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ABSTRACT
We show that string graphs can be recognized in nonde-
terministic exponential time by giving an exponential up-
per bound on the number of intersections for a drawing re-
alizing the string graph in the plane. This upper bound
con�rms a conjecture by Kratochv��l and Matou�sek [14] and
settles the long-standing open problem of the decidability
of string graph recognition (Sinden [18], Graham [7]). Fi-
nally we show how to apply the result to solve another old
open problem: deciding the existence of Euler diagrams, a
central problem of topological inference (Grigni, Papadias,
Papadimitriou [8]).

1. INTRODUCTION
Is it possible that some A is B, some B is C, but no A is

C? Easily, you say, and your mind conjures up a diagram
that Euler (and Leibniz, and Sturm before him) would have
used to illustrate this situation.

A
B

C

Figure 1: Some A is B, some B is C, but no A is C.

However, it is not always possible to illustrate a situation
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that is logically consistent by an Euler diagram in the plane1:
we can turn the complete graph on �ve vertices into such
an example with �fteen regions (one for each vertex and
edge) [8]. How can we, in general, determine whether there
is an Euler diagram for a given set of speci�cations?
Diagrammatic reasoning is concerned with representabil-

ity of logical relations in the plane (and other spaces). This
area has drawn attention from di�erent research groups in-
cluding Arti�cial Intelligence and Geometrical Information
Systems [1, 8], Spatial Databases [16], Integrated Circuits [18],
and Logic [8, 15]. One of the major open problems in this
area is the decidability of the existence of a representation
for a given, logically consistent, formula. The special case
from the introductory paragraph in which we speci�ed for
a collection of regions whether they should intersect or not
has been open since the sixties.
This case is captured by the combinatorial notion of string

graphs. String graphs are intersection graphs of curves in
the plane with a vertex for each curve, and an edge rep-
resenting an intersection between two curves. The notion
was introduced in 1966 by Sinden [18] who stated the main
problem thus:

It is speci�ed which pairs of a collection of curves
(or connected regions) in the plane cross and
which pairs do not cross. When are such speci�-
cations consistent?

Sinden was working on the layout problem of integrated cir-
cuits (thin �lm RC circuits to be precise), and the string
graph problem arose naturally in this context, since the tech-
nology for creating the circuits made it possible for some
pairs of conductors to cross. On the theoretical side he ob-
served that all planar graphs are string graphs, and also gave
a small example of a graph which is not a string graph. Ron
Graham, in 1976, introduced the problem to the combina-
torial community [7], and in the same year Ehrlich, Even,
and Tarjan [5] showed that computing the chromatic num-
ber of string graphs is NP-hard. Since then string graphs
have become a popular subject in graph theory, and sev-
eral characterizations of special kinds of string graphs are
known, but the general recognition problem remained open.
In 1991 Kratochv��l [12] proved that the problem of recogniz-
ing string graphs is NP-hard, showing that a characteriza-
tion is not going to be polynomial time computable (unless
P = NP). At the same time Kratochv��l and Matou�sek [14]
proved the surprising result that some string graphs require

1We restrict ourselves to simply connected regions. See Kra-
tochv��l [11, Section 2] for a remark on connected regions.
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an exponential number of intersections to be realized in the
plane. They conjectured an exponential upper bound on the
number of intersections. We show that this conjecture is in-
deed true, putting the recognition problem of string graphs
in NEXP. We recently learnt that J�anos Pach and G�eza
T�oth independently obtained a proof of the decidability of
the string graph recognition problem (apparently using dif-
ferent techniques) which they presented at an AMS meeting
this spring.

2. PRELIMINARIES
Given a graph G = (V;E) and a set R �

�
E

2

�
= ffe; fg :

e; f 2 Eg on E, we call a drawing D of G in the plane a weak
realization of (G;R) if only pairs of edges which are in R are
allowed to intersect in D (they do not have to intersect,
however). In this case we call (G;R) weakly realizable. We
say that D is a realization of G if exactly the pairs of edges
in R intersect in D.2 Let us de�ne cw(G;R) as the small-
est number of intersections in a weak realization of (G;R),
cw(G) = maxfcw(G;R) : (G;R) has a weak realizationg,
and cw(m) = maxfcw(G) : G has m edgesg. Similarly de-
�ne cr(G;R), cr(G), and cr(m) for realizations.3 The quan-
tity cr(G) = cw(G;

�
E

2

�
) is known as the crossing number of

the graph G, and was shown to have an NP-complete deci-
sion problem by Garey and Johnson in the early eighties [6].
The other extreme case, cw(G; ;), is equivalent to planarity
testing, and therefore in P.
A curve (or string) is a set homeomorphic to [0; 1]. Given

a collection of curves (Ci)i2I in the plane, the corresponding
intersection graph is (I; ffi; jg : Ci and Cj intersectg). The
size of a collection of curves is the number of intersection
points (we assume that no three curves intersect in the same
point). A graph isomorphic to the intersection graph of a
collection of curves in the plane is called a string graph. Let
cs(G) be the size of a smallest (in the sense of size de�ned
above) set of curves whose intersection graph is isomorphic
to G, and de�ne cs(m) = maxfcs(G) : G has m edgesg. It
is not at all obvious that cs(G) is a �nite number if G is
a string graph. It is conceivable that an in�nite number
of intersections might be required to realize a string graph.
Lemma 4.2 shows that this is not the case: a string graph
can always be realized with a �nite number of intersections.
We postpone the lemma and its proof to the topological
part of this paper. The following relationships between the
functions we de�ned are well known:

(i) cw(m) � cr(m),

(ii) cr(m) � cs(3m
2), and

(iii) cs(m) � cw(m).

The �rst inequality follows from cw(G;R) � maxfcr(G;R
0) :

R0 � R; and (G;R) has a realizationg, the second from
Kratchov��ls reduction of realizability to string graphs [12,
Proposition 1], and the third from his reduction of string
graphs to weak realizability [12, Proposition 5].
Kratchov��l and Matou�sek [14] showed that cw(m) � 2cm

for some positive constant c. Our main result shows that

2Kratochv��l [13, 11, 12] calls (G;R) am abstract topological
graph, and uses the word feasible for weakly realizable.
3The function de�nitions here and in the following para-
graph are based on similar ones in the papers by Kratochv��l
and Matou�sek [14, 13].

cw(m) � m2m (Kratchov��l and Matou�sek conjectured an

upper bound of 2m
k

). This implies the decidability of string
graphs, which was a long-standing open problem in the �eld.

3. BOUNDING THE NUMBER OF INTER-
SECTIONS

If we assign each curve in a collection of curves a unique
number, we can look at the intersections of the curves along
a particular curve as a word over an alphabet (we use the fact
that the number of intersections is �nite). The basic idea of
the proof is to show that if such a word is too long, it contains
a substructure which allows a drawing of the collection of
curves of smaller size (lesser number of intersections). Hence
we can bound the number of intersections along each curve,
thereby bounding the size of the whole drawing.

Lemma 3.1. Every word of length � 2n over an alpha-
bet of size n contains a non-trivial subword in which each
character occurs an even number of times.

Proof. Let � = f1; : : : ; ng, and w 2 ��; jwj � 2n. To
every i 2 f0; :::; 2ng assign a vector vi in Z

n
2 whose j-th

coordinate is the parity of the number of occurrences of the
symbol j in the pre�x of w of length i. (In particular v0 is
the all-zero vector.) Since there are 2n +1 indices, but only
2n vectors in Zn

2, there are 0 � i < j � 2n such that vi = vj .
The non-trivial subword of w starting in position i+ 1 and
ending in position j ful�lls the conditions of the lemma.

Theorem 3.2. Let G be a graph with m edges, R �
�
E

2

�

such that (G;R) is weakly realizable, and let D be a weak re-
alization of (G;R) with the minimal number of intersections.
Then for any edge e 2 G there are less than 2m intersections
on the curve realizing e in D.

Proof. Suppose not. Let D be a weak realization of
(G;R) with the minimal number of intersections and let e
be an edge of G which has more than 2m � 1 intersections
in D. Lemma 4.2 tells us that the number of intersections
in the realization is �nite. By Lemma 3.1 we can choose a
non-trivial segment of this edge which is intersected an even
number of times by any other edge. Draw a window around
this part which contains no other intersections. For each
edge f assign numbers 1; 2; : : : ; 4nf (nf 2 N) to intersections
with the window in the order they appear on f (choose an
arbitrary orientation of f). For an example see Figure 2.
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Figure 2: Part of e with surrounding window.

We can assume that the window is a circle, that e within
the window is a straight line passing through the center, and
that for every f intersections 2i�1 and 2i are mirror images
of each other (with e as the mirror), i = f1; : : : ; 2nfg.
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Clear the inside of the window with the exception of e.
For each edge f there is connection between intersection
4i � 2 and 4i � 1 lying completely outside the window,
i 2 f1; : : : ; nfg. Look at all of these connections and use
circular inversion to bring them inside the circle. Now mir-
ror everything inside the window along e.
This yields for every edge f a connection between 4i� 3

and 4i, i 2 f1; : : : ; nfg, inside the window. Since 4nf is
the last intersection of f with the window we have that the
edge f still connects its endpoints (here we needed that f
intersects e an even number of times). Note that we have
reduced the number of intersections of f with the window
from 4nf to 2nf . Every intersection between curves inside
the circle corresponds to an intersection outside and hence
this new realization respects R. We now move the part of e
in the circle to coincide with one of the two arcs into which
e separates the full circle. We choose the one which results
in the smaller number of intersections with e. Since each
edge f causes at most 2nf intersections with the window,
this means that the number of intersections on e within the
area of the window has been halved, and hence the total
number of intersections of the drawing has been decreased,
a contradiction.

Corollary 3.3. String graph recognition is in NEXP.

Proof. Theorem 3.2, and the fact that cs(m) � cw(m)
(see the preliminaries) shows that if G is a string graph,
there is a collection of curves of size at most m2m whose
intersection graph is isomorphic to G. We can consider the
drawing of the collection of curves as a planar graph (each
intersection point becoming a vertex) with at most m2m

vertices. By a result of Schnyder [17], and de Fraysseix,
Pach, and Pollack [3] there is a drawing of this graph on a
planar straight-line grid of at most (m2m)2 vertices. Hence
in NEXP we can guess a graph on such a grid and verify
whether its intersection graph is isomorphic to G.

The same argument shows that we can decide the (weak)
realizability of a topological graph (G;R) in NEXP.

4. PLANE TOPOLOGY
We introduce some basic plane topology. A homeomor-

phism is a bijective continuous mapping whose inverse is
also continuous. A region is a subset of the plane homeo-
morphic to the closed unit disc. Note that both a region
and its boundary are compact (the homeomorphic image of
a compact set is compact). The boundary of a region is a
simple closed curve, i.e. it can be parameterized by a contin-
uous function  : [0; 1] 7! R

2 which is injective (apart from
(0) = (1)).
The Hausdor� distance dist(A;B) of two sets is de�ned

as

dist(A;B) = maxfsup
x2A

inf
y2B

d(x; y); sup
y2B

inf
x2A

d(x; y)g;

where d(x; y) is the Euclidean distance of two points in
the plane. The Hausdor� distance is a metric for compact
sets, i.e. it is symmetric, satis�es the triangle inequality and
dist(A;B) = 0 i� A = B. We let

d(A;B) = inf
x2A

inf
y2B

d(x; y):

Note that for closed, nonempty sets d(A;B) > 0 i� A\B =
;. For sets d is not a metric.
A simple curve is any homeomorphic image of the interval

[0; 1]. It is called a polygonal arc if it is made up of a �nite
number of line segments. Consider a simple curve C with
parameterization  : [0; 1] 7! C. We call a polygonal Æ-
skeleton for a simple curve C any polygonal arc described
by a sequence ((ri))1�i�n, where 0 = r1 < : : : < rn = 1
such that ri+1 � ri < Æ. The points (ri) are the vertices of
the polygonal skeleton.
The homeomorphism  : [0; 1] 7! C is uniformly contin-

uous (being de�ned on a compact set) which immediately
implies the following result (for a proof see [19]).

Proposition 4.1. Given a simple curve C and " > 0
there is Æ > 0 such that every polygonal Æ-skeleton P of C
ful�lls dist(P;C) < ".

The idea for showing that string graphs can be realized
with �nitely many intersections is to substitute each curve
with a skeleton that approximates it closely. To maintain in-
tersections we introduce witness points that belong to more
than one curve. Finally we have to guard against line seg-
ments of di�erent curves overlapping which we do by moving
the points into general position.

Lemma 4.2. A string graph can be realized by a family of
polygonal arcs with a �nite number of intersections.

Proof. Assume we have a string graph realized by a fam-
ily of curves (Ci)i2I . For each (i; j) such that Ci \ Cj 6= ;
we select a witness point pi;j 2 Ci \ Cj , and let W be the
(�nite) set of these witness points. De�ne

"1 = minfd(Ci; Cj) : Ci \ Cj = ;g;

"2 = minfd(p; q) : p 6= q; and p; q 2 Wg;

and " = 1=2minf"1; "2g. Then " > 0, since all the curves
are compact sets, and W is �nite. Choose Æ according to
Proposition 4.1 such that all polygonal Æ-skeletons of the
curve Ci are within Hausdor� distance "=2 of Ci (for all
i 2 I). Fix such a polygonal Æ-skeleton Pi for each curve Ci
and include on it all the witness points in Ci \W .
Consider the multisetM of vertices of the polygonal skele-

tons that are not witness points (M is a multiset because
a point may belong to several skeletons). Substitute each
point in M by a point within distance "=2 of the original
point such that each point in M ends up in general posi-
tion with regard to all points (including the ones in W ),
i.e. not on the same line with any other two points from
M [ W . This de�nes new polygonal arcs P 0

i for which
dist(Pi; P

0
i ) < "=2, and hence dist(P 0

i ; Ci) < " (for i 2 I).
If Ci \ Cj = ;, then d(Ci; Cj) � 2", hence d(P 0

i ; P
0
j) �

d(Ci; Cj)� dist(Ci; P
0
i )� dist(Cj ; P

0
j) > 0, and therefore P 0

i

and P 0
j do not intersect. If on the other hand Ci \ Cj 6= ;,

then we chose a witness points pi;j which belongs to both
P 0
i and P

0
j , hence P

0
i and P

0
j do intersect in this case.

We �nally have to prove that the number of intersections
of the polygonal arcs is �nite. Assume P 0

i and P
0
j intersect

in some point p which is not a vertex of either arc (there are
only �nitely many vertices, so we can ignore those). Then p
lies on two line segments (one belonging to P 0

i , the other to
P 0
j) with four (not necessarily distinct) endpoints, at most

one of which can be in W , since " is a lower bound on the
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distance between points of W . Hence three of the endpoints
belong to M , and are therefore in general position with re-
gard to M [ W . Hence p is an isolated point in P 0

i \ P
0
j .

However, P 0
i \P

0
j as a compact set can only be made up of a

�nite number of isolated points, implying it is �nite. Since
this is true for every i; j 2 I we have shown that the overall
number of intersection points is �nite.

5. TOPOLOGICAL INFERENCE
We mentioned earlier that settling the problem of recog-

nizing string graphs solves an old open problem from topo-
logical inference [2, 18]: if we specify for a collection of sim-
ply connected regions (Ai)i2I which pairs may intersect and
which may not, can these regions be drawn in the plane so
as to ful�ll the requirements? Since the existence of such a
drawing does not change if we change the universe of dis-
course regions to curves, the problem is equivalent to the
string graph problem, and therefore solvable in NEXP.
Topological inference works over a larger set of predicates

than overlap and disjoint. Egenhofer determined all eight
possible relationships of two simply connected regions based
on whether the intersection of their interior, boundary and
exterior is empty or not [4]. The relations are disjoint, equal,
inside, contains, cover, covered, meet, and overlap. See Fig-
ure 3 for de�nitions. We note that for any two simply con-
nected regions A and B exactly one of these predicates will
be true.

disjoint(A;B) the boundaries and interiors of A
and B do not intersect.

equal(A;B) A and B have the same interior.

inside(A;B)
(� contains(B;A))

the interior and boundary of A are
contained in the interior of B.

covered(A;B)
(� cover(B;A))

the interior of A is properly con-
tained in the interior of B, and the
boundaries intersect.

meet(A;B) the interior of A is contained in the
exterior of B, and the boundaries
intersect.

overlap(A;B) the interior of A intersects the exte-
rior of B, and vice versa.

Figure 3: The eight relationships between regions
(Egenhofer).

We call a Boolean combination of the topological predi-
cates a topological expression. A topological expression is ex-
plicit, if it speci�es the relationship between any pair of vari-
ables, meaning it is of the form

V
A;B2I PA;B(A;B), where

I is the set of variables, and PA;B is one of the eight ba-
sic predicates (for each A;B 2 I). We can always as-
sume that the expression does not contain the predicates
contains or cover, because we can substitute them by inside
and covered. Quantifying topological expressions we obtain
topological formulas. Determining the truth of these (were
the universe is the set of all regions in the plane) is the goal
of topological inference [8]. Of main interest are the purely
existential formulas, since they express the existence of di-
agrammatic representations of logical relationships (Euler

diagrams). In this case we also speak of the realizability of
a topological expression.
In this section we will show how the decidability of the

existential theory of topological expressions follows from the
decidability of string graphs. More precisely we show that
the realizability of topological expressions can be decided in
NEXP.
Talking about a realization of meet(A;B), or covered(A;B)

we call any point belonging to @A\@B a contact point of A
and B. In the other cases points belonging to the intersec-
tion of @A and @B we simply call intersection points.
We will now show how to redraw a realization of an ex-

plicit topological expression to bound the number of contact
points in the drawing. Note that for any explicit expression
there is always an equivalent explicit expression not contain-
ing equal.

Lemma 5.1. Let ' be an explicit topological expression
not containing equal. If there is a drawing realizing ', then
there is a drawing realizing ' in which the number of con-
tact points on each boundary is bounded by the square of the
number of variables in '.

Proof. Let A1; : : : ; AjIj be the family of variables oc-
curring in '. We can assume that the variables are sorted
such that for i < j there is no covered(Ai; Aj). If such
an ordering does not exist, then ' has no realization. For
each meet(A;B) and covered(A;B) in ' we choose a witness
point pA;B 2 @A \ @B. Let

"1 = minfd(@A; @B) : ' contains disjoint(A;B); or

inside(A;B)g

"2 = minfdist(A \ @B; @A) : ' contains overlap(A;B)g

Note that "1 > 0, since boundaries are closed and disjoint.
Also "2 > 0, since there is a point in A\@B which is inside A.
Let " = 1=2minf"1; "2g. If B is a region with dist(B;Ai) � "
then

inside(Ai; Aj)) inside(B;Aj)
inside(Aj ; Ai)) inside(Aj ; B)
disjoint(Ai; Aj)) disjoint(B;Aj)
overlap(Ai; Aj)) overlap(B;Aj)

(1)

Unfortunately the same is not true for meet and covered.
We will redraw the regions one by one, removing unneces-
sary contact points while preserving the meet and covered
relationships.
Suppose then that for A1; : : : ; Ai�1 the only contact points

on their boundaries are witness points. We will show how to
redraw Ai to make this true for A1; : : : ; Ai while preserving
that A1; : : : AjIj realize '.
Let  : D 7! Ai be the homeomorphism of the unit

closed disc to Ai. Using the Jordan-Schoenies theorem
we extend  to a homeomorphism of the whole plane to
itself which we call  again. Since  is uniformly contin-
uous, there exists � such that if (1 � �)D � E � D then
dist( (E); Ai) < ". Let F be the union of  �1(Aj) for which
there is covered(Ai; Aj). By our assumption F\@D contains
only witness points. Choose E such that F [ (1 � �)D �
E � D and E intersects @D only in witness points. Replace
Ai by  (E). By the implications in (1) all inside, disjoints
and overlaps are preserved. Because E contains all witness
points for region Ai all covered and meet relations are sat-
is�ed, and only the witness points are contact points of Ai.
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Since contact points of Aj ; j < i did not change, this will
be true after redrawing all regions.

Before we prove the main result we need to introduce a
variant of realizability. Let (G;R; S) be such that R; S ��
E

2

�
, and R\S = ;. We call (G;R; S) realizable if G can be

drawn in the plane, such that only the pairs of edges in R[S
intersect, and all the pairs of edges in S do intersect. It is
easy to see that this variant can also be decided in NEXP,
since the same exponential upper bounds on the intersection
number applies.

Theorem 5.2. The realizability of a topological expres-
sion can be decided in NEXP.

Proof. Given a topological expression ' over variables
(Ai)i2I we have to decide whether it can be realized by
regions in the plane. We begin by simplifying ', and then we
show how to reduce the problem to a realizability problem
(G;R; S) which we know to be decidable in NEXP by the
remarks preceding the theorem.
We can assume that ' is a logically consistent formula in

conjunctive normal form, and does not contain any nega-
tions (substitute any negation with a disjunction of all the
other predicates). In NEXP we can verify consistency, and
do not need to worry about the possibly exponential blow-
up in formula length in converting a formula to conjunctive
normal form. Now realizability of ' means realizability of
any of its clauses, hence we need only consider the case that
' is a single clause, and an explicit clause at that (we can
guess the relationships that are not given). Furthermore
we remove the relation of equality from ' by renaming of
variables, and substitute any occurrence of cover(B;A) with
covered(A;B), and contains(B;A) by inside(A;B).
Summarizing the steps, we can assume that ' is an ex-

plicit, conjunctive formula containing only positive occur-
rences of the relations disjoint;meet; covered; overlap; inside.
Suppose that a topological graph (G;R; S) satis�es:

(}) There are vertices z; z1; z2; z3 in G connected to each
other by edges which may not intersect any other edges.

� For each region Ri there is a vertex ci (center) and a circle
graph Bi (boundary) with at least 3 vertices, and no
two edges of Bi may intersect.

(|) Each vertex in Bi is connected to ci; z1; z2; z3; these
edges are not allowed to intersect the boundary Bi,
and no edge with endpoint ci may intersect an edge
with endpoint z1; z2, or z3.

(O) The boundaries Bi; Bj may share vertices unless
disjoint(Ri; Rj), or inside(Ri; Rj) is contained in '.

(M) Edges of Bi; Bj may intersect only if ' contains
overlap(Ri; Rj).

� We say that a vertex v is an in-Ri-witness (out-Ri-witness)
if it does not belong to Bi and is adjacent to ci (z1; z2,
and z3, rsp.) using an edge (edges, rsp.) which are not
allowed to intersect Bi.

(�) If ' contains meet(Ri; Rj) or cover(Ri; Rj) then Bi and
Bj share at least one common vertex.

� If disjoint(Ri; Rj) is in ', then there is an out-Ri-witness
on Bj , and an out-Rj-witness on Bi. If inside(Ri; Rj)
then there is in-Rj-witness on Bi. If meet(Ri; Rj),
then there is an out-Ri-witness on Bj between any
two vertices shared with Bi, and an out-Rj-witness
on Bi between any two vertices shared with Bj . If
covered(Ri; Rj) then there is an in-Ri-witness on the
boundary of Bj between any two vertices shared with
Bi. If overlap(Ri; Rj) then there is an in-Ri witness
and an out-Ri witness on the boundary of Rj , and vice
versa.

We claim that if (G;R; S) has a weak realization then '
can be realized as an Euler diagram. Take the weak real-
ization of (G;R; S). We can assume that z lies outside the
triangle z1; z2; z3. Hence by (}) all other vertices and edges
lie inside the triangle. Because of (|) vertex ci must lie in-
side of Bi (z1; z2; and z3 being outside). Let region Ri be
the interior of Bi together with its boundary. Clearly any
in-Ri-witness lies inside Ri, and any out-Ri-witness lies out-
side Ri. For inside(Ri; Rj); and disjoint(Ri; Rj) boundaries
cannot intersect and therefore the in/out-witnesses guaran-
tee the correct relationship. For overlap(Ri; Rj) we have
in/out-witnesses of overlap. For meet(Ri; Rj) the interior
of Ri cannot intersect Rj , and vice versa because of the
out-witnesses; similarly for covered(Ri; Rj).
Now we will show that if ' has Euler diagram then there

is (G;R;S) satisfying above conditions which is small. This
would imply that the problem is in NEXP, because we can
guess (G;R;S).
First redraw the graph using Lemma 5.1 so that the num-

ber of contact points is at most jIj2. Enclose the diagram
with large region Z, on @Z choose three points z1; z2; z3,
choose z outside Z and connect z to z1; z2; z3 with edges
outside Z. Choose ci inside each Ri. Now we will choose
vertices on each @Ri and connect them to z1; z2; z3 with
edges inside Z � Ri and to ci with edges inside Ri (thus
(|) is satis�ed). Clearly (O) is satis�ed. All contact points
will be chosen on each @Ri. This satis�es (�) and also
(M), because we know that if two edges intersect then they
intersect in an intersection point of their boundaries. If
less than 3 points were chosen on @Ri, choose some more.
Now it is routine check to see that we can choose in/out
witnesses for disjoint(Ri; Rj), inside(Ri; Rj), meet(Ri; Rj),
covered(Ri; Rj), and overlap(Ri; Rj). Note that we chose at
most jIj2 witnesses and at most jIj4 in/out witnesses. Hence
(G;R; S) is small and we can guess it in NEXP.

6. OPEN QUESTIONS
While it is satisfying to know that string graphs can be

e�ectively recognized, the gap between NP and NEXP is
large, and a more precise classi�cation is called for. We
know that we will not be able to reduce the upper bound on
the number of intersections signi�cantly, so it might seem
that NEXP is the best upper bound we can expect from
a combinatorial argument, but this intuition might be mis-
leading as was demonstrated in the case of recognizing the
unknot (Hass, Lagarias, Pippinger [10]).
Kratochv��l [13] suggested a di�erent approach to obtain-

ing an exponential upper bound. He conjectured that in
any smallest weak realization of a (G;R) any edge crossed
at least once is crossed exactly once by some other edge. He
shows that his conjecture implies cw(m) � m(2m�1 � 1)=2.
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A topological generalization of the string graph problem
remains open: is the recognition problem decidable on sur-
faces of higher genus? Our proof essentially relies on the in-
version operation which will not be available to us (at least
not in the straightforward manner we used it) in surfaces
other than the 2-sphere.
From a logical point of view we have shown that the ex-

istential theories of strings and diagrams are decidable (in
NEXP). The natural question here is what happens if addi-
tional quanti�ers are allowed? As it turns out both theories
become undecidable (indeed as hard as second-order arith-
metic), as we will show in the journal version of the paper.
We mentioned earlier the problem of computing the cross-

ing number of a graph (the smallest number of intersections
necessary to draw the graph in the plane). This problem has
long been known to be NP-complete. Martin Grohe [9] re-
cently showed it to be solvable in time O(f(k)n2) (where k is

the number of intersections, and f(k) = O(22
p(k)

), for some
polynomial p), implying that it is �xed parameter tractable,
since for �xed k the complexity is quadratic. We can obtain
an interesting variant of the crossing number problem by
asking for the smallest number of pairs of edges that need
to intersect to draw the graph in the plane (where each such
pair can intersect any number of times). Call this the cross-
ing pairs number of a graph G. Our proof technique implies
that if there is a drawing of G in which at most k pairs of
edges intersect, then there is a drawing of G with at most
2k22k intersections. We can then use Grohe's result to con-
clude that the crossing pairs number of a graph G is �xed
parameter tractable. We do not know, however, whether
this problem is NP-hard, or even in NP.
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