n), the mixing time of the
Glauber dynamics is O(n2+1/(log d)).

From an algorithmic perspective, we have to con-
sider how to get the initial configuration of the dynam-
ics. We use the well-known polynomial time algorithm
by Grimmett and McDiarmid [18], which k-colors typ-
ical instances of G(n, d/n) for any k > d/ log d. Note
that αd� d/ log d.
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Previous results for the Glauber dynamics on sparse
random graphs [30, 10] implied polynomial mixing time
but the exponent was an increasing function of d;
similarly for the running time of the sampler presented
in [35]. Here we get a fixed polynomial. This results
from an improved comparison argument which utilizes
a more detailed analysis of the star graph.

The previous results [7, 30, 10] for sparse random
graphs (as does our work) use arguments about the sta-
tistical properties of the underlying graph, for example,
the distribution of high-degree vertices. To achieve a
bound below 2d we also need to argue about the sta-
tistical properties of random colorings as well; that is,
what does a typical coloring of G(n, d/n) look like. This
poses new challenges in the analysis of the Glauber dy-
namics as it requires a meticulous study of its behavior
when it starts from a pathological coloring, see further
details in Section 4.1.

The first step in our analysis is defining an appro-
priate block dynamics; the use of the block dynamics
was also done in previous results on random graphs
[7, 30, 10]. The block dynamics partitions the vertex set
V into disjoint blocks V = B1 ∪B2 ∪ · · · ∪BN . In each
step we choose a random block and recolor that block
(uniformly at random conditional on the fixed coloring
outside the chosen block). After proving rapid mixing
of the block dynamics, rapid mixing of the Glauber dy-
namics will follow by a comparison argument, see in the
full version [36], Section M.

The key insight is to use the blocks to “hide” high
degree vertices deep inside the blocks. By high degree
we mean a vertex of degree > (1 + δ)d for a small
constant δ, and the remaining vertices are classified as
low degree. The blocks are designed so that from a high
degree vertex there is a large buffer of low degree vertices
to the boundary of the block. In addition, each block
is a tree (or unicyclic). Our block construction builds
upon ideas from [10] which assigns appropriate weights
on the paths of G(n, d/n) to distinguish which vertices
can be used at the boundary of the blocks. For more
details regarding the block construction see Section 2.

Our first progress is to achieve rapid mixing when
k > 2d. Even if the maximum degree was ∆ it
was unclear how to extend Jerrum’s [22] classic k >
2∆ approach to directly analyze the block dynamics,
as opposed to the Glauber dynamics. That is our
first contribution: we present a new metric for the
configuration space so that path coupling applies to
establish rapid mixing when k > 2∆ for the block
dynamics with “simple” blocks, see Section 3 for more
details. From there it is straightforward to extend to
random graphs with expected degree d when k > 2d
(though technically it requires considerable work to deal

with the high degree vertices).
To improve the result from 2d to 1.763...d we utilize

the so-called local uniformity properties, in particular
the lower bound on available colors as in [17, 8, 19, 9].
The idea is that whereas a worst case coloring has
∆ colors in the neighborhood of a particular v (we’re
considering the case of a graph with maximum degree ∆
for simplicity) and hence k−∆ “available” colors, after
a short burn-in period in the coloring (Xt) we are likely
to have k(1 − 1/k)∆ ≈ k exp(−∆/k) available colors
for v. Our approach for establishing local uniformity is
similar in spirit to that in [8].

Our challenge is that while we are burning-in to
obtain this local uniformity property, we need that
the initial disagreement does not spread too far. For
this we need a concentration bound on the spread of
disagreements within a block. To do that we utilize
disagreement percolation, which is now a standard tool
in the analysis of Markov chains and statistical physics
models. This is one of the key technical contribution of
our work, see Section 4.1 for further discussion.

Concluding, we remark that our techniques find
application to other models on G(n, d/n). For example
in the full version in [36], we prove a rapid mixing result
for the so-called hard-core model with fugacity λ. Our
result improves the previous best bound, in terms of λ,
in [10] by a factor 2.

Outline of paper: In Section 2 we introduce the blocks
dynamics for which we show rapid mixing. Then, our
main theorem (Theorem 1.1) for the Glauber dynamics
follows from rapid mixing of the block dynamics via a
comparison argument. In Section 3 we give an overview
of how we obtain rapid mixing for k > 2d for the block
dynamics by introducing a new metric for the space of
configurations. In Section 4 we discuss the improved
k > 1.763...d bound, focusing on utilizing the local
uniformity properties and the analysis of the burn-in
phase.

Notation: We will define a block dynamics with a
disjoint set of blocks B = {B1 ∪ · · · ∪BN}. For a block
B ∈ B, denote its outer and inner boundaries as

∂outB := {y ∈ V : y /∈ B and ∃z ∈ B s.t. (y, z) ∈ E},
∂inB := {z ∈ V : z ∈ B and ∃y /∈ B s.t. (y, z) ∈ E}.

For the collection B we will look at the union of the
outer boundaries, or equivalently the union of the inner
boundaries, namely:

∂B :=
⋃
B∈B ∂outB =

⋃
B∈B ∂inB.

The degree of vertex v is denoted as deg(v), and its set
of neighbors is denoted by N(v). Similarly, for a block
B ∈ B, the neighboring blocks are denoted as N(B).
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2 Rapid mixing for Block Dynamics

As mentioned earlier, to prove Theorem 1.1 we will
prove rapid mixing of a corresponding block dynamics
on G(n, d/n) and then we employ a standard compar-
ison argument [27]. That is, we bound the relaxation
time for the Glauber dynamics in terms of the relax-
ation time of the block dynamics and the relaxation
time of the Glauber dynamics within a single block.
Since the blocks are trees (or unicyclic) our approach
requires studying the mixing rate of the Glauber dy-
namics on highly non-regular trees and we do so in a
manner similar to [26, 33]. We provide some, we be-
lieve non-trivial, bounds on the relaxation times of a
star-structured block dynamics. We refer the interested
reader to Section M of the full version of our work in
[36] for the argument.

First we describe how we create the blocks for the
dynamics. For this we need use a weighting schema
similar to [10]. Assume that we are a given a graph
G = (V,E) of maximum degree ∆. We specify weights
for the vertices of G. There are two parameters, ε > 0
and d > 0. We let d̂ = (1 + ε/6)d denote the threshold
for “low/high” degree vertices. For each vertex u ∈ V
we define its weight W (u) as follows:

(2.1) W (u) =

{
(1 + ε/10)

−1
if deg(u) ≤ d̂

d15 deg(u) otherwise.

The weighting assigns low-degree vertices, namely
those with degree ≤ d̂, a weight < 1, whereas high-
degree vertices have weight� 1 which is proportional to
their degree. Given the vertex weights in (2.1) for each
path P in G we specify weights, too. More specifically,
for each path P = u1, . . . , u` in G define its weight
W (P) as the product of the vertex weights:

(2.2) W (P) =
∏̀
i=1

W (ui).

We use the above weighting schema to specify the blocks
for our dynamics. Of particular interest are the vertices
v for which all of the paths that emanate from v are of
low weight. Given some integer r ≥ 0, a vertex v is
called a “r-breakpoint” if the following holds:

For every path P of length at most r

that starts at v it holds that W (P) ≤ 1.

The breakpoints are particularly important for our
block construction as we use them to specify the bound-
ary of the blocks. Intuitively, choosing large r, for a
r-breakpoint we have that high degree vertices are far
from it.

We say that the graph G, of maximum degree
at most ∆, admits a “sparse block partition” B =
B(ε, d,∆), for some ε, d > 0, if B has the following
properties: Each block B ∈ B is a tree with at
most one extra edge. Each vertex u which is at
the outer boundary of multivertex block B, can only
have one neighbour inside B. More importantly, u is
at a sufficiently large distance from the high degree
vertices in B as well as the cycle in B (if any). This
roughly translates to u being an r-breakpoint for large
r. Finally, u does not belong to any too short cycle,
i.e. of length < d2. To be more specific we have the
following:

Definition 1. (Sparse block partition) For ε >
0, d > 0 and ∆ > 0, consider a graph G = (V,E)
of maximum degree at most ∆. We say that G admits
a “sparse block partition” B = B(ε, d,∆) if V can
be partitioned into the set of blocks B for which the
following is true:

1. Every B ∈ B is a tree with at most one extra edge.

2. Each vertex v in the outer boundary of a multi-
vertex block B has the following properties:

(a) the vertex v is a r-breakpoint, where r ≥
max{diam(B), log log n},

(b) v has exactly one neighbor inside B,

(c) if B contains a cycle C, then dist(v, C) ≥
max

{
2 log(|C| ∆), log log d

log d (|C|+ log∆)
}

3. Each vertex u ∈ ∂outB, for any B ∈ B, does not
belong to any cycle of length < d2.

To give an idea how such a partition looks like, we
consider the case of G(n, d/n). There, the sparse block

partition “hides” the large degree vertices, i.e., > d̂,
deep inside the blocks, and similarly the cycles of length
< d−2/5 log n. For the high degree requirement we use
r-breakpoints at the boundary of multivertex blocks.
We have r ≤ log n/ log4 d and typically G(n, d/n) has
a plethora of r-breakpoints. We also we the fact that,
typically, the short cycles inG(n, d/n) are far apart from
each other. The plethora of r-breakpoint in G(n, d/n)
allow to surround the short cycles from the appropriate
distance.

Our rapid mixing result for block dynamics is
about graphs which admit a sparse block parition
B = B(ε, d,∆), for appropriate ε, d,∆. We consider
block dynamics with set of blocks specified by B. The
lower bound on k for rapid mixing will depend on d
rather than the maximum degree ∆. In that respect
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the interesting case is when ∆ � d, like the typical
instances of G(n, d/n).

So as to show rapid mixing for the graphs which
admit vertex partition B(ε, d,∆), we have to guarantee
that the corresponding block dynamics is ergodic.

Definition 2. For ε, d,∆ > 0, let F = F(ε, d,∆) be
the family of graphs on n vertices such that for every
G ∈ F the following holds:

1. G admits a sparse block partition B(ε, d,∆)

2. The corresponding block dynamics is ergodic for
k ≥ αd

where the quantity α we use above is the solution of the
equation αα = e, i.e., α = 1.7632 . . .

Theorem 2.1. For all ε > 0, there exists C > 0 such
that for all sufficiently large d > 0 and any graph
G ∈ F(ε, d,∆), where ∆ > 0 can be a function of n, the
following is true: For k ≥ (α+ ε)d, the block dynamics
with set of block B has mixing time

Tmix ≤ Cn log n,

where α is the solution of the equation αα = e, i.e.,
α = 1.7632 . . .. Moreover, each step of the dynamics
can be implemented in O(k3Bmax) time, where Bmax is
the size of the largest block.

For a proof sketch of Theorem 2.1 see at the end of
Section 4.1. The detailed proof appears in the full
version of our work in [36], Section C.

From Theorem 2.1 we get rapid mixing for the block
dynamics for G(n, d/n) by considering the following,
technical, result whose proof appears in the full version
[36], Section K.

Lemma 2.1. For all ε > 0 and ∆ =
(3/2) (log n/ log log n) and sufficiently large d > 0
we have Pr[G(n, d/n) /∈ F(ε, d,∆)] = o(1). Moreover,

G(n, d/n) ∈ F(ε, d,∆) implies that Bmax ≤ n1/(log d)
2

.

In light of Theorem 2.1 and Lemma 2.1, Theorem 1.1
follows from a comparison argument we present in the
full version of our work in [36], Section M.

3 Analysis of Block Dynamics for k > 2d -
Overview

The techniques we present in this section are sufficient
to show rapid mixing of the corresponding block dy-
namics for k > 2d. Later we utilize local uniformity
properties to get a better bound on k.

3.1 A new metric - Proof overview for k > 2∆
We will use path coupling and hence we consider two
copies of the block dynamics (Xt), (Yt) that differ at a
single vertex u∗. Let us first consider the analysis for a
graph with maximum degree∆. Jerrum’s analysis of the
single-site Glauber dynamics [22] (and Bubley-Dyer’s
simplification using path coupling [4]) are well-known
for the case k > 2∆. They show a coupling so that the
expected Hamming distance decreases in expectation.

Our first task is generalizing this analysis of the
Glauber dynamics to the block dynamics. The difficulty
is that when we update a block B that neighbors
the disagree vertex u∗ the number of disagreements
may grow by the size of B. However disagreements
that are fully contained within a block do not spread.
Consequently, we can replace Hamming distance by a
simple metric, and then we can prove rapid mixing for
k > 2∆ for any block dynamics where the blocks are all
trees.

In particular, if some vertex z is internal, i.e., it
does not have any neighbors outside its block it gets
weight 1. If z is not internal, it is assigned a weight
which is n2 times its out-degree from its block, i.e.,
degout(z) = |N(z) \B| where B is the block containing
z. Then for a pair Xt, Yt their distance is the sum of
the weight of the vertices in their symmetric difference,
i.e.,

dist(Xt, Yt) =
∑

z∈V \∂B

1(z ∈ Xt ⊕ Yt)

(3.3)

+n2
∑
z∈∂B

degout(z) 1(z ∈ Xt ⊕ Yt)

To get some intuition, note that the vertices which
are internal in the blocks have “tiny” weight compared
to the rest ones. This essentially captures that the
disagreements that matter in the path coupling analysis
are those which involve vertices at the boundary of
blocks, while the “potential” for such a vertex to spread
disagreements to neighboring blocks depends on its out-
degree.

Using the above metric we will derive the following
rapid mixing result. For expository reasons we, also,
provide the proof here.

Theorem 3.1. There exists C > 0, for all g ≥ 3, all
G = (V,E) with girth ≥ g, maximum degree ∆ and
k > 2∆, for any partition of the vertices V into disjoint
blocks V = B1 ∪ B2 ∪ · · · ∪ BN where diameter(Bi) ≤
g/2− 3 for all i, the mixing time of the block dynamics
satisfies:

Tmix ≤ C∆n log n.

1763



Proof. Let S ⊂ Ω × Ω denote a pair of colorings that
differ at a single vertex. Moreover, partition S =
∪v∈V Sv where Sv contains those pairs (Xt, Yt) which
differ at v. We will define a coupling for all pairs in S
where the expected distance decreases and then apply
path coupling [4] to derive a coupling for an arbitrary
pair of states where the distance contracts.

Consider a pair of colorings (Xt, Yt) ∈ Su∗ the differ
at an arbitrary vertex u∗. In our coupling both chains
update the same block at each step. Let Bt denote
the block updated for this step (Xt, Yt)→ (Xt+1, Yt+1).
Also, let B∗ denote the block containing u∗.

We consider two cases for the vertex u∗, either: (i)
u∗ is an internal vertex to its block B∗, i.e., degout(u

∗) =
0, or (ii) u∗ is on the boundary of its block, i.e.,
u∗ ∈ ∂inB∗.

The case (i) when u∗ is internal, is easy. There
are no blocks with disagreements on their boundary,
and hence new disagreements cannot form. Since the
neighborhood of the updated block Bt is the same in
both chains, we can use the identity coupling so that
Xt+1(Bt) = Yt+1(Bt). The distance cannot increase,
and if Bt = B∗ then we have Xt+1 = Yt+1; this occurs
with probability 1/N where N is the number of blocks.
Therefore, in the case that u∗ /∈ ∂inB∗ we have:

E [dist(Xt+1, Yt+1) | Xt, Yt]

≤
(

1− 1

N

)
dist(Xt, Yt).(3.4)

Now consider case (ii) where u∗ ∈ ∂inB∗. If u∗ /∈ ∂outBt
then we can couple Xt+1(Bt) = Yt+1(Bt) and hence the
distance does not change. Moreover if Bt = B∗ then
we have Xt+1 = Yt+1; thus with probability 1/N the
distance decreases by −n2degout(u

∗). The distance can
only increase when u∗ ∈ ∂outBt and hence our main
task is to bound the expected change in the distance in
this scenario. We will prove the following:

E [dist(Xt+1, Yt+1) | Xt, Yt, Bt, u
∗ ∈ ∂outBt]

≤ dist(Xt, Yt) + n2
(

1− 1

2∆

)
.(3.5)

Let, N∗ ⊆ B be the set of blocks B such that u∗ ∈ ∂outB
All the above imply that having u∗ ∈ ∂outB∗ we get that

(3.6)

E [dist(Xt+1, Yt+1) | Xt, Yt, Bt, u
∗ ∈ ∂outBt]

≤ dist(Xt, Yt)−
n2

N
degout(u

∗) +
n2

N

∑
B∈N∗

(
1− 1

2∆

)
≤

(
1− 1

2N∆

)
dist(Xt, Yt),

where in the first inequality we use the fact that
each block is updated with probability 1/N . The

second inequality follows from the observation that
dist(Xt, Yt) = n2degout(u

∗), while the number of
sumads in the first inequality is equal to degout(u

∗).
In light of (3.4) and (3.6), path coupling implies

the following: For two copies of the Glauber dynamics
(Xt)t≥0, (Yt)t≥0 there is a coupling such that for any
T > 0 and any X0, Y0 we have

E [dist(XT , YT ) | X0, Y0] ≤
(

1− 1

2N∆

)T
dist(X0, Y0).

Since dist(X0, Y0) ≤ 2∆n3, we have:

Pr [XT 6= YT ] ≤ 2∆n3 exp

(
− T

2N∆

)
≤ ε,

for T = 20∆n log n, which proves the theorem.
We now prove (3.5). The disagreements on the inner

boundary of a block are the dominant term in dist(),
hence for a pair of colorings σ, τ , let

R(σ, τ) = n2
∑
z∈σ⊕τ degout(z).

By simply “giving away” all of the vertices in Bt as
internal disagreements after the update we can upper
bound the l.h.s. of (3.5) in terms of R():

E [dist(Xt+1, Yt+1) | Xt, Yt, Bt, u
∗ ∈ ∂outBt]

≤ dist(Xt, Yt) + |Bt|
+E [∂tR | Xt, Yt, Bt, u

∗ ∈ ∂outBt],

where
∂tR = R(Xt+1, Yt+1)−R(Xt, Yt)

Since |Bt| ≤ n, (3.5) follows by showing that
(3.7)

E [∂tR | Xt, Yt, Bt, u
∗ ∈ ∂outBt],≤ n2

(
1− 1

∆+ 1

)
.

For v ∈ V and T ⊆ V , where the induced subgraph on
T is a tree and diameter(T ) ≤ g/2− 3, let

Qv(T )

= max
(Xt,Yt)∈Sv

E [∂tR | Xt, Yt and recolor block T ].

The reader may identify the expectation in (3.7) as
Qu∗(Bt). Even though our concern is the blocks of the
dynamics, Qv(T ) is defined for arbitrary T . Note that
if v ∈ ∂outT and |N(v) ∩ T | ≥ 2 then the diameter
assumption for T would imply that a cycle of length
< g is present in G. Clearly this is not true since G is
assumed to have girth g. Therefore, we conclude that if
v ∈ ∂outT , then it has is exactly one neighbor in T .

We’ll prove by induction on |T | that Qv(T ) ≤
n2 (1− 1/(∆+ 1)). When, v /∈ ∂outT = ∅ we have
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Qv(T ) = 0, since there are no disagreements on ∂outT
and hence we can trivially use the identical coupling
for the vertices in T . We proceed with the case where
v ∈ ∂outT .

Assume that z ∈ T is adjacent to v. Furthermore,
assume that the tree is rooted at z and for every vertex
y let Ty be the subtree which contains y and all its
descendants.

The identical coupling is precluded because of the
disagreement at ∂outT . The coupling decides the color-
ings of a single vertex at a time. It starts with z and
couples Xt+1(z) and Yt+1(z) maximally, subject to the
boundary conditions of T . Then, in a BFS manner it
considers the rest of the vertices, starting with the chil-
dren of z. For each w the coupling Xt+1(w) and Yt+1(w)
is maximal, subject to the boundary conditions of T but
also the configuration of the parent of w.

Consider w ∈ T and let u be its parent (with v being
the parent of z). Given these w, u it is useful to make
a few observations: Consider the coupling of Xt+1(w)
and Yt+1(w) given that Xt+1(u) = Yt+1(u). Then, it
is direct that there is no disagreement on the boundary
of the subtree Tw and hence we can use the identical
coupling for Xt+1(w) and Yt+1(w), and in fact, we can
have identical coupling for all of the vertices in Tw. In
the other case of disagreement at u, note that
(3.8)

Pr[Xt+1(w) 6= Yt+1(w) | Xt+1(u) 6= Yt+1(u)] ≤ 1
k−∆ .

since the only disagreement at the boundary of Tw is
at u and the probability of disagreement at w is upper
bounded by the probability of the most likely color for
Xt+1(w) and Yt+1(w) which is 1/(k − ∆). Since there
are at least k −∆ available colors for w.

Now we proceed with the induction. The base case
is T = {z}, then, using (3.8) we have

Qv(T ) ≤ n2∆Pr[Xt+1(z) 6= Yt+1(z)]

≤ n2∆

k −∆

≤ n2
(

1− 1

∆+ 1

)
, [for k > 2∆]

where the first inequality follows because the contribu-
tion of z to the distance is ≤ n2∆. This proves the base
of induction. To continue, we note that the following
inductive relation holds

Qv(T ) ≤ Pr[Xt+1(z) 6= Yt+1(z)]

×

n2 degout(z) +
∑

y∈N(z)∩T

Qz(Ty)

 .

The above follows by noting Qv(T ) is equal to the ex-
pected contribution from z ∈ N(u∗) ∩ T plus the ex-

pected contribution from each subtree Ty. We multiply
the contribution of all Ty with the probability of the
event Xt+1(z) 6= Yt+1(z) because, each subtree starts
contributing once we have Xt+1(z) 6= Yt+1(z).

The induction hypothesis implies that for any y we
have Qz(Ty) < n2. We get that

Qv(T ) ≤ Pr[Xt+1(z) 6= Yt+1(z)]

×
(
n2 degout(z) + n2(∆− degout(z))

)
≤ n2∆

k −∆
[by (3.8)]

≤ n2
(

1− 1

∆+ 1

)
[since k ≥ 2∆+ 1].

The above bound implies that (3.7) holds, since we can
identify the expectation in (3.7) as Qu∗(Bt).

The theorem follows.

3.2 Proof overview for random graphs G(n, d/n)
and k ≥ (2 + ε)d We extend the above approach to
random graphs when k ≥ (2 + ε)d where d is the
expected degree instead of the maximum degree ∆.
Roughly, this amounts to having blocks whose behavior,
in terms of generating new disagreements, is not too
different than that of a tree of maximum degree d̂ :=
(1+ ε/6)d. Our goal is to prove a result similar to (3.5),
i.e., the expected increase from updating a block which
is next to a single disagreement is less than n2. If we
have that, then the proof of rapid mixing follows the
same line of arguments as that we have in Theorem 3.1.

We use blocks from sparse block partition (Defi-
nition 1 and Lemma 2.1). The blocks here are tree-
like with at most one extra edge. There is a buffer of
low degree vertices along the inner boundary of a block.
(Recall low degree means degree ≤ d̂.) Note that even
though high degree vertices have tiny weight under our
metric dist(), they can still have dramatic consequences
since their degree may be a function of n while k and
d are constants, and when a disagreement reaches a
high degree vertex it then has the potential to prop-
agate along a huge number of paths to the boundary of
the block.

The blocks are designed so that high degree vertices
and any possible cycle are “deep” inside their respective
blocks: specifically, for a vertex v of degree L > d̂, ev-
ery path from v to the boundary of its block consists of
Ω(logL) low degree vertices (in an appropriate amor-
tized sense). Using these low degree vertices the proba-
bility of propagating a disagreement along this path of
low-degree vertices offsets the potentially huge effect of
a high degree vertex disagreeing.

More concretely, we get a handle on the expected
increase of distance when we update the block B which
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has a disagreement at u∗ ∈ ∂outB by arguing about the
probability of propagation of the small degree vertices
inside the block. For a vertex v ∈ B we let the
probability of propagation be the probability of having
a path of disagreeing vertices from u∗ to v, given that
all the vertices in the path but v are disagreeing. We
get the desirable bound on the expected increase by
showing that for every low degree v ∈ B which is within
small distance from u∗ (i.e., log2 d) the probability of
propagation is < 1

deg(v) . See further details in the full

version of this work in [36], Section B.
For k ≥ (2+ε)d the above bound for the probability

of propagation is always true, i.e. for every pair of
conditions on ∂outB which differ at u∗. This follows by
arguing that the probability of propagation for a small
degree v ∈ B is always< 1/(k − deg(v)) and noting that
(2+ε)d > 2deg(v). For k > 1.76...d, the new challenge is
that there are vertices in ∂inB for which the probability
of propagation is not sufficiently small. This is due to
some problematic configurations on ∂outB. To this end,
we show that after a short burn-in period typically such
problematic boundary configurations are highly unlikely
to happen, we explain further in the next section.

4 Utilizing uniformity - Rapid mixing for k >
1.76...d

Here we want to utilize that for some vertex v the
colorings of all its neighbors are not worst-case but
are from the stationary distribution. This gives rise to
exploiting the so-called “local uniformity results” first
utilized by Dyer and Frieze [8] (and then expanded upon
in [19, 17, 9, 12]). The relevant property in this context

is that if a set of d̂ vertices receive independently at
random colors (uniformly distributed over all k colors)
then the expected number of available colors (i.e., colors

that do not appear in this set) is ≈ k exp(−d̂/k). We

say that a low degree vertex v, e.g. deg(v) ≤ d̂, has
local uniformity, if the number of available colors is at
least k exp(−d̂/k).

Assume that we couple the update of block B sub-
ject to a pair of configurations on ∂outB which disagree
at u∗ ∈ ∂outB and all the low vertices inside B have local
uniformity in both configuration of the coupling. Then,
for the low degree vertices the probability of propaga-
tion can be replaced from 1/(k− d̂) to 1/(k exp(−d̂/k)).

Furthermore, choosing k > αd̂, where α ≈ 1.763 . . . is
the solution to αeα = 1, it is an easy exercise to show
that the probability of propagation of a small degree
v ∈ B is less than 1/d̂.

For a vertex v and the block dynamics (Xt), let
AXt(v) denote the set of available colors for v:

AXt
(v) := [k] \Xt(N(v)).

Roughly the local uniformity result says that after a
short burn-in period of O(n) steps, a vertex v has at
least the expected number of available colors with high
probability (in d). Let Ut(v) denote the event that the
block B(v) containing v has been recolored at least once
by time ≤ t. We prove the following result that after
C0n steps the dynamics gets the uniformity property at
v with high probability, and it maintains it for Cn steps
for arbitrary C (by choosing C0 sufficiently large).

Theorem 4.1. (Local Uniformity) For all ε, C >
0, there exists C0 > 0, d0 > 1, for all d > d0, for
k ≥ (α + ε)d, let I = [C0N, (C + C0)N ] , for v ∈ V

such that deg(v) ≤ d̂ we have

Pr

[
∃t ∈ I s.t. |AXt

(v)| ≤ 1(Ut(v))(1− ε2)k exp

(
−deg(v)

k

)]
≤ d4 exp

(
−d3/4

)
.

The proof of Theorem 4.1 appears in the full version of
this work in [36], Section I.

Theorem 4.1 builds on [8, 19]. The rough idea is
that the vertex v typically gets local uniformity once
most of its neighbors are updated at least once. Since
we consider block updates a, potentially large, fraction
of N(v) belongs to the same block as v. Then, it is
possible that the vertex gets local uniformity exactly
the moment that its block is updated for the first time.
The use of the indicator 1(Ut(v)) is imposed by exactly
this phenomenon.

4.1 Block dynamics and Burn-in An additional
complication with utilizing local uniformity is the fol-
lowing: since the coupling starts from a worst-case pair
of colorings, in order to attain the local uniformity prop-
erties we first need to “burn-in” for Ω(n) steps so that
most neighbors of most vertices are recolored at least
once. However during this burn-in stage the initial dis-
agreement at u∗ is likely to spread.

In [9] they consider a ball of radius O(
√
∆) around

u∗. They show, by a simple disagreement percolation
argument, that disagreements are exponentially (in
Ω(
√
∆)) unlikely to escape from this ball. Extending

this approach to block dynamics presents an extra
challenge. Our blocks may be of unbounded size (i.e.,
a function of n) whereas the ball in which we want
to confine the disagreements is constant sized (roughly
O(
√
d) so that the volume of the ball is dominated by

the tail bound in Theorem 4.1).
The disagreements we care about are those on the

boundary of a block since these are the ones that can
further propagate. Hence, let

Dt = (Xt ⊕ Yt) ∩ ∂B.

1766



denote the disagreements at time t which lie on the
boundary of some block, and let D≤t = ∪r≤tDr denote
the set of vertices that disagree at some point up to time
t.

First we derive a tail bound on the number of
disagreements generated in ∂inB when the block B has
a single disagreement on its boundary.

Proposition 4.1. For all ε > 0, there exists C >
0, d0 > 1, for all d > d0, for k ≥ (α + ε)d and any
u∗ ∈ ∂B and any B such that u∗ ∈ ∂outB, the following
holds. For a pair of colorings Xt and Yt such that
Xt ⊕ Yt = {u∗}, there is a coupling of one step of the
block dynamics so that

Pr [|Dt+1 ∩ ∂inB| ≥ `] ≤ C(dN)−1 exp (−`/C) ,

for any ` ≥ 1.

The idea in proving Proposition 4.1 is to stochastically
dominate the disagreements in B with an independent
Bernoulli percolation process. Then we employ a non-
trivial martingale argument to get the desired tail
bound. The detailed proof appears in Section 4.2.

Extending the ideas we develop for Proposition 4.1
to a setting where we have multiple disagreements we
prove that a single initial disagreement at time 0 is
unlikely to spread very far after O(N) steps. Before
formally stating the lemma, let us introduce some basic
notation. For an integer R and vertex w, let B(w,R)
denote the set of vertices within distance R from w (this
is wrt to the graph G, independent of the blocks B).

Lemma 4.1. For all ε, C > 0, there exists C ′ > 0, d0 >
1, for all d > d0, for k = (α + ε)d the following holds.
Consider two colorings X0 and Y0 where X0⊕Y0 = {u∗}
for some u∗ ∈ V . There is a coupling of the block
dynamics such that: for any 1 ≤ ` < d4/5,

Pr [|D≤CN | ≥ `] ≤ C ′ exp
(
−` 99

100C ′
)

and for R =
⌊
ε−3(log d)

√
d
⌋

we have

Pr [(D≤CN ) 6⊆ B (u∗, R)] ≤ 2 exp
(
−d0.49C ′

)
.

The proof of Lemma 4.1 appears in the full version of
this work in [36], Section F.

Rapid mixing: We give here a brief sketch of how
we derive rapid mixing of the block dynamics from
Theorem 4.1 and Lemma 4.1; the high-level idea is
inspired by the approach in [9] for graphs of maximum
degree ∆. We apply path coupling and hence we start
with a pair of colorings X0, Y0 which differ at a single
vertex u∗. We focus our attention on the ball B of radius

O((log d)
√
d) around u∗. We first run the chains for

a burn-in period of T = O(n) steps. By Lemma 4.1
with high probability (in d) the disagreements are
contained in this local ball B around u∗. Hence we
can focus attention inside this local ball B (with high
probability). Since the volume of this ball is not too
large, by Theorem 4.1 all of the low degree vertices
have the local uniformity property and they maintain
it for O(n) steps. Hence for k > αd we get contraction
for disagreements at low degree vertices. Since the
vertices at the boundaries of the block are all low degree
vertices and these are the vertices with non-zero weight
dist() in our path coupling analysis as in the proof of
Theorem 3.1 for the k > 2∆ case, then we get that the
expected distance dist() contracts in every step. Since
the number of disagreements is not too large (by the
second part of Lemma 4.1) after O(n) steps we get that
the expected weight is small, and we can conclude that
the mixing time is O(N logN).

4.2 Proof of Proposition 4.1 We couple one step
of the dynamics such that both copies update the same
block. In what follows we describe the coupling when
the dynamics updates the block B.

We couple Xt+1(B) and Yt+1(B) by coloring the
vertices of B in a vertex-by-vertex manner. We start
with the vertex z ∈ B which neighbors the disagreement
u∗. Then we proceed by induction by first considering
any uncolored vertex in B which neighbors a disagree-
ment. The colors Xt+1(z) and Yt+1(z) are chosen from
the marginal distribution over the random coloring of B
conditional on the fixed coloring outside B, and the cou-
pling minimizes the probability that Xt+1(z) 6= Yt+1(z).
For subsequent vertices v ∈ B, the colors Xt+1(v) and
Yt+1(v) are from the marginal distributions induced by
the pair of configurations on ∂outB as well as the con-
figuration of the vertices in B that the coupling consid-
ered in the previous steps. If the current vertex does
not neighbor any disagreements then we can use the
identity coupling Xt+1(v) = Yt+1(v). Similar inductive
couplings have also appeared in, e.g., [7, 17].

Note that the construction of the set of blocks B
guarantees that there is exactly one vertex z ∈ B which
is next to u∗. Since block B contains at most one
cycle C, and due to the order of the vertices in the
coupling definition, when we couple the color choice
for v /∈ C there can be at most one disagreement in
its neighborhood. For the vertices on cycle C, the
block construction guarantees that C is deep inside the
block (see condition 2(c) in Definition 1), and hence
disagreements are unlikely to even reach this cycle.

We focus on the probability that the disagreement
“percolates” from a disagreeing vertex w ∈ B ∪ {u∗} to
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some neighbor v ∈ B in the aforementioned coupling.
Specifically, we consider the case where deg(v) ≤ d̂
and v does not belong to the cycle of B (if any).
For such a vertex, it is standard to show that the
probability of the disagreement percolating, i.e., having
Xt+1(v) 6= Yt+1(v) given Xt+1(w) 6= Yt+1(w), is upper
bounded by the probability of the most likely color for
v in both copies of dynamics. Choosing k ≥ (α + ε)d,
the probability of a disagreement is upper bounded by
1/((1 + ε)degin(v)), where degin(v) the degree of v
within B. For deriving this bound we build on [17].
Roughly speaking, the key is that for a random coloring
of B and a fixed coloring σ on B, then, as in [17],
for a low degree vertex v we have E [|A(v)| | σ] .
(k−degout(v)) exp(−degin(v)/k) . (1+ε)degin(v). See
further in the full version of this work in [36], Section
D.

For vertex v which is of degree > d̂ or belongs to
the cycle of the block B (if any) we just use the trivial
bound 1, for the probability of disagreement.

We will analyze the spread of disagreements in the
coupling above using the following Bernoulli percolation
process. Let Sp = Sp(B) be a random subset of the
block B such that each vertex v ∈ B appears in Sp,
independently, with probability pv, where for v outside
the cycle in B we have

(4.9) pv =

{
1

(1+ε) degin(v)
if deg(v) ≤ d̂

1 otherwise.

If v is on the cycle of B, then pv = 1.
Consider the random set Xt+1(B) ⊕ Yt+1(B) in-

duced by the aforementioned coupling. We will show
that the disagreements occurring in our coupling are
stochastically dominated by the subset Cu∗ ⊆ Sp(B)
which contains every vertex v for which there exists a
path, using vertices from Sp, that connects v to u∗.
In particular, Xt+1(B) ⊕ Yt+1(B) ⊆ Cu∗ . Thus, let
Pu∗ = Cu∗ ∩ ∂inB. We have

Pr[|Dt+1 ∩ ∂inB| ≥ ` | B is updated at t+ 1]

≤ Pr[|Pu∗ | ≥ `],(4.10)

for any ` ≥ 0.
Then using the independent Bernoulli process we

derive the following tail bound.

Proposition 4.2. In the same setting as in Proposi-
tion 4.1, there exists C > 0 such that for large d > 0
the following is true: For any block B ∈ B and any
u∗ ∈ ∂outB the following holds:

(4.11) Pr[|Pu∗ | ≥ `] ≤ Cd−1 exp (−`/C) ,

for any ` ≥ 1.

The proof of Proposition 4.2 appears in Section 4.3.
Proposition 4.1 follows from Proposition 4.2, (4.10)

and noting that B is updated in the dynamics with
probability 1/N .

4.3 Proof of Proposition 4.2 We define the follow-
ing weight scheme for the vertices of B. If B is a tree,
then we consider the tree B∪{u∗}, with root u∗. Given
the root, for each w ∈ B, let Parent(w) denote the
parent of w.

We assign weight β(w) to each w ∈ B ∪ {u∗}. We
set β(u∗) = 1, while for each w ∈ B we have
(4.12)

β(w) = min

{
1,

β(Parent(w))

(1 + ε2) degin(Parent(w))
(pw)

−1
}
,

If the block B is unicyclic, then we choose a spanning
tree of B, e.g., B′, and define the parent relation w.r.t.
B′ ∪ {u∗}, rooted at u. Then we consider the same
weight scheme as in (4.12). Note that we use B′ to
specify the parent relation only, i.e., pw is defined w.r.t.
the degrees in B.

As in Section 4.2, consider the random set Sp ⊆ B,
where each vertex v ∈ B appears in Sp with probability
pv, defined in (4.9). Let Cu∗ contain every vertex
w ∈ B for which there exists a path of vertices in Sp
that connects w to u∗. Note that it always holds that
Pu∗ ⊆ Cu∗ . Also, let

Z =
∑
w∈B

1{w ∈ Cu∗} β(w).

From the definition of β(·) it follows that for each vertex
w ∈ B we have 0 ≤ β(w) ≤ 1. Furthermore, we have
the following result for the weight of vertices in B ∩∂B.

Lemma 4.2. Consider the above weight schema. For
any w ∈ B ∩ ∂B we have β(w) ≥ 1/2.

The proof of Lemma 4.2 appears in the full version of
this work in [36], Section G.1.

Recall that Pu∗ = Cu∗ ∩ ∂inB. In light of Lemma
4.2, it always holds that |Pu∗ | ≤ 2Z which implies that

(4.13) Pr[|Pu∗ | ≥ `] ≤ Pr[Z ≥ `/2].

Eq. (4.11) will follow by getting an appropriate tail
bound for Z and using (4.13). Let z be the single
neighbor of u∗ inside block B. For ` ≥ 1, we have that

Pr[Z ≥ `/2] ≤ Pr[Z ≥ `/2 | z ∈ Cu∗ ] Pr[z ∈ Cu∗ ]

≤ Cd−1 Pr[Z ≥ `/2 | z ∈ Cu∗ ].(4.14)

The proposition will follow by bounding appropriately
the probability term Pr[Z ≥ `/2 | z ∈ Cu∗ ]. For this we
are using a martingale argument. In particular we use
the following result from [28, 13].
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Theorem 4.2. (Freedman) Suppose W1, ...,Wn is a
martingale difference sequence, and b is an uniform
upper bound on the steps Wi. Let V denote the sum
of conditional variances,

V =
∑n
i=1 Var(Wi | W1, . . . ,Wi−1).

Then for every α, s > 0 we have that

Pr
[∑

Wi > α and V ≤ s
]
≤ exp

(
− α2

2s+ 2αb/3

)
.

Consider a process where we expose Cu∗ in a breadth-
first-search manner. We start by revealing the vertex
right next to u∗. Let z ∈ B be the vertex next to u∗

and let F0 be the event that z ∈ Cu∗ . For i > 0, let Fi
be the outcome of exposing the i-th vertex. Let

X0 = E [Z | F0] and Xi = E [Z | F0, . . . , Fi],

for i ≥ 1. It is standard to show that X0, X1, . . . is
a martingale sequence. Also, consider the martingale
difference sequence Yi = Xi −Xi−1, for i ≥ 1.

So as to use Theorem 4.2, we show the following:
Let V =

∑
i Var(Yi | Y1, Y2, . . .). We have that

(4.15)
(a) X0 ≤ C1 (b) |Xi −Xi−1| ≤ s (c) V ≤ C2Z,

for positive constants C1, C2 and s. Before showing that
(4.15) is indeed true, let us show how we use it to get
the tail bound for Z.

Assume that the martingale sequence X0, X1, . . . ,
runs for T steps, i.e., after T steps we have revealed
Cu∗ . From Theorem 4.2 and (4.15) we get the following:
there exists Ĉ > 0 such that for any α > 0 we have

Pr[Z = α | z ∈ Cu∗ ]

= Pr [
∑
i Yi = α+X0 and V ≤ C2α]

≤ Pr [
∑
i Yi ≥ α+X0 and V ≤ C2α]

≤ exp
(
−2α/Ĉ

)
,

where C2 is defined in (4.15). The first equality follows
from the observation that we always have V ≤ C2Z.
From the above it is elementary that, for large C > 0,
we have

(4.16) Pr[Z ≥ α | z ∈ Cu∗ ] ≤ exp (−2α/C) .

Combining (4.16) and (4.14) we get that for ` >
0 it holds that Pr[Z ≥ `/2] ≤ Cd−1 exp (−`/C) .
The proposition follows by plugging the inequality into
(4.13).

It remains to show (4.15). First we observe the
following: For a vertex w ∈ B, let F (w) be the set of

vertices u such that w = Parent(u). We have that
(4.17)

E

 ∑
v∈F (w)

β(v) 1 {v ∈ Cu∗} | w ∈ Cu∗

 ≤ β(w)

(1 + ε2)
.

To see the above note that

E

 ∑
v∈F (w)

β(v) 1 {v ∈ Cu∗} | w ∈ Cu∗


=

∑
y∈F (w) Pr[y ∈ Cu∗ | w ∈ Cu∗ ] β(y)

≤ degin(w) · max
y∈F (w)

{Pr[y ∈ Cu∗ | w ∈ Cu∗ ] β(y)} .(4.18)

Since Pr[y ∈ Cu∗ | w ∈ Cu∗ ] ≤ py, where py is defined in
(4.9). The definition of β(y) yields

Pr[y ∈ Cu∗ | w ∈ Cu∗ ] β(y) ≤ pyβ(y)

≤ β(w)

degin(w)(1 + ε2)
.

Eq. (4.17) follows by plugging the above into (4.18).
Now we proceed to prove (a) in (4.15). Recall that

z ∈ B is the only vertex next to u∗ ∈ ∂B. Recall, also,
that F0 is the event that z ∈ Cu∗ . A simple induction
and (4.17) implies that

E [Z | z ∈ Cu∗ ] ≤ 2β(z)/ε2.

Since we always have 0 < β(z) ≤ 1, (a) in (4.15) holds
for any C1 ≥ 2ε−2.

As far as (b) in (4.15) is concerned, this follows
directly from (4.17) and the fact that for every v ∈ F (w)
we have 0 < β(v) ≤ 1.

We proceed by proving (c) in (4.15). For a vertex
w ∈ B such that w ∈ Cu∗ , let Cwu∗ = Cu∗ ∩Tw, where Tw
is the subtree rooted at w, while

Zw =
∑
v∈Tw

1{v ∈ Cwu∗} β(v).

Assume that at step i we reveal vertex wi, we have

Vi ≤ E
[
(Xi −Xi−1)2 | F0, F1, . . . , Fi−1

]
≤ (E [Zwi

| wi ∈ Cu∗ ])
2

≤
(
β(wi)/ε

2
)2
.

The last inequality follows from (4.17) and a simple
induction. If wi ∈ ∂outCu∗ , i.e. it si of small degree and
agreeing, then it is direct that the conditional variance
is smaller, it is at most cad

−2β2(wi), for a fixed ca > 0.
Otherwise, wi has conditional variance 0.

Using the above, and the fact that β(v) ≤ 1, for any
v ∈ B, we have that

V =
∑
i

Vi ≤ 2
∑
v∈Cu∗

β(v)/(ε4) ≤ 2Z/ε4.
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For the third inequality we need the following: In V
there is a contribution from the vertices in Cu∗ , i.e.,
each v ∈ Cu∗ contributes β2(v)/ε4 ≤ β(v)/ε4. Also,
there is a contribution from the vertices in ∂outCu∗ ∩B.
For the later we use the fact that for every v ∈ Cu∗ the
contribution of its children that belong to ∂outCu∗ ∩B is
at most cad

−2∑
w∈F (v) β(w) ≤ cbd

−1β(v), where ca is
defined previously and cb > 0 is a constant. Note that
the bound on the previous sum follows by working as in
(4.18).

Then, (c) in (4.15) follows by setting C2 = 2ε4. This
concludes the proof of Proposition 4.2. �

5 Conclusions

Our main contribution is to reduce the ratio k/d to
α ≈ 1.763 . . . for rapid mixing of the Glauber dynamics
on sparse random graphs. The important aspect is
that the ratio is now comparable to the ratio k/∆ for
related results concerning rapid mixing of the Glauber
dynamics and SSM (strong spatial mixing) on graphs of
bounded degree ∆.

Getting improved bounds on k would require the
use of stronger notions of local uniformity, i.e, like those
used in [9, 12]. However, the endeavor of improving the
rapid mixing bound would also face a lot of additional
new challenges. Indicatively we mention that it would
likely lead to improved results on SSM, like the one in
[17]. Hence, significantly improving this ratio α appears
to be a major challenge.
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and Y. Yin. Convergence of MCMC and Loopy BP in
the Tree Uniqueness Region for the Hard-Core Model.
In Proc. of the 57th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 704–
713, 2016.

[13] D. A. Freedman. On tail probabilities for martingales.
Annals of Probability, 3:100–118, 1975.

[14] A. Frieze and M. Karoński. Introduction to Random
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