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Abstract—We study the hard-core (gas) model defined on
independent sets of an input graph where the independent
sets are weighted by a parameter (aka fugacity) 𝜆 > 0. For
constant 𝛥, previous work of Weitz (2006) established an
FPTAS for the partition function for graphs of maximum
degree 𝛥 when 𝜆 < 𝜆𝑐(𝛥). Sly (2010) showed that there is no
FPRAS, unless NP=RP, when 𝜆 > 𝜆𝑐(𝛥). The threshold 𝜆𝑐(𝛥)
is the critical point for the statistical physics phase transition
for uniqueness/non-uniqueness on the infinite 𝛥-regular tree.
The running time of Weitz’s algorithm is exponential in log𝛥.
Here we present an FPRAS for the partition function whose
running time is 𝑂∗(𝑛2). We analyze the simple single-site
Markov chain known as the Glauber dynamics for sampling
from the associated Gibbs distribution. We prove there exists
a constant 𝛥0 such that for all graphs with maximum degree
𝛥 ≥ 𝛥0 and girth ≥ 7 (i.e., no cycles of length ≤ 6), the mixing
time of the Glauber dynamics is 𝑂(𝑛 log 𝑛) when 𝜆 < 𝜆𝑐(𝛥).
Our work complements that of Weitz which applies for small
constant 𝛥 whereas our work applies for all 𝛥 at least a
sufficiently large constant 𝛥0 (this includes 𝛥 depending on
𝑛 = ∣𝑉 ∣).

Our proof utilizes loopy BP (belief propagation) which is
a widely-used algorithm for inference in graphical models. A
novel aspect of our work is using the principal eigenvector for
the BP operator to design a distance function which contracts
in expectation for pairs of states that behave like the BP fixed
point. We also prove that the Glauber dynamics behaves locally
like loopy BP. As a byproduct we obtain that the Glauber
dynamics, after a short burn-in period, converges close to the
BP fixed point, and this implies that the fixed point of loopy
BP is a close approximation to the Gibbs distribution. Using
these connections we establish that loopy BP quickly converges
to the Gibbs distribution when the girth ≥ 6 and 𝜆 < 𝜆𝑐(𝛥).
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I. INTRODUCTION

Background

The hard-core gas model is a natural combinatorial prob-
lem that has played an important role in the design of
new approximate counting algorithms and for understanding
computational connections to statistical physics phase tran-
sitions. For a graph 𝐺 = (𝑉,𝐸) and a fugacity 𝜆 > 0, the
hard-core model is defined on the set 𝛺 of independent sets
of 𝐺 where 𝜎 ∈ 𝛺 has weight 𝑤(𝜎) = 𝜆∣𝜎∣. The equilibrium
state of the system is described by the Gibbs distribution 𝜇 in
which an independent set 𝜎 has probability 𝜇(𝜎) = 𝑤(𝜎)/𝑍.
The partition function 𝑍 =

∑
𝜎∈𝛺 𝑤(𝜎).

We study the closely related problems of efficiently ap-
proximating the partition function and approximate sampling
from the Gibbs distribution. These problems are important
for Bayesian inference in graphical models where the Gibbs
distribution corresponds to the posterior or likelihood distri-
butions. Common approaches used in practice are Markov
Chain Monte Carlo (MCMC) algorithms and message pass-
ing algorithms, such as loopy BP (belief propagation), and
one of the aims of this paper is to prove fast convergence
of these algorithms.

Exact computation of the partition function is #P-complete
[37], even for restricted input classes [10], hence the focus
is on designing an efficient approximation scheme, either a
deterministic FPTAS or randomized FPRAS. The existence
of an FPRAS for the partition function is polynomial-time
inter-reducible to approximate sampling from the Gibbs
distribution.

A beautiful connection has been established: there is
a computational phase transition on graphs of maximum
degree 𝛥 that coincides with the statistical physics phase
transition on 𝛥-regular trees. The critical point for both of
these phase transitions is 𝜆𝑐(𝛥) := (𝛥− 1)𝛥−1/(𝛥− 2)𝛥.
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In statistical physics, 𝜆𝑐(𝛥) is the critical point for the
uniqueness/non-uniqueness phase transition on the infinite
𝛥-regular tree 𝕋𝛥 [18] (roughly speaking, this is the phase
transition for the decay versus persistence of the influence of
the leaves on the root). For some basic intuition about the
value of this critical point, note its asymptotics 𝜆𝑐(𝛥) ∼
𝑒/(𝛥− 2) and the following basic property: 𝜆𝑐(𝛥) > 1 for
𝛥 ≤ 5 and 𝜆𝑐(𝛥) < 1 for 𝛥 ≥ 6.

Weitz [41] showed, for all constant 𝛥, an FPTAS for the
partition function for all graphs of maximum degree 𝛥 when
𝜆 < 𝜆𝑐(𝛥). To properly contrast the performance of our
algorithm with Weitz’s algorithm let us state his result more
precisely: for all 𝛿 > 0, there exists constant 𝐶 = 𝐶(𝛿), for
all 𝛥, all 𝐺 = (𝑉,𝐸) with maximum degree 𝛥, all 𝜆 <
(1 − 𝛿)𝜆𝑐(𝛥), all 𝜖 > 0, there is a deterministic algorithm
to approximate 𝑍 within a factor (1± 𝜖) with running time
𝑂

(
(𝑛/𝜖)𝐶 log 𝛥

)
. An important limitation of Weitz’s result

is the exponential dependence on log𝛥 in the running time.
Hence it is polynomial-time only for constant 𝛥, and even
in this case the running time is unsatisfying.

On the other side, Sly [33] (extended in [7], [8], [34], [9])
has established that, unless 𝑁𝑃 = 𝑅𝑃 , for all 𝛥 ≥ 3, there
exists 𝛾 > 0, for all 𝜆 > 𝜆𝑐(𝛥), there is no polynomial-time
algorithm for triangle-free 𝛥-regular graphs to approximate
the partition function within a factor 2𝛾𝑛.

Weitz’s algorithm was extremely influential: many works
have built upon his algorithmic approach to establish effi-
cient algorithms for a variety of problems (e.g., [28], [31],
[19], [20], [32], [38], [21], [30], [22]). One of its key con-
ceptual contributions was showing how decay of correlations
properties on a 𝛥-regular tree are connected to the existence
of an efficient algorithm for graphs of maximum degree 𝛥.
We believe our paper enhances this insight by connecting
these same decay of correlations properties on a 𝛥-regular
tree to the analysis of widely-used Markov Chain Monte
Carlo (MCMC) and message passing algorithms.

Main Results

As mentioned briefly earlier on, there are two widely-
used approaches for the associated approximate count-
ing/sampling problems, namely MCMC and message pass-
ing approaches. A popular MCMC algorithm is the simple
single-site update Markov chain known as the Glauber
dynamics. The Glauber dynamics is a Markov chain (𝑋𝑡)
on 𝛺 whose transitions 𝑋𝑡 → 𝑋𝑡+1 are defined by the
following process:

1) Choose 𝑣 uniformly at random from 𝑉 .
2) If 𝑁(𝑣) ∩𝑋𝑡 = ∅ then let

𝑋𝑡+1 =

{
𝑋𝑡 ∪ {𝑣} with probability 𝜆/(1 + 𝜆)

𝑋𝑡 ∖ {𝑣} with probability 1/(1 + 𝜆)

3) If 𝑁(𝑣) ∩𝑋𝑡 ∕= ∅ then let 𝑋𝑡+1 = 𝑋𝑡.

The mixing time 𝑇mix is the number of steps to guarantee
that the chain is within a specified (total) variation distance
of the stationary distribution. In other words, for 𝜖 > 0,

𝑇mix(𝜖) = min{𝑡 : for all 𝑋0, 𝑑TV(𝑋𝑡, 𝜇) ≤ 𝜖},
where 𝑑TV() is the variation distance. We use 𝑇mix =
𝑇mix(1/4) to refer to the mixing time for 𝜖 = 1/4.

It is natural to conjecture that the Glauber dynamics
has mixing time 𝑂(𝑛 log 𝑛) for all 𝜆 < 𝜆𝑐(𝛥). Indeed,
Weitz’s work implies rapid mixing for 𝜆 < 𝜆𝑐(𝛥) for
amenable graphs. On the other hand Mossel et al. in [25]
show slow mixing when 𝜆 > 𝜆𝑐(𝛥) on random regular
bipartite graphs. The previously best known results for
MCMC algorithms are far from reaching the critical point.
It was known that the mixing time of the Glauber dynamics
(and other simple, local Markov chains) is 𝑂(𝑛 log 𝑛) when
𝜆 < 2/(𝛥− 2) for any graph with maximum degree 𝛥 [5],
[23], [39]. In addition, [14] analyzed 𝛥-regular graphs with
𝛥 = 𝛺(log 𝑛) and presented a polynomial-time simulated
annealing algorithm when 𝜆 < 𝜆𝑐(𝛥).

Here we prove 𝑂(𝑛 log 𝑛) mixing time up to the critical
point when the maximum degree is at least a sufficiently
large constant 𝛥0, and there are no cycles of length ≤ 6
(i.e., girth ≥ 7).

Theorem 1. For all 𝛿 > 0, there exists 𝛥0 = 𝛥0(𝛿) and
𝐶 = 𝐶(𝛿), for all graphs 𝐺 = (𝑉,𝐸) of maximum degree
𝛥 ≥ 𝛥0 and girth ≥ 7, all 𝜆 < (1 − 𝛿)𝜆𝑐(𝛥), all 𝜖 > 0,
the mixing time of the Glauber dynamics satisfies:

𝑇mix(𝜖) ≤ 𝐶𝑛 log(𝑛/𝜖).

Note that 𝛥 and 𝜆 can be a function of 𝑛 = ∣𝑉 ∣. The above
sampling result yields (via [35], [16]) an FPRAS for esti-
mating the partition function 𝑍 with running time 𝑂∗(𝑛2)
where 𝑂∗() hides multiplicative log 𝑛 factors. The algorithm
of Weitz [41] is polynomial-time for small constant 𝛥, in
contrast our algorithm is polynomial-time for all 𝛥 > 𝛥0

for a sufficiently large constant 𝛥0.
A family of graphs of particular interest are random 𝛥-

regular graphs and random 𝛥-regular bipartite graphs. These
graphs do not satisfy the girth requirements of Theorem 1
but they have few short cycles. Hence, as one would expect
the above result extends to these graphs.

Theorem 2. For all 𝛿 > 0, there exists 𝛥0 = 𝛥0(𝛿) and
𝐶 = 𝐶(𝛿), for all 𝛥 ≥ 𝛥0, all 𝜆 < (1 − 𝛿)𝜆𝑐(𝛥), all
𝜖 > 0, with probability 1 − 𝑜(1) over the choice of an 𝑛-
vertex graph 𝐺 chosen uniformly at random from the set
of all 𝛥-regular (bipartite) graphs, the mixing time of the
Glauber dynamics on 𝐺 satisfies:

𝑇mix(𝜖) ≤ 𝐶𝑛 log(𝑛/𝜖).

Theorem 2 complements the work in [25] which shows slow
mixing for random 𝛥-regular bipartite graphs when 𝜆 >
𝜆𝑐(𝛥).
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The other widely used approach is BP (belief propaga-
tion) based algorithms. BP, introduced by Pearl [27], is
a simple recursive scheme designed on trees to correctly
compute the marginal distribution for each vertex to be
occupied/unoccupied. In particular, consider a rooted tree
𝑇 = (𝑉,𝐸) where for 𝑣 ∈ 𝑉 its parent is denoted as 𝑝 and
its children are 𝑁(𝑣). Let

𝑞(𝑣) = Pr𝜇 [𝑣 is occupied ∣ 𝑝 is unoccupied]

denote the probability in the Gibbs distribution that 𝑣 is
occupied conditional on its parent 𝑝 being unoccupied. It
is convenient to work with ratios of the marginals, and
hence let 𝑅𝑣→𝑝(𝑣) = 𝑞(𝑣)/(1 − 𝑞(𝑣)) denote the ratio of
the occupied to unoccupied marginal probabilities. Because
𝑇 is a tree then it is not difficult to show that this ratio
satisfies the following recurrence:

𝑅𝑣→𝑝(𝑣) = 𝜆
∏

𝑤∈𝑁(𝑣)∖{𝑝(𝑣)}

1

1 +𝑅𝑤→𝑣
.

This recurrence explains the terminology of BP that 𝑅𝑤→𝑣

is a “message” from 𝑤 to its parent 𝑣. Given the messages
to 𝑣 from all of its children then 𝑣 can send its message to
its parent. Finally the root 𝑟 (with a parent 𝑝 always fixed to
be unoccupied and thus removed) can compute the marginal
probability that it is occupied by: 𝑞(𝑟) = 𝑅𝑟→𝑝/(1+𝑅𝑟→𝑝).

The above formulation defines (the sum-product version
of) BP a simple, natural algorithm which works efficiently
and correctly for trees. For general graphs loopy BP im-
plements the above approach, even though there are now
cycles and so the algorithm no longer is guaranteed to work
correctly. For a graph 𝐺 = (𝑉,𝐸), for 𝑣 ∈ 𝑉 let 𝑁(𝑣)
denote the set of all neighbors of 𝑣. For each 𝑝 ∈ 𝑁(𝑣) and
time 𝑡 ≥ 0 we define a message

𝑅𝑡
𝑣→𝑝 = 𝜆

∏
𝑤∈𝑁(𝑣)∖{𝑝}

1

1 +𝑅𝑡−1
𝑤→𝑣

.

The corresponding estimate of the marginal can be computed
from the messages by:

𝑞𝑡(𝑣, 𝑝) =
𝑅𝑡

𝑣→𝑝

1 +𝑅𝑡
𝑣→𝑝

. (1)

Loopy BP is a popular algorithm for estimating marginal
probabilities in general graphical models (e.g., see [26]), but
there are few results on when loopy BP converges to the
Gibbs distribution (e.g., Weiss [40] analyzed graphs with
one cycle, and [36], [15], [17] presented various sufficient
conditions, see also [2], [29] for analysis of BP variants). We
have an approach for analyzing loopy BP and in this project
we will prove that loopy BP works well in a broad range
of parameters. Its behavior relates to phase transitions in
the underlying model, we detail our approach and expected
results after formally presenting phase transitions.

We prove that, on any graph with girth ≥ 6 and maximum
degree 𝛥 ≥ 𝛥0 where 𝛥0 is a sufficiently large constant,

loopy BP quickly converges to the (marginals of) Gibbs
distribution 𝜇. More precisely, 𝑂(1) iterations of loopy BP
suffices, note each iteration of BP takes 𝑂(𝑛 + 𝑚) time
where 𝑛 = ∣𝑉 ∣ and 𝑚 = ∣𝐸∣.
Theorem 3. For all 𝛿, 𝜖 > 0, there exists 𝛥0 = 𝛥0(𝛿, 𝜖)
and 𝐶 = 𝐶(𝛿, 𝜖), for all graphs 𝐺 = (𝑉,𝐸) of maximum
degree 𝛥 ≥ 𝛥0 and girth ≥ 6, all 𝜆 < (1 − 𝛿)𝜆𝑐(𝛥), the
following holds: for 𝑡 ≥ 𝐶, for all 𝑣 ∈ 𝑉 , 𝑝 ∈ 𝑁(𝑣),∣∣∣∣ 𝑞𝑡(𝑣, 𝑝)

𝜇(𝑣 is occupied ∣ 𝑝 is unoccupied)
− 1

∣∣∣∣ ≤ 𝜖

where 𝜇(⋅) is the Gibbs distribution.

Contributions

Our main conceptual contribution is formally connecting
the behavior of BP and the Glauber dynamics. We will
analyze the Glauber dynamics using path coupling [1]. In
path coupling we need to analyze a pair of neighboring
configurations, in our setting this is a pair of independent
sets 𝑋𝑡, 𝑌𝑡 which differ at exactly one vertex 𝑣. The key is
to construct a one-step coupling (𝑋𝑡, 𝑌𝑡) → (𝑋𝑡+1, 𝑌𝑡+1)
and introduce a distance function 𝛷 : 𝛺 × 𝛺 → R≥0

which “contracts” meaning that the following path coupling
condition holds for some 𝛾 > 0:

𝔼 [𝛷(𝑋𝑡+1, 𝑌𝑡+1) ∣ 𝑋𝑡, 𝑌𝑡] ≤ (1− 𝛾)𝛷(𝑋𝑡, 𝑌𝑡).

We use a simple maximal one-step coupling and hence in
our setting the path coupling condition simplifies to:

(1−𝛾)𝛷(𝑋𝑡, 𝑌𝑡) ≥
∑

𝑧∈𝑁(𝑣)

𝜆

1 + 𝜆
1 {𝑧 is unblocked in 𝑋𝑡}𝛷(𝑧),

where unblocked means that 𝑁(𝑧) ∩ 𝑋𝑡 = ∅, i.e., all
neighbors of 𝑧 are unoccupied, and we have assumed there
are no triangles so as to ignore the possibility that 𝑋𝑡 and
𝑌𝑡 differ on the neighborhood of 𝑧.

The distance function 𝛷 must satisfy a few basic con-
ditions such as being a path metric, and if 𝑋 ∕= 𝑌
then 𝛷(𝑋,𝑌 ) ≥ 1 (so that by Markov’s inequality
Pr [𝑋𝑡 ∕= 𝑌𝑡] ≤ 𝔼 [𝛷(𝑋𝑡, 𝑌𝑡)]). A standard choice for the
distance function is the Hamming distance. In our setting
the Hamming distance does not suffice and our primary
challenge is determining a suitable distance function.

We cannot construct a suitable distance function which
satisfies the path coupling condition for arbitrary neighbor-
ing pairs 𝑋𝑡, 𝑌𝑡. But, a key insight is that we can show
the existence of a suitable 𝛷 when the local neighborhood
of the disagreement 𝑣 behaves like the BP fixpoint. Our
construction of this 𝛷 is quite intriguing.

In our proofs it is useful to consider the (unrooted) BP
recurrences corresponding to the probability that a vertex is
unblocked. This corresponds to the following function 𝐹 :
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[0, 1]𝑉 → [0, 1]𝑉 which is defined as follows, for any 𝜔 ∈
[0, 1]𝑉 and 𝑧 ∈ 𝑉 :

𝐹 (𝜔)(𝑧) =
∏

𝑦∈𝑁(𝑧)

1

1 + 𝜆𝜔(𝑦)
. (2)

Also, for some integer 𝑖 ≥ 0, let 𝐹 𝑖(𝜔) : [0, 1]𝑉 → [0, 1]𝑉

be the 𝑖-iterate of 𝐹 . This recurrence is closely related to the
standard BP operator 𝑅() and hence under the hypotheses
of our main results, we have that 𝐹 () has a unique fixed
point 𝜔∗, and for any 𝜔, all 𝑧 ∈ 𝑉 , lim𝑖→∞ 𝐹 𝑖(𝑧) = 𝜔∗(𝑧).

To construct the distance function 𝛷 we start with the
Jacobian of this BP operator 𝐹 (). By a suitable matrix
diagonalization we obtain the path coupling condition. Since
𝐹 () converges to a fixed point, and, in fact, it contracts at
every level with respect to an appropriately defined potential
function, we then know that the Jacobian of the BP operator
𝐹 () evaluated at its fixed point 𝜔∗ has spectral radius < 1
and hence the same holds for the path coupling condition
for pairs of states that are BP fixed points. This yields a
function 𝛷 that satisfies the following system of inequalities

𝛷(𝑣) >
∑

𝑧∈𝑁(𝑣)

𝜆𝜔∗(𝑧)
1 + 𝜆𝜔∗(𝑧)

𝛷(𝑧). (3)

However for the path coupling condition a stronger version
of the above is necessary. More specifically, the sum on the
r.h.s. should be appropriately bounded away from 𝛷(𝑣), i.e.
we need to have

(1− 𝛾)𝛷(𝑣) >
∑

𝑧∈𝑁(𝑣)

𝜆𝜔∗(𝑧)
1 + 𝜆𝜔∗(𝑧)

𝛷(𝑧).

Additionally, 𝛷 should be a distance metric, e.g. 𝛷 > 0.
It turns out that we use further properties of the distance
function 𝛷, hence we need to explicitly derive a 𝛷.

There are previous works [12], [13] which utilize the
spectral radius of the adjacency matrix of the input graph 𝐺
to design a suitable distance function for path coupling. In
contrast, we use insights from the analysis of the BP operator
to derive a suitable distance function. We believe this is a
richer connection that can potentially lead to stronger results
since it directly relates to convergence properties on the tree.
Our approach has the potential to apply for a more general
class of spin systems, we comment on this in more detail in
the conclusions.

The above argument only implies that we have contraction
in the path coupling condition for pairs of configurations
which are BP fixed points. A priori we don’t even know
if the BP fixed points on the tree correspond to the Gibbs
distribution on the input graph. We prove that the Glauber
dynamics (approximately) satisfies a recurrence that is close
to the BP recurrence; this builds upon ideas of Hayes [11]
for colorings. This argument requires that there are no cycles
of length ≤ 6 for the Glauber dynamics (and no cycles of
length ≤ 5 for the direct analysis of the Gibbs distribution).

Some local sparsity condition is necessary since if there
are many short cycles then the Gibbs distribution no longer
behaves similarly to a tree and hence loopy BP may be a
poor estimator.

As a consequence of the above relation between BP and
the Glauber dynamics, we establish that from an arbitrary
initial configuration 𝑋0, after a short burn-in period of
𝑇 = 𝑂(𝑛 log𝛥) steps of the Glauber dynamics the config-
uration 𝑋𝑇 is a close approximation to the BP fixed point.
In particular, for any vertex 𝑣, the number of unblocked
neighbors of 𝑣 in 𝑋𝑇 is ≈ ∑

𝑧∈𝑁(𝑣) 𝜔
∗(𝑧) with high

probability. As is standard for concentration results, our
proof of this result necessitates that 𝛥 is at least a sufficiently
large constant. Finally we adapt ideas of [4] to utilize these
burn-in properties and establish rapid mixing of the Glauber
dynamics.

Outline of Paper

The full proofs of our results are quite lengthy and so we
defer many to the full version of our work which appears
online in [6].

In the following section we state results about the con-
vergence of the BP recurrences. We then present in Section
III our theorem showing the existence of a suitable distance
function for path coupling for pairs of states at the BP fixed
point. Section IV sketches the proofs for our local uniformity
results that after a burn-in period the Glauber dynamics
behaves locally similar to the BP recurrences. Finally, in
Section V we outline the proof of Theorem 1 of rapid mixing
for the Glauber dynamics. The extension to random regular
(bipartite) graphs as stated in Theorem 2 is proven in Section
F of the full version. Theorem 3 about the efficiency of
loopy BP is proven in Section B of the full version, the key
technical results in the proof are sketched in Section IV.

II. BP CONVERGENCE

Here we state several useful results about the convergence
of BP to a unique fixed point, and stepwise contraction of
BP to the fixed point. The lemmas presented in this section
are proved in Section A of the full version.

Our first lemma (which is proved using ideas from [28],
[20], [31]) says that the recurrence for 𝐹 () defined in (2)
has a unique fixed point.

Lemma 4. For all 𝛿 > 0, there exists 𝛥0 = 𝛥0(𝛿), for
all 𝐺 = (𝑉,𝐸) of maximum degree 𝛥 ≥ 𝛥0, all 𝜆 <
(1− 𝛿)𝜆𝑐(𝛥), the function 𝐹 has a unique fixed point 𝜔∗.

A critical result for our approach is that the recurrences
𝐹 () have stepwise contraction to the fixed point 𝜔∗. To
obtain contraction we use the following potential function
𝛹 . Let the function 𝛹 : [0, 1]→ ℝ≥0 be as follows,

𝛹(𝑥) = (
√
𝜆)−1arcsinh

(√
𝜆 ⋅ 𝑥

)
. (4)
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Our main motivation for introducing 𝛹 is as a normal-
izing potential function that we use to define the following
distance metric, 𝐷, on functions 𝜔 ∈ [0, 1]𝑉 :

𝐷(𝜔1, 𝜔2) = max
𝑧∈𝑉

∣𝛹(𝜔1(𝑧))− 𝛹(𝜔2(𝑧))∣ .

We will also need a variant, 𝐷𝑣,𝑅, of this metric whose
value only depends on the restriction of the function to a
ball of radius ℓ around vertex 𝑣. For any 𝑣 ∈ 𝑉 , integer
ℓ ≥ 0, let 𝐵(𝑣, ℓ) be the set of vertices within distance ≤ ℓ
of 𝑣. Moreover, for functions 𝜔1, 𝜔2 ∈ [0, 1]𝑉 , we define:

𝐷𝑣,ℓ(𝜔1, 𝜔2) = max
𝑧∈𝐵(𝑣,ℓ)

∣𝛹(𝜔1(𝑧))− 𝛹(𝜔2(𝑧))∣ . (5)

We can now state the following convergence result for the
recurrences, which establishes stepwise contraction.

Lemma 5. For all 𝛿 > 0, there exists 𝛥0 = 𝛥0(𝛿), for
all 𝐺 = (𝑉,𝐸) of maximum degree 𝛥 ≥ 𝛥0, all 𝜆 <
(1 − 𝛿)𝜆𝑐(𝛥), for any 𝜔 ∈ [0, 1]𝑉 , 𝑣 ∈ 𝑉 and ℓ ≥ 1, we
have:

𝐷𝑣,ℓ−1(𝐹 (𝜔), 𝜔∗) ≤ (1− 𝛿/6)𝐷𝑣,ℓ(𝜔, 𝜔
∗).

where 𝜔∗ is the fixed point of 𝐹 .

III. PATH COUPLING DISTANCE FUNCTION

We now prove that there exists a suitable distance function
𝛷 for which the path coupling condition holds for configu-
rations that correspond to the fixed points of 𝐹 ().

Theorem 6. For all 𝛿 > 0, there exists 𝛥0 = 𝛥0(𝛿), for
all 𝐺 = (𝑉,𝐸) of maximum degree 𝛥 ≥ 𝛥0, all 𝜆 <
(1− 𝛿)𝜆𝑐(𝛥), there exists 𝛷 : 𝑉 → ℝ≥0 such that for every
𝑣 ∈ 𝑉 ,

1 ≤ 𝛷(𝑣) ≤ 12, (6)

and

(1− 𝛿/6)𝛷(𝑣) ≥
∑

𝑢∈𝑁(𝑣)

𝜆𝜔∗(𝑢)
1 + 𝜆𝜔∗(𝑢)

𝛷(𝑢), (7)

where 𝜔∗ is the fixed point of 𝐹 defined in (2).

Proof: We will prove here that the convergence of BP
provides the existence of a distance function 𝛷 satisfying
(7). We defer the technical proof of (6) to Section A of the
full version.

The Jacobian 𝐽 of the BP operator 𝐹 is given by

𝐽(𝑣, 𝑢) =

∣∣∣∣∂𝐹 (𝜔)(𝑣)

∂𝜔(𝑢)

∣∣∣∣ =

{
𝜆𝐹 (𝜔)(𝑣)
1+𝜆𝜔(𝑢) if 𝑢 ∈ 𝑁𝑣

0 otherwise

Let 𝐽∗ = 𝐽 ∣𝜔=𝜔∗ denote the Jacobian at the fixed point
𝜔 = 𝜔∗. Let 𝐷 be the diagonal matrix with 𝐷(𝑣, 𝑣) = 𝜔∗(𝑣)
and let 𝐽 = 𝐷−1𝐽∗𝐷.

The path coupling condition (7) is in fact

𝐽𝛷 ≤ (1− 𝛿/6)𝛷. (8)

The fact that 𝜔∗ is a Jacobian attractive fixpoint implies the
existence of a nonnegative 𝛷 with 𝐽𝛷 < 𝛷. Thus, the theo-
rem would follow immediately if the spectral radius of 𝐽 is
𝜌(𝐽) ≤ 1− 𝛿/6 and 𝐽 has a principal eigenvector with each
entry from the bounded range [1, 12]. However, explicitly
calculating this principal eigenvector can be challenging on
general graphs.

The convergence of BP which is established in Lemmas
4, 5, with respect to the potential function 𝛹 , guides us to
an explicit construction of 𝛷 such that 𝐽𝛷 < 𝛷. Indeed, let
𝛹 ′(𝑥) = 1

2
√

𝑥(1+𝜆𝑥)
denote the derivative of the potential

function 𝛹 . It will follow from the proof of Lemma 5 that:∑
𝑢∈𝑁(𝑣)

𝐽∗(𝑣, 𝑢)
𝛹 ′(𝜔∗(𝑣))
𝛹 ′(𝜔∗(𝑢))

≤ 1− 𝛿/6.

This inequality is due to the contraction of the BP system
at the fixed point with respect to the potential function 𝛹 .
It is equivalent to the following:

∑
𝑢∈𝑁(𝑣)

𝐽(𝑣, 𝑢)

𝜔∗(𝑢)𝛹 ′(𝜔∗(𝑢))
≤ 1− 𝛿/6

𝜔∗(𝑣)𝛹 ′(𝜔∗(𝑣))
.

Then, (8) is trivially satisfied by choosing 𝛷 such that

𝛷(𝑣) = 1
2𝜔∗(𝑣)𝛹 ′(𝜔∗(𝑣)) =

√
1+𝜆𝜔∗(𝑣)

𝜔∗(𝑣) . In turn we get the
path coupling condition (7). The verification of (6) is in
Section A of the full version.

IV. LOCAL UNIFORMITY FOR THE GLAUBER DYNAMICS

We will prove that the Glauber dynamics, after a sufficient
burn-in, behaves with high probability locally similar to the
BP fixed points. In this section we will formally state some
of these “local uniformity” results and sketch the main ideas
in their proof. The proofs are quite technical and deferred
to Section D of the full version.

For an independent set 𝜎, for 𝑣 ∈ 𝑉 , and 𝑝 ∈ 𝑁(𝑣) let

U𝑣,𝑝(𝜎) = 1 {𝜎 ∩ (𝑁(𝑣) ∖ {𝑝}) = ∅} (9)

be the indicator of whether the children of 𝑣 leave 𝑣
unblocked.

We now state our main local uniformity results. We
first establish that the Gibbs distribution behaves as in the
BP fixpoint, when the girth ≥ 6. We will prove that for
any vertex 𝑣, the number of unblocked neighbors of 𝑣 is
≈ ∑

𝑧∈𝑁(𝑣) 𝜔
∗(𝑧) with high probability. Hence, for 𝑣 ∈ 𝑉

let
S𝑋(𝑣) =

∑
𝑧∈𝑁(𝑣)

U𝑧,𝑣(𝑋),

denote the number of unblocked neighbors of 𝑣 in configu-
ration 𝑋 .

Theorem 7. For all 𝛿, 𝜖 > 0, there exists 𝛥0 = 𝛥0(𝛿, 𝜖)
and 𝐶 = 𝐶(𝛿, 𝜖), for all graphs 𝐺 = (𝑉,𝐸) of maximum
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degree 𝛥 ≥ 𝛥0 and girth ≥ 6, all 𝜆 < (1 − 𝛿)𝜆𝑐(𝛥), for
all 𝑣 ∈ 𝑉 , it holds that:

Pr𝑋∼𝜇

⎡
⎣
∣∣∣∣∣∣S𝑋(𝑣)−

∑
𝑧∈𝑁(𝑣)

𝜔∗(𝑧)

∣∣∣∣∣∣ ≤ 𝜖𝛥

⎤
⎦ ≥ 1−exp (−𝛥/𝐶) ,

where 𝜔∗ is the fixpoint from Lemma 4.

Theorem 7 will be the key ingredient in the proof of
Theorem 3 (to be precise, the upcoming Lemma 9 is the
key element in the proofs of Theorems 3 and 7).

For our rapid mixing result (Theorem 2) we need an
analogous local uniformity result for the Glauber dynamics.
This will require the slightly higher girth requirement ≥ 7
since the grandchildren of a vertex 𝑣 no longer have a cer-
tain conditionally independence and we need the additional
girth requirement to derive an approximate version of the
conditional independence (this is discussed in more detail
in Section C.3 of the full version).

The path coupling proof weights the vertices according
to 𝛷. Hence, in place of S we need the following weighted
version W. For 𝑣 ∈ 𝑉 and 𝛷 : 𝑉 → ℝ≥0 as defined in
Theorem 6 let

W𝜎(𝑣) =
∑

𝑧∈𝑁(𝑣)

U𝑧,𝑣(𝜎) 𝛷(𝑧). (10)

We then prove that the Glauber dynamics, after sufficient
burn-in, also behaves as in the BP fixpoint with a slightly
higher girth requirement ≥ 7. (For path coupling we only
need an upper bound on the number of unblocked neighbors,
hence we state and prove this simpler form.)

Theorem 8. For all 𝛿, 𝜖 > 0, let 𝛥0 = 𝛥0(𝛿, 𝜖), 𝐶 =
𝐶(𝛿, 𝜖), for all graphs 𝐺 = (𝑉,𝐸) of maximum degree
𝛥 ≥ 𝛥0 and girth ≥ 7, all 𝜆 < (1 − 𝛿)𝜆𝑐(𝛥), let (𝑋𝑡)
be the Glauber dynamics on the hard-core model. For all
𝑣 ∈ 𝑉 , it holds that

Pr

⎡
⎣(∀𝑡 ∈ ℐ) W𝑋𝑡

(𝑣) <
∑

𝑧∈𝑁(𝑣)

𝜔∗(𝑧)𝛷(𝑧) + 𝜖𝛥

⎤
⎦ (11)

≥ 1− exp (−𝛥/𝐶) ,

where the time interval ℐ = [𝐶𝑛 log𝛥,𝑛 exp (𝛥/𝐶)].

A. Proof sketch for local uniformity results

Here we sketch the simpler proof of Theorem 7 of the
local uniformity results for the Gibbs distribution. This will
illustrate the main conceptual ideas in the proof for the Gibbs
distribution, and we will indicate the extra challenge for the
analysis of the Glauber dynamics in the proof of Theorem
8. The full proofs for Theorems 7 and 8 are in Section D
of the full version.

Consider a graph 𝐺 = (𝑉,𝐸). For a vertex 𝑣 and an
independent set 𝜎, consider the following quantity:

R(𝜎, 𝑣) =
∏

𝑧∈𝑁(𝑣)

(
1− 𝜆

1 + 𝜆
U𝑧,𝑣(𝜎)

)
, (12)

where U𝑧.𝑣(𝜎) is defined in (9) (it is the indicator that the
children of 𝑧 leave it unblocked). The important aspect of
this quantity R is the following qualitative interpretation.
Let 𝑌 be distributed as in the Gibbs measure w.r.t. 𝐺. For
triangle-free 𝐺 we have

R(𝜎, 𝑣)

= Pr [𝑣 is unblocked ∣ 𝑣 /∈ 𝑌, 𝑌 (𝑆2(𝑣)) = 𝜎(𝑆2(𝑣))],

where 𝑆2(𝑧) are those vertices distance 2 from 𝑧 and by “𝑧 /∈
𝜎” we mean that 𝑧 is not occupied. Moreover, conditional
on the configuration at 𝑧 and 𝑆2(𝑧) the neighbors of 𝑧 are
independent in the Gibbs distribution and hence:

R(𝜎, 𝑣) (13)

=
∏

𝑧∈𝑁(𝑣)

Pr [𝑧 /∈ 𝑌 ∣ 𝑣 /∈ 𝑌, 𝑌 (𝑆2(𝑣)) = 𝜎(𝑆2(𝑣))].

In the special case where the underlying graph is a tree we
can extend (13) to the following recursive equations: Let 𝑋
be distributed as in 𝜇. We have that

R(𝑋, 𝑣) =
∏

𝑧∈𝑁(𝑣)

(
1− 𝜆

1 + 𝜆
R(𝑋, 𝑧)

)
+𝑂(1/𝛥), (14)

For our purpose it turns out that R(𝑋, ⋅) is an approximate
version of 𝐹 () defined in (2). The error term 𝑂(1/𝛥) in
(14) is negligible. For understanding R(𝑋, ⋅) qualitatively,
this error term can be completely ignored.

Consider the (BP system of) equations in (14), which is
exact on trees. Nothing prevents us from applying (14) on
the graph 𝐺 and get the loopy version of the equations. Now,
(14) does not necessarily compute the probability for 𝑣 to
be unblocked. However, we show the following interesting
result regarding the quantity S𝑋(𝑣), for every 𝑣 ∈ 𝑉 . With
probability ≥ 1− exp (−𝛺(𝛥)), it holds that∣∣∣∣∣∣S𝑋(𝑣)−

∑
𝑧∈𝑁(𝑣)

R(𝑋, 𝑧)

∣∣∣∣∣∣ ≤ 𝜖𝛥. (15)

That is, we can approximate S𝑋(𝑣) by using quantities that
arise from the loopy BP equations. Still, getting a handle on
R(𝑋, 𝑧) in (15) is a non-trivial task. To this end, we show
that 𝑋 ∼ 𝜇 satisfies (14) in the following approximate sense:

Lemma 9. For all 𝛾, 𝛿 > 0, there exists 𝛥0, 𝐶 > 0, for all
graphs 𝐺 = (𝑉,𝐸) of maximum degree 𝛥 ≥ 𝛥0 and girth
≥ 6 all 𝜆 < (1 − 𝛿)𝜆𝑐(𝛥) for all 𝑣 ∈ 𝑉 the following is
true:

Let 𝑋 be distributed as in 𝜇. Then with probability ≥
1− exp (−𝛥/𝐶) it holds that∣∣∣∣∣∣R(𝑋, 𝑣)−

∏
𝑧∈𝑁(𝑣)

(
1− 𝜆

1 + 𝜆
R(𝑋, 𝑧)

)∣∣∣∣∣∣ < 𝛾. (16)

We will argue (via (16)) that R() is an approximate
version of 𝐹 () and then we can apply Lemma 5 to deduce
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convergence (close) to the fixpoint 𝜔∗. Consequently, we
will prove that for every 𝑣 ∈ 𝑉 , with probability at least
1− exp (−𝛺(𝛥)), it holds that

∣R(𝑋, 𝑣)− 𝜔∗(𝑣)∣ ≤ 𝜖. (17)

(See Lemma 16 in Section B.2 of the full version for a
formal statement.) Combining (17) and (15) will finish the
proof of Theorem 7. For the detailed proof of Theorem 7
see Section D.1 in the full version.

B. Approximate recurrence - Proof of Lemma 9

Here we prove Lemma 9 which shows that R satisfies an
approximate recurrence similar to loopy BP, this is the main
result in the proof of Theorem 7. Before beginning the proof
we illustrate the necessity of the girth assumption.

Recall that for triangle-free graphs we have conditional
independence in (13) for the neighbors of vertex 𝑧. In (15)
we need to consider

∑
𝑧∈𝑁(𝑣) R(𝑋, 𝑧). To get independence

on the grandchildren of 𝑣 we need to condition on 𝑆3(𝑣),
this will require girth ≥ 6, see (18) below.

Proof of Lemma 9: Consider 𝑋 distributed as in 𝜇.
Given some vertex 𝑣 ∈ 𝑉 , let ℱ be the 𝜎-algebra generated
by the configuration of 𝑣 and the vertices at distance ≥ 3
from 𝑣.

Note that 𝜆𝑐(𝛥) ∼ 𝑒/𝛥. So, for 𝜆 < 𝜆𝑐(𝛥) and 𝛥 > 𝛥0

we have 𝜆 = 𝑂(1/𝛥).
Note that S𝑋(𝑣) is a function of the configuration at

𝑆2(𝑣). Conditional on ℱ , for any 𝑧, 𝑧′ ∈ 𝑁(𝑣) the config-
urations at 𝑁(𝑧)∖{𝑣} and 𝑁(𝑧′)∖{𝑣} are independent with
each other. That is, conditional on ℱ , the quantity S𝑋(𝑣) is a
sum of ∣𝑁(𝑣)∣ many independent random variables in {0, 1}.
Then, applying Azuma’s inequality (the Lipschitz constant
is 1) we get that

Pr [∣𝔼 [S𝑋(𝑣) ∣ ℱ ]− S𝑋(𝑣)∣ ≤ 𝛽𝛥] ≥ 1−2 exp (−𝛽2𝛥/2
)
,

(18)
for any 𝛽 > 0.

For 𝑥 ∈ ℝ≥0, let 𝑓(𝑥) = exp
(
− 𝜆

1+𝜆𝑥
)

. Since 𝜆 ≤ 𝑒/𝛥

for 𝛥 ≥ 𝛥0, then for ∣𝛾∣ ≤ (3𝑒)−1 it holds that 𝑓(𝑥+𝛾𝛥) ≤
10𝛾. Using these observations and (18) we get the following:
for 0 < 𝛽 < (3𝑒)−1 it holds that

Pr [∣𝑓(S𝑋(𝑣))− 𝑓(𝔼 [S𝑋(𝑣) ∣ ℱ ])∣ ≤ 10𝛽] (19)

≥ 1− 2 exp
(−𝛽2𝛥/2

)
.

Recalling the definition of R(𝑋, 𝑣), we have that

R(𝑋, 𝑣) =
∏

𝑧∈𝑁(𝑣)

(
1− 𝜆

1 + 𝜆
U𝑧,𝑣(𝑋)

)

= exp

⎛
⎝− 𝜆

1 + 𝜆

∑
𝑧∈𝑁(𝑣)

U𝑧,𝑣(𝑋) +𝑂 (1/𝛥)

⎞
⎠

= 𝑓(S𝑋(𝑣)) +𝑂 (1/𝛥) , (20)

where the second equality we use the fact that 𝜆 = 𝑂(1/𝛥)
and that for ∣𝑥∣ < 1 we have 1 + 𝑥 = exp(𝑥+𝑂(𝑥2)); the
last equality follows by noting that 𝑓(S𝑋(𝑣)) ≤ 1.

We are now going to show that for every 𝑧 ∈ 𝑁(𝑣) it
holds that

∣𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ ]−R(𝑋, 𝑧)∣ ≤ 2𝜆. (21)

Before showing that (21) is indeed correct, let us show how
we use it to get the lemma.

We have that

𝑓(𝔼 [S𝑋(𝑣) ∣ ℱ ])

= exp

⎛
⎝− 𝜆

1 + 𝜆

∑
𝑧∈𝑁(𝑣)

𝔼 [U𝑧,𝑣(𝑋𝑡) ∣ ℱ ]
⎞
⎠

= exp

⎛
⎝− 𝜆

1 + 𝜆

∑
𝑧∈𝑁(𝑣)

R(𝑋, 𝑧)

⎞
⎠+𝑂(1/𝛥), (22)

where in the first derivation we use linearity of expectation
and in the second derivation we use (21) and the fact that
𝜆 = 𝑂(1/𝛥).

The lemma follows by plugging (22) and (20) into (19)
and taking sufficiently large 𝛥.

It remains to show (21). We first get an appropriate upper
bound for 𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ ]. Using the fact that U𝑧,𝑤(𝑋) ≤
1 and Pr [𝑧 ∈ 𝑋∣ℱ ] ≤ 𝜆 we have that

𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ ]
= 𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ , 𝑧 ∈ 𝑋 ] ⋅Pr [𝑧 ∈ 𝑋∣ℱ ]

+𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ , 𝑧 /∈ 𝑋] ⋅Pr [𝑧 /∈ 𝑋 ∣ℱ ]
≤ Pr [𝑧 ∈ 𝑋∣ℱ ] + 𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ , 𝑧 /∈ 𝑋]

≤ 𝜆+ 𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ , 𝑧 /∈ 𝑋]

= 𝜆+
∏

𝑢∈𝑁(𝑧)∖{𝑣}

(
1− 𝜆

1 + 𝜆
U𝑢,𝑧(𝑋)

)
(23)

≤ 2𝜆+
∏

𝑢∈𝑁(𝑧)

(
1− 𝜆

1 + 𝜆
U𝑢,𝑧(𝑋)

)

= 2𝜆+R(𝑋, 𝑧), (24)

where (23) uses the fact that given ℱ the values of U𝑢,𝑧(𝑋),
for 𝑢 ∈ 𝑁(𝑧) ∖ {𝑣} are fully determined. Similarly, we get
the lower bound:

𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ ] = 𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ , 𝑧 ∈ 𝑋] ⋅Pr [𝑧 ∈ 𝑋∣ℱ ]
+𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ , 𝑧 /∈ 𝑋] ⋅Pr [𝑧 /∈ 𝑋∣ℱ ]

≥ (1− 2𝜆)𝔼 [U𝑧,𝑣(𝑋) ∣ ℱ , 𝑧 /∈ 𝑋]

≥ (1− 2𝜆)
∏

𝑢∈𝑁(𝑧)∖{𝑤}

(
1− 𝜆

1 + 𝜆
U𝑢,𝑧(𝑋)

)

≥ (1− 2𝜆)
∏

𝑢∈𝑁(𝑧)

(
1− 𝜆

1 + 𝜆
U𝑢,𝑧(𝑋)

)

= (1− 2𝜆)R(𝑋, 𝑧)

≥ R(𝑋, 𝑧)− 2𝜆,
(25)
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where in the last inequality we use the fact that R(𝑋, 𝑧) ≤ 1.
From (24) and (25) we have proven (21), which completes

the proof of the lemma.

V. SKETCH OF RAPID MIXING PROOF

Theorem 8 tells us that after a burn-in period the Glauber
dynamics locally behaves like the BP fixpoints 𝜔∗ with
high probability (whp). (In this discussion, we use the
term whp to refer to events that occur with probability
≥ 1−exp(−𝛺(𝛥)). ) Meanwhile Theorem 6 says that there
is an appropriate distance function 𝛷 for which path coupling
has contraction for pairs of states that behave as in 𝜔∗. The
snag in simply combining this pair of results and deducing
rapid mixing is that when 𝛥 is constant then there is still a
constant fraction of the graph that does not behave like 𝜔∗,
and our disagreements in our coupling proof may be biased
towards this set. We follow the approach in [4] to overcome
this obstacle and complete the proof of Theorem 1. We give
a brief sketch of the approach, the details are contained in
Section E of the full version.

The burn-in period for Theorem 8 to apply is 𝑂(𝑛 log𝛥)
steps from the worst-case initial configuration 𝑋0. In fact,
for a “typical” initial configuration only 𝑂(𝑛) steps are
required as we only need to update ≥ 1 − 𝜖 fraction of
the neighbors of every vertex in the local neighborhood of
the specified vertex 𝑣. The “bad” initial configurations are
ones where almost all of the neighbors of 𝑣 (or many of
its grandchildren) are occupied. We call such configurations
“heavy” (see Section C.2 of the full version for details). We
first prove that after 𝑂(𝑛 log𝛥) steps a chain is not-heavy
in the local neighborhood of 𝑣, and this property persists
whp (see Lemma 22 in the full version). Then, only 𝑂(𝑛)
steps are required for the burn-in period (see Theorem 27 in
Section D of the full version).

Our argument has two stages. We start with a pair of
chains 𝑋0, 𝑌0 that differ at a single vertex 𝑣. In the first stage
we burn-in for 𝑇𝑏 = 𝑂(𝑛 log𝛥) steps. After this burn-in
period, we have the following properties whp: every vertex
in the local neighborhood of 𝑣 is not-heavy, the number of
disagreements is ≤ poly(𝛥), and the disagreements are all
in the local neighborhood of 𝑣 (see Lemma 31, parts 2 and
4, in Section E of the full version).

In the second stage we have sets of epochs of length
𝑇 = 𝑂(𝑛) steps. For the pair of chains 𝑋𝑇𝑏

, 𝑌𝑇𝑏
we apply

path coupling again. Now we consider a pair of chains that
differ at one vertex 𝑧 which is not heavy. We look again
at the local neighborhood of 𝑧 (in this case, that means
all vertices within distance ≤ √

𝛥 of 𝑧). After 𝑇 steps,
whp every vertex in the local neighborhood has the local
uniformity properties and the disagreements are contained
in this local neighborhood. Then we have contraction in the
path coupling condition (by applying Theorem 6), and hence
after 𝑂(𝑛) further steps the expected Hamming distance
is small (see Lemma 32 in the full version). Combining

a sequence of these 𝑂(𝑛) length epochs we get that the
original pair has is likely to have coupled and we can deduce
rapid mixing.

VI. CONCLUSIONS

The work of Weitz [41] was a notable accomplishment
in the field of approximate counting/sampling. However a
limitation of his approach is that the running time depends
exponentially on log𝛥. It is widely believed that the Glauber
dynamics has mixing time 𝑂(𝑛 log 𝑛) for all 𝐺 of maximum
degree 𝛥 when 𝜆 < 𝜆𝑐(𝛥). However, until now there was
little theoretical work to support this conjecture. We give the
first such results which analyze the widely used algorithmic
approaches of MCMC and loopy BP.

One appealing feature of our work is that it directly
ties together with Weitz’s approach: Weitz uses decay of
correlations on trees to truncate his self-avoiding walk tree,
whereas we use decay of correlations to deduce a contracting
metric for the path coupling analysis, at least when the
chains are at the BP fixed point. We believe this technique
of utilizing the principal eigenvector for the BP operator for
the path coupling metric will apply to a general class of
spin systems, such as 2-spin antiferromagnetic spin systems
(Weitz’s algorithm was extended to this class [20]).

We hope that in the future more refined analysis of
the local uniformity properties will lead to relaxed girth
assumptions. However dealing with very short cycles, such
as triangles, will require a new approach since loopy BP no
longer seems to be a good estimator of the Gibbs distribution
for certain examples.
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