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Abstract
We introduce a new graph polynomial that encodes interesting properties of graphs, for example,
the number of matchings, the number of perfect matchings, and, for bipartite graphs, the number
of independent sets (#BIS).

We analyze the complexity of exact evaluation of the polynomial at rational points and
show a dichotomy result—for most points exact evaluation is #P-hard (assuming the generalized
Riemann hypothesis) and for the rest of the points exact evaluation is trivial.

We propose a natural Markov chain to approximately evaluate the polynomial for a range of
parameters. We prove an upper bound on the mixing time of the Markov chain on trees. As a
by-product we show that the “single bond flip” Markov chain for the random cluster model is
rapidly mixing on constant tree-width graphs.
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1 Introduction

Graph polynomials are a well-developed area useful for analyzing properties of graphs
(see, e. g., [7, 8] and [18]). Arguably the most intriguing graph polynomial is the Tutte
polynomial [24, 25]. The partition function of the random cluster model from statistical
mechanics provides a particularly simple definition: for a graph G = (V,E) let

Z(G; q, µ) =
∑
S⊆E

qκ(S)µ|S|, (1)

where κ(S) is the number of connected components of the graph (V, S). It is well-known
that the Tutte polynomial is obtained from Z by a simple transformation, see, e. g., [28].
The Tutte polynomial includes many graph polynomials as special cases, e. g., the chromatic
polynomial, the flow polynomial, and the Potts model (see, e. g., [28]).

Now we define our graph polynomial.

I Definition 1. The R2-polynomial of a graph G = (V,E) is

R2(G; q, µ) =
∑
S⊆E

qrk2(S)µ|S|, (2)
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where rk2(S) is the rank of the adjacency matrix of (V, S) over F2 (the field with 2 elements).

The most interesting fact about the R2 polynomial is that for bipartite graphs it encodes
the number of independent sets (see Theorem 4 below). We are not aware of any other
graph polynomial that encodes the number of independent sets in a non-obvious manner.
(The independence polynomial of graph G is I(G;x) =

∑
k skx

k, where sk is the number of
independent sets of G of size k; here, obviously I(G, 1) counts the number of independent
sets of G.)

To illustrate a difference between the random cluster polynomial and the R2-polynomial
we provide a few small examples. Note that P4 and claw graph (one vertex attached to 3
other vertices) have the same random cluster polynomial whereas C3 and claw graph have
the same R2-polynomial.

Random cluster polynomial R2 polynomial
claw graph (µ+ q)3q (µ3 + 3µ2 + 3µ)q2 + 1
path P4 (µ+ q)3q (µ3 + µ2)q4 + (2µ2 + 3µ)q2 + 1
cycle C3 q3 + 3µq2 + (µ3 + 3µ2)q (µ3 + 3µ2 + 3µ)q2 + 1

2 Our results

Now we look at how R2(G; q, µ) encodes some properties of graphs.

I Lemma 2. Substituting q = µ−1/2 into equation (2) we define

P (G;µ) := R2(G;µ−1/2, µ) =
∑

S⊆E(G)

µ|S|−rk2(S)/2.

Then P (G; 0) is the number of matchings in G.

Proof. Note that rk2(S) ≤ 2|S| (since adding an edge to S changes two entries in the
adjacency matrix and hence can change rank by at most two), and rk2(S) < 2|S| if S is not
a matching (since rank of the adjacency matrix of a star is 2 < 2|S|, and adding further
edges preserves the strict inequality). J

I Lemma 3. Let

P (G; t, µ) := t|V |R2(G; 1/t, µ) and P2(G;µ) := µ−|V |/2P (G; 0, µ).

Then P2(G; 0) is the number of perfect matchings of G.

Proof. Note that only subsets with full rank adjacency matrix contribute to P (G; 0, µ), and
then only the minimal cardinality subsets with full rank adjacency matrix contribute to
P2(G; 0) (these subsets are exactly the perfect matchings). J

From now on we focus solely on bipartite graphs. For a bipartite graph G = (U ∪W,E)
we let

R′2(G;λ, µ) =
∑
S⊆E

λrk2(S)µ|S|, (3)

where rk2(S) is the rank of the bipartite adjacency matrix of (U ∪W,S). Note that

R2(G;λ, µ) = R′2(G;λ2, µ), (4)
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since the adjacency matrix contains “two copies” of the bipartite adjacency matrix (one of
them transposed). (The reason for definition (3) is that we prefer to operate with bipartite
adjacency matrix for bipartite graphs.)

In Section 3 we prove that R′2 counts the number of independent sets in bipartite graphs.

I Theorem 4. Let G = (U ∪W,E) be a bipartite graph. The number of independent sets of
G is given by 2|U |+|W |−|E|R′2(G; 1/2, 1).

Exact evaluation of the polynomial R′2(G;λ, µ) is #P-hard at a variety of rational points
(λ, µ) assuming the validity of the generalized Riemann hypothesis (GRH). The result is
summarized in the following theorem.

I Theorem 5. Exact evaluation of R′2 at rational point (λ, µ) is
polynomial-time computable when λ ∈ {0, 1} or µ = 0 or (λ, µ) = (1/2,−1);
#P-hard when λ 6∈ {0, 1, 1/2} and µ 6= 0, assuming GRH;
#P-hard when λ = 1/2 and µ 6∈ {0,−1}.

I Remark. For the non-bipartite case we have the following classification. Exact evaluation
of R2 at rational point (λ, µ) is polynomial-time computable when µ = 0 or λ ∈ {−1, 0, 1};
the λ = −1 case follows from the fact that a skew-symmetric matrix with zero diagonal has
even rank over any field (the zero diagonal condition is redundant for fields of characteristic
6= 2). For any other rational λ and µ we get #P-hardness of evaluating the R2 polynomial
from Theorem 5 and (4) (again assuming GRH). (Note that (λ, µ) 7→ (λ2, µ) never maps to
the easy case (1/2,−1), since λ is rational. It would be nice to have hardness classification
of evaluating R2 and R′2 for, say, algebraic λ and µ.)

Because of the hardness of exact evaluation of R′2, we turn to approximate evaluation of
R′2(G;λ, µ).

We now define the sampling problem associated with R′2.

Rank Weighed Subgraphs with λ, µ ≥ 0, (RWS(λ, µ))
Instance: a bipartite graph G = (U ∪W,E),
Output: S ⊆ E with probability of S ∝ λrk2(S)µ|S|.

The “single bond flip” chain is a natural approach to sampling from RWS(λ, µ).

I Definition 6. Single bond flip chain is defined as follows: pick an edge e ∈ E at random
and let S = Xt ⊕ {e}. Set Xt+1 = S with probability

(1/2) min{1, λrk2(S)−rk2(Xt)µ|S|−|Xt|}

and Xt+1 = Xt with the remaining probability.

In each step of the single bond flip chain, we have to compute the rank of a matrix over F2
(corresponding to S) which differs from the current matrix (corresponding to Xt) in a single
entry. One can use dynamic matrix rank problem algorithms to perform this computation in
O(n1.575) arithmetic operations per step [9].

Instead of flipping one edge in a step, we can have another Markov chain which flips a
random subset of edges adjacent to a single vertex. It seems likely that the new chain can
generate good random samples faster than the single bond flip chain—a step of the new
chain can be performed in O(n2) arithmetic operations (using “rank one update” for the
dynamic matrix rank problem [9]).

We consider the following question.
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I Question 1. For which classes of bipartite graphs does the single bond flip chain mix?
In Section 5 we prove that for fixed λ, µ > 0 the single bond flip chain mixes, in time

polynomial in the number of vertices, for trees. The next theorem is motivated by Question 1,
(R′2 polynomial can be evaluated in polynomial time on trees).

I Theorem 7. For every fixed λ, µ > 0, the mixing time τ(ε) of the single bond flip chain
for a tree on n vertices is

τ(ε) = O
(
n3+| log2 λ|(| log λ|+ | logµ|+ log(1/ε))

)
.

I Remark. Goldberg and Jerrum [12] recently showed that there exist bipartite graphs for
which the single bond flip chain needs exponential time to mix for λ = 1/2 and µ = 1 (which
is the most interesting setting of λ and µ). Question 1 is still relevant—there may exist
interesting classes of graphs for which the chain mixes.

As a by-product of our techniques, we show that single bond flip Markov chain for the
random cluster model is rapidly mixing if q, µ > 0 and G has constant tree-width (the
condition q, µ > 0 is equivalent to x, y > 1 for the Tutte polynomial T (G;x, y)).

Due to page limitation, we omit most of the proofs. Refer to [10] for a full version.

3 Independent sets in bipartite graphs

The problem of counting independent sets (#IS) in a graph is of interest in both computer
science and statistical physics (independent sets are a special case of the so-called hard-core
model, see, e. g., [1]). Exact computation of #IS is #P-complete even for 3-regular planar
bipartite graphs [26, 29]. Fully polynomial randomized approximation scheme (FPRAS) is
known for graphs with maximum degree ∆ ≤ 5, [17, 6, 27]. Unless NP=RP, an FPRAS does
not exist for graphs with ∆ ≥ 6, [3, 21] .

Now we focus on the problem of counting independent sets in bipartite graphs (#BIS).
While for exact counting the complexity of #BIS and #IS is the same, the situation looks
very different for approximate counting, for example, no inapproximability result is known for
#BIS. Dyer et al. [4] show that #BIS is complete w.r.t. approximation-preserving reductions
(AP-reductions) in a sub-class of #P. Many problems were shown to be equivalent (w.r.t.
AP-reductions) to #BIS, for example, #Downsets, #1p1nSat [4], computing the partition
function of a ferromagnetic Ising model with local fields [11], and counting the number of
satisfying assignments of a class of Boolean CSP instances [5]. A pertinent negative result for
#BIS is that Glauber dynamics (or more generally, any chain whose states are independent
sets and that flips at most 0.35n vertices in one step) cannot be used to efficiently sample
random independent sets in a random 6-regular bipartite graphs on n+ n vertices [3].

The rest of this section is devoted to proving Theorem 4. It will be convenient to work with
matrices instead of graphs. For two zero-one matrices A,B we say B ≤ A if B corresponds
to a subgraph of A, formally

I Definition 8. Let A,B be zero-one n1 × n2 matrices. We say B ≤ A if Aij = 0 implies
Bij = 0, for all i ∈ [n1] and j ∈ [n2]. Let CA be the set of zero-one n1 × n2 matrices B such
that B ≤ A.

Let #1(A) denote the number of ones in A (that is, the number of edges in the corre-
sponding graph). The RWS problem rephrased for matrices is:

Rank Weighed Matrices with λ, µ ≥ 0 (RWM(λ, µ))
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Instance: an n1 × n2 matrix A.
Output: B ∈ CA with probability of B ∝ λrk2(B)µ#1(B).

The problem of sampling independent sets in bipartite graphs is:

Bipartite Independent Sets (BIS)
Instance: a bipartite graph G = (U ∪W,E).
Output: a uniformly random independent set of G.

Before we show a connection between BIS and RWM(1/2, 1) we remark that to sample
bipartite independent sets it is enough to sample a subset of one side, say U , from the
correct (marginal) distribution. We now describe this distribution in a setting which will be
advantageous for the proof of Theorem 4.

We will represent an independent set by a pair of (indicator) vectors u, v (where u ∈ Fn1
2

and v ∈ Fn2
2 ).

I Definition 9. We say that two vectors α, β ∈ Fn2 share a one if there exists i ∈ [n] such
that αi = βi = 1.

We will use the following simple fact.
I Observation 1. Let α, β ∈ Fn2 . Let d be the number of ones in β. If α, β share a one then
there are 2d−1 vectors β′ ≤ β such that αTβ′ ≡ 0 mod 2. If α, β do not share a one then
there are 2d vectors β′ ≤ β such that αTβ′ ≡ 0 mod 2.

Let u ∈ Fn1
2 be a vector. We would like to count the number of v ∈ Fn2

2 such that u, v is
an independent set. Note that u, v is an independent set iff vj = 0 for every j ∈ [n2] such
that u and j-th column of A share a one. Let k be the number of columns of A that do not
share a one with u. Then we have

u ∈ Fn1
2 occurs in 2k independent sets. (5)

Thus to sample independent sets in a bipartite graph G with n1 × n2 bipartite adjacency
matrix A it is enough to sample u ∈ Fn1

2 with the probability of u proportional to 2k, where
k is the number of columns of A that do not share a one with u. We will call this distribution
on u the marginal BIS distribution.

The following lemma shows a tight connection between BIS and RWM(1/2, 1)—given a
sample from one distribution it is trivial to obtain a sample from the other one.

I Lemma 10. Let G be a bipartite graph with bipartite adjacency matrix A.
Let u, v be a uniformly random independent set of G. Let B be a uniformly random matrix
from the following set {D ∈ CA |uTD ≡ 0 mod 2}. Then B is from the RWM(1/2, 1)-
distribution.
Let B ∈ CA be a random matrix from the RWM(1/2, 1)-distribution. Let u ∈ Fn1

2 be
a uniformly random vector from the left null space of B (that is, {β ∈ Fn1

2 |βTB ≡ 0
mod 2}). Then u is from the marginal BIS distribution.

Proof. Let Q be the set of u,B pairs such that uTB ≡ 0 mod 2 and B ≤ A. Let ψ be
the uniform distribution on Q. Note that ψ marginalized over u yields the RWM(1/2, 1)-
distribution on B ≤ A, here we are using the fact that a d-dimensional space (in this case
the left null space of B) over F2 has 2d elements. Formally,

P (B) =
∑

u:uTB≡0 mod 2

1
|Q|

= 2n1−rk2(B)

|Q|
= 2−rk2(B)

R′2(G; 1/2, 1) . (6)
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Next we show that ψ marginalized over B yields the marginal BIS distribution. We compute
the number of B ≤ A such that uTB ≡ 0 mod 2. Let us use the same k as in (5), that is, k
is the number of columns of A that do not share a one with u.

Note that the columns of B can be chosen independently and only if the column and u
share a one is the number of choices (for that column) halved. Let #1(A) be the number of
ones in A. Thus

there are 2#1(A)−(n2−k) choices of B ≤ A such that uTB ≡ 0 mod 2. (7)

Note that for fixed u the counts in (5) and (7) differ by a factor of 2#1(A)−n2 (which is
independent of u). Thus ψ marginalized over B yields the marginal BIS distribution on u.
Formally

P (u) = 2#1(A)−(n2−k)

|Q|
= 2k

#BIS(G) . (8)

Note that this proves both claims of the lemma since in both cases the u,B pair is from
ψ (by first sampling from a marginal and then sampling the remaining variable) and the
conclusion in both claims is a statement about marginal (of the remaining variable). J

Theorem 4 now follows from the proof of Lemma 10.

Proof of Theorem 4. Let Q be the set from the proof of Lemma 10. From (6) we obtain

|Q| = R′2(G; 1/2, 1)2n1 . (9)

From (8) we have that the number of independent sets of G is given by

#BIS(G) = |Q|
2#1(A)−n2

. (10)

Combining (9) and (10) we obtain the theorem. J

We do not know a good combinatorial interpretation for the mod-2 rank of B for
general graphs. For forests (which are, of course, always bipartite) we have the following
characterization.

I Lemma 11. Let G = (V,E) = (U ∪W,E) be a forest with bipartite adjacency matrix A.
Then rk2(A) is the size of maximum matching in G.

Proof. Let a ∈ V be a leaf of G and let e = {a, b} ∈ E be the edge adjacent to a. Note
that b is matched in every maximum matching M (otherwise one could add e to M). Thus
removing b and all adjacent edges decreases the size of maximum matching by 1.

Now we argue that removing b (and all adjacent edges) also decreases rank (over F2) by
1. W.l.o.g. assume that b corresponds to the first row and a corresponds to the first column.
Removing b (and all adjacent edges) corresponds to removing the first row of A. Note that
this decreases rank by at most 1 and it does decrease it by 1, since the only non-zero entry
in the first column is in the first row. J
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4 The linear-width of a graph

For the proof of Theorem 7 we will use the linear-width of a graph, a concept which was
first defined by Thomas [23]. In this section we prove a bound on linear-width in terms of
tree-width.

The linear-width of a graph G = (V,E) is the smallest integer ` such that the edges of
G can be arranged in a linear order e1, . . . , em in such a way that, for every i ∈ [m], there
are at most ` vertices that have an adjacent edge in {e1, . . . , ei−1} and an adjacent edge in
{ei, . . . , em}. It is known that computing the linear-width of a graph is NP-complete [22].
For paths and cycles the linear-width is easy to compute.

I Example 12. The linear-width of a path is 1. The linear-width of a cycle is 2.

Let e1, . . . , em be a permutation of the edges of G = (V,E). We say that a vertex v ∈ V
is dangerous w.r.t. i ∈ [m], if there exist two edges ej , ek adjacent to v such that j < i ≤ k.
Let Di be the set of vertices which are dangerous w.r.t. i. Note that the linear-width of G is
the minimum value of maxi |Di| optimized over all permutations of the edges.

Now we give an upper bound on the linear-width for trees.

I Lemma 13. Let T = (V,E) be a tree on n vertices. The linear-width of T is at most
blog2 nc.

For general graphs we will show a generalization of Lemma 13: a bound on the linear-
width of G in terms of the tree-width of G. We now define tree-width (see, e. g., [16] for a
nice treatment).

Given a graph G = (V,E), a tree decomposition of G is a pair (T, {Uh}h∈VT
) where

T = (VT , ET ) is a tree and Uh ⊆ V satisfy: (i) each edge of G is in at least one subgraph
induced by Uh; and (ii) for any three vertices t1, t2, t3 of T such that t2 is in the path between
t1 and t3 in T we have Ut1∩Ut3 ⊆ Ut2 . The width of a decomposition is maxh∈VT

|Uh|−1. The
tree-width of G (denoted tw(G)) is the minimum width optimized over all tree decompositions.

I Lemma 14. Let G = (V,E) be a graph. Then

linear-width(G) ≤ (tw(G) + 1)(blog2 nc+ 1).

5 Analysis of the single bond flip chain for trees

Given a tree G = (V,E), let Ω be the set of 2|E| subsets of E. By Lemma 11, for every
H ⊆ E, we know that rk2(H) is the size of maximum matching of the subgraph (V,H). Let
w(H) be the size of maximum matching in a graph (V,H). Let P be the transition matrix
of the single bond flip Markov chainM from definition 6. It’s easy to see thatM is ergodic
with unique stationary distribution π such that π(H) ∝ λw(H)µ|E|.

The goal of this section is to prove Theorem 7.

5.1 The canonical paths

We will bound the mixing time of our chainM using the canonical paths method, introduced
in [2, 20, 15]. Now we go over the basic definitions for Markov chains, see, e. g., [14] for a
comprehensive background.
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I Definition 15. The total variation distance of two probability distribution ν and ν′ on Ω
is

‖ν − ν′‖TV = 1
2
∑
H∈Ω
|ν(H)− ν′(H)| = max

S⊆Ω
|ν(S)− ν′(S)|.

I Definition 16. The mixing time from initial state H, τH(ε), is defined as

τH(ε) = min{t : ‖P t(H, ·)− π‖TV ≤ ε},

and the mixing time τ(ε) of the chain is defined as τ(ε) = maxH∈Ω{τH(ε)}.

Let σ = e1, . . . , em be an ordering of the edges of G = (V,E) (we will usually use the
orderings supplied by Lemma 13 or Lemma 14). Given any pair I, F ∈ Ω, let I ⊕ F be the
symmetric difference of I and F (that is, the set of edges which are in either I or F but not
in both). We define a canonical path γI,F between I and F as follows. Let ei1 , . . . , eik be
the edges from I ⊕ F ordered according to σ (that is, i1 < i2 < · · · < ik). Let

γI,F = (H0, H1, . . . ,Hk), (11)

where H0 = I, Hk = F and Hj = Hj−1 ⊕ {eij}.

I Lemma 17. Let G = (V,E) be a graph. Let σ = e1, . . . , em be an ordering on E with
linear-width `. Let I, F be subsets of E and let H be on the canonical path (11) (that is,
H = Hj for some j ∈ {0, . . . , k}). Then

|w(I) + w(F )− w(H)− w(C)| ≤ `,

where C = I ⊕ F ⊕H, (and w(S) is the size of the maximum matching in (V, S)).

Proof. Let Q = {e1, . . . , eij}. Note that H = (F ∩Q)∪ (I∩Qc), where Qc is the complement
of Q (that is, E \Q). Similarly, C = (I ∩Q) ∪ (F ∩Qc).

Let D be the set of dangerous vertices w.r.t. eij+1. Let MI and MF be maximum
matchings of I and F , respectively. Let

MH = (MF ∩Q) ∪ (MI ∩Qc) and MC = (MI ∩Q) ∪ (MF ∩Qc).

Note that all vertices of MH with degree ≥ 2 are in D (a vertex which is not D has all
adjacent edges (in G) from Q or from Qc and hence the adjacent edges (in MH) agree with
MI or MF ). The same is true for MC . Moreover if a vertex v ∈ D has degree 2 in MH then
it has degree 0 in MC . Thus by removing ≤ |D| edges from MH and MC we can turn both
of them into matchings. Thus

w(H) + w(C) ≥ w(I) + w(F )− |D| ≥ w(I) + w(F )− `. (12)

Note that a canonical path from I ′ := H to F ′ := C passes through H ′ := I (with
C ′ := I ′ ⊕ F ′ ⊕H ′ = F ). Thus

w(I) + w(F ) = w(H ′) + w(C ′) ≥ w(I ′) + w(F ′)− ` = w(H) + w(C)− `. (13)

Combining (12) and (13) we get the lemma. J
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5.2 The congestion of M
Now we analyze the congestion of the collection Γ = {γI,F | I, F ∈ Ω} where γI,F are
canonical paths defined in (11). For each transition (H,H ′) such that P (H,H ′) > 0, let
cp(H,H ′) be the set of pairs (I, F ) such that (H,H ′) ∈ γI,F . The congestion of Γ on (H,H ′)
is (see, e. g., [14])

%(H,H′) = 1
P (H,H ′)

∑
I,F :(H,H′)∈γI,F

π(I)π(F )
π(H) |γI,F |, (14)

where |γI,F | is the length of γI,F . The congestion of Γ is defined as

% := max
(H,H′):

P (H,H′)>0

%(H,H′).

We will use the following connection between the congestion and the mixing time.

I Theorem 18 ([2, 20]). τH(ε) ≤ %(log(1/π(H)) + log(1/ε)) for each starting state H ∈ Ω.

At the end of this section we prove the following bound on the congestion of Γ.

I Lemma 19. Let G = (V,E) be a graph. Let σ = e1, . . . , em be an ordering on E with
linear-width `. For every (H,H ′) such that P (H,H ′) > 0, and for every λ, µ > 0 we have
%(H,H′) ≤ 2|E|2λ̄`, where λ̄ = max{λ, 1/λ}.

We can now prove Theorem 7.

Proof of Theorem 7. Since G = (V,E) is a tree, by Lemma 13, we have ` ≤ blog2 nc, by
Lemma 19, we have

% ≤ 2|E|2λ̄` ≤ 2|E|2n| log2 λ| ≤ 2n2+| log2 λ|.

Theorem 7 now follows from Theorem 18. J

Now we bound the congestion of our canonical paths.

Proof of Lemma 19. We will bound %(H,H′) for every (H,H ′) such that P (H,H ′) > 0. Let
Ĥ = H if π(H) ≤ π(H ′) and Ĥ = H ′ otherwise. Note that

π(Ĥ)
2|E| = π(H)P (H,H ′) = π(H ′)P (H ′, H), (15)

sinceM is reversible. We define a mapping f : cp(H,H ′)→ Ω such that f(I, F ) = I⊕F ⊕ Ĥ
for every pair (I, F ) ∈ cp(H,H ′).

First, note that f is an injection. Given J ∈ Ω we can determine the unique I, F such
that f(I, F ) = J , by first computing J ⊕ Ĥ, and the using the ordering σ on the edges of G
to recover I and F .

Note that

|I|+ |F | = |Ĥ|+ |f(I, F )|, (16)

and

|w(I) + w(F )− w(Ĥ)− w(f(I, F ))| ≤ `, (17)
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where (17) follows from Lemma 17.
Let L =

∑
J λ

w(J)µ|J|. We have the following upper bound on %(H,H′). By (14) and (15),
we have

%(H,H′) = 2|E|
∑

(I,F )∈cp(H,H′)

π(I)π(F )
π(Ĥ)

|γI,F |

= 2|E|2
∑

(I,F )∈cp(H,H′)

λw(I)+w(F )−w(Ĥ)µ|I|+|F |−|Ĥ|

L

≤ 2|E|2λ̄`
∑

(I,F )∈cp(H,H′)

λw(f(I,F ))µ|f(I,F )|

L
(18)

≤ 2|E|2λ̄`, (19)

where (18) follows from (16) and (17), and (19) follows from the fact that f is an injection
from cp(H,H ′) to Ω. J

6 Conclusions

We conclude with an observation that a generalization of RWM(λ, µ) does not have an
FPRAS (unless NP=RP) and a few questions.

Let A be an m× n matrix whose entries are zeros, ones, and indeterminates, where each
indeterminate occurs once. A completion of A is a substitution of 0, 1 to all the indeterminates
in A. We denote CA to be the set of all completions of A. Let rk2(B) be the rank of B
over F2. Can we sample B from CA with the probability of B proportional to λrk2(B)? Note
that this problem is a generalization of the RWM(λ, 1) problem. It turns out that finding
the minimum rank completion of a matrix is NP-hard (Proposition 2.1, [19]) and hence a
sampler is unlikely (unless NP=RP), since for λ = 2−n2 a random completion will be the
minimum rank completion (with constant probability). The sampling problem could be easy
for sufficiently large λ (the problem of finding maximum rank completion is in P, see, e. g.,
Section 4.1 of [13]).

I Question 2. What other interesting properties are encoded by the polynomial?

I Question 3. Can one sample maximum rank completions of a matrix?

I Question 4. Is the exact evaluation of the polynomial easy for bounded tree-width graphs?
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