
Self-Hosted Quantum Program Optimization

Liam Heeger (lheeger@u.rochester.edu)

Department of Computer Science
University of Rochester

Supervised by:
Sreepathi Pai
Ted Pawlicki

May 1, 2020

Chapter 1

Abstract

We propose a system to optimize quantum programs using quantum computing hardware
to augment the optimization process. Current limitations of quantum computing hardware
constrain the maximum program length and memory resources available to programs. These
limitations can be overcome in many cases when optimization of the quantum program is
performed. Such a process can increase the usability of the given hardware by decreas-
ing the program’s resource usage. This optimization procedure, given a quantum program
and target quantum hardware description, formulates a constraint satisfaction problem. We
solve the constraint problem given using quantum algorithms. The result is a resource opti-
mized quantum program for the desired hardware. Using quantum algorithms we can realize
speedups in compilation runtime over similar classical optimization approaches. Through
experimentation, our implementation shows that runtime speedup is possible and that our
constraint model outperforms other common approaches to quantum program optimization.

1

Contents

1 Abstract 1

2 Introduction 5
2.1 Motivation . 5

2.1.1 Motivating Quantum Program Optimization 6
2.1.2 Significance of Self-Hosting . 7

2.2 Concepts and Notation . 8
2.2.1 Qubits . 8
2.2.2 Quantum Gates . 8
2.2.3 Quantum Programs . 9
2.2.4 Boolean Satisfiability . 9

3 Background 11
3.1 Quantum Program Optimization . 11

3.1.1 Template-Based Simplification . 11
3.1.2 Constraint Based . 11
3.1.3 Minimum Linear Arrangements . 12
3.1.4 Gate Transformation and Commutation 12
3.1.5 Temporal Planners . 12

3.2 Quantum Satisfiability Algorithms . 12
3.2.1 Grover’s Algorithm . 13
3.2.2 Quantum Backtracking . 13
3.2.3 Quantum Approximate Optimization 14
3.2.4 Quantum Genetic Algorithms . 14

4 Quantum Program Optimization 15
4.1 Introduction . 15
4.2 Procedure for Self-Hosted Quantum Optimizations 15
4.3 Controller for Optimization Solver . 17

4.3.1 Objective Optimization . 19
4.4 Conversion from Optimizer Solution to Optimized Circuit 19

5 Quantum Program Solver 20
5.1 Introduction . 20
5.2 Limitations . 20

2

5.3 Hybrid Solver . 22
5.4 Implementation . 23

6 Quantum Program Constraint Model 25
6.1 Introduction . 25
6.2 Problem Statement . 25
6.3 Constructs . 26

6.3.1 Quantum Circuit . 26
6.3.2 Quantum Gate . 27
6.3.3 Quantum Device . 27
6.3.4 Time . 28

6.4 Variables . 29
6.4.1 Gate Start Time . 29
6.4.2 Gate Duration . 29
6.4.3 Synthesized Swap Gates . 29
6.4.4 Physical-to-Virtual Qubit Mappings 30

6.5 Constraints . 30
6.5.1 Bounded Gate Start Time and Duration 30
6.5.2 Swap Gate Duration . 31
6.5.3 Gate Duration . 31
6.5.4 Gate Input Adjacency . 32
6.5.5 Gate Input Matches Last Swap Layer 32
6.5.6 Gate Starts After All Prior Gates Finish 33
6.5.7 Swap Gate Insertion Unique For Swap Layer 33
6.5.8 Swap Gate Insertion Swaps Mappings 34

6.6 Optimization Criteria . 34
6.6.1 Minimum Number of Swap Gates Inserted 34
6.6.2 Minimum Circuit Depth . 34

7 Results 36
7.1 Introduction . 36
7.2 Experiments . 36

7.2.1 Experimental Design . 36
7.2.2 Experimental Results . 37

7.3 Interesting Instances . 39
7.3.1 Hard Instances . 40
7.3.2 Impossible Instances . 40

8 Future Work 42
8.1 Introduction . 42
8.2 Improvements to Hybrid Quantum-Classical Solver 42
8.3 Modeling Gate Commutation . 42
8.4 Modeling Physical Hardware Noise . 43
8.5 Modeling Gate Timing . 43
8.6 Simplifying Coupling Constraints through Inspection of Sub-graphs 44

3

8.7 Efficient Gate Compositions and Decompositions and Similar Cost Reductions 44
8.8 Modeling Subroutines . 45
8.9 Configurable Hardware Model . 45

9 Conclusion 46

10 Appendix A: System Architecture 47

Bibliography 48

4

Chapter 2

Introduction

As quantum computing hardware advances and improves each year, the need to accommo-
date larger problems at low cost will become apparent. In order to reduce resource usage by
quantum programs on quantum computers, we need to optimize these programs to consume
fewer resources. The resource we want to minimize usage of are similar to those we wish to
reconcile in classical computing program optimization: time and space.

We begin by prefacing the motivations for this work (section 2.1), with a brief discussion
of prior schemes for optimizing quantum programs. We then introduce several important
concepts that are common to quantum computing and notation relevant to this report (sec-
tion 2.2). This introduction ends with a discussion of background and prior work in this area
(chapter 3). The following chapter, chapter 4, details the architecture of the optimization
process that has been devised. In chapter 5, the quantum program optimization solver is
discussed in detail. This is succeeded in chapter 6 by a formalization of the constraint model
used in the program optimization procedure. Future work to be pursued follows in chapter 8
with a conclusion of the report in chapter 9. Lastly, an appendix displaying a flow-chart
diagram of the system architecture can be found in chapter 10.

2.1 Motivation
Quantum computers are known to be able to solve some problems quicker than classical
computers. An example of such a problem may be unordered database search. A classical
computer can solved by a linear search in runtime O(n). This problem can be solved a
quantum algorithm called Grover’s algorithm [1]. Grover’s algorithm for database search can
perform unordered lookup in quadratically less time than a classical algorithm. However,
like classical computers, quantum machines are bound by the resources they have available
to them. At the time of writing this is especially concerning as state-of-the-art quantum
computing hardware is not only limited in the number of qubits available (defined formally
in section 2.2) but is also prone to measurement noise.

Therefore, rigorous optimization of quantum programs is a necessity to obtaining the full
value of the available hardware. Making exacting optimizations can be costly on classical
computers, so we employ the quantum hardware itself to speed up this process.

5

Prior Work Numerous schemes for quantum program optimization have been proposed.
Some optimization techniques assume certain various hardware schemes [2, 3] and make
assumptions about the constraints on circuits [3,4]. Other systems’ aims are to generate more
efficient programs by making local optimizations [5], greedy optimization choices [6,7], and by
employing heuristic search [7,8]. We propose an approach to quantum program optimization
which generates highly optimized quantum programs for an arbitrary quantum computing
hardware specification. This approach models the optimization of the quantum program
as a constraint satisfaction problem. Critically, not only does this approach for optimizing
quantum programs work on classical machines, but can be significantly accelerated with the
use of a quantum computer itself. The proposed approach is highly extensible, configurable
and tunable for the needs of various applications.

2.1.1 Motivating Quantum Program Optimization
It is not immediately obvious the advantages and necessity for optimizing quantum programs,
but we argue that the cost reductions brought by a system such as the one we shall present
will be critical to the future of efficient (and cost effective) quantum computation. The
following are some issues with quantum computing that can be solved with optimization of
the quantum programs without advancements in hardware technology.

Time as a limited resource: Intrinsic to the quantum mechanical effects that quantum
computers operate using is the notion of quantum decoherence. Quantum decoherence is an
effect caused by the environment trying to “measure” a quantum state before the actual
quantum computer has a chance to measure it, destroying the computation result. This
is an issue in quantum computing hardware, and is being addressed with error correcting
qubits, and circuit optimization techniques. This process is probabilistic, and the longer our
quantum program runs, the higher the chance that the computation result will be corrupted.
A maximal run time for quantum programs for a given hardware is determined so that the
error rate of computation is not greater than some threshold (i.e. 1/3). Due to this error rate,
quantum computers sample measurements of many computations to approach on a correct
result. Program optimization techniques can be employed to reduce circuit computation
time, reducing result noise as well as transforming infeasibly long programs to ones that can
be executed.

Abstracting hardware architecture: These optimizations also abstract away the pro-
grammers need for full and explicit knowledge of the quantum computing hardware. This
makes programming for a quantum computer more accessible to those who may not need
to know about the hardware. This abstraction allows quantum programs to be written as a
virtual or logical design, which is later mapped to physical hardware by our system.

Solving hard satisfiability problems: Satisfiability (abbreviated SAT) is the problem of
finding an assignment to a set of variables that makes a formula true (see subsection 2.2.4 for
more information). Runtime for general Boolean SAT problems on classical computers runs
in exponential time (O(2n)). On a quantum computer, we can get a quadratic speedup for

6

this by performing Grover’s algorithm, arriving at a runtime of O(2n/2) [1]. If the satisfiability
problem is formulated carefully, quantum backtracking algorithms can potentially provide an
exponential decrease in runtime [9,10]. This can be used to solve larger problems in the same
amount of time. We will employ these algorithms to make quantum programs efficient, for the
given hardware. Using this scheme we can create a scalable quantum program optimization
system that can generate optimal programs, outperforming other state-of-the-art systems.

Self-hosting quantum circuit optimization: Using quantum computers to synthesize
optimal quantum programs is critical to increasing the complexity of quantum computations
that can be performed. Quantum hardware will always constrain the capability of quantum
programs, regardless of the technological advances made to quantum computing. By em-
ploying quantum satisfiability algorithms to find optimal quantum programs for an arbitrary
hardware, we allow for more exacting optimizations to be applied within a reasonable time.

2.1.2 Significance of Self-Hosting
Self-hosting can be described as the property of a system which is capable of using it’s own
resources to perform or improve its function 1. This concept can be expressed in many
modalities from compilers to operating system kernels. For example, we could construct
a C compiler in an assembly/machine language (called a bootstrapping compiler), then
rewrite the C compiler in the C programming language and compile it. The result of this
compilation would be a self-hosting C compiler. The following are several examples of self-
hosting systems:

• C compiler (written in assembly) compiles a C compiler (written in C) which then
compiles itself.

• Linux running a virtual machine of Linux.

• A Git repository containing the source code for Git.

• A processor running an emulation of itself.

• An optimizing C compiler optimizing itself.

Once a technology can be implemented such that it is capable of self-hosting, there can be
many advantages. Self-hosting marks a milestone for the capabilities of a technology as well
as acting as benchmark for the system itself. In our case, hosting the program optimization
procedure on quantum hardware can potentially speed up the procedure.

1This is a looser definition than may be found in other texts. Others may state that self-hosting systems
are strictly those that perform their function on themselves, but we relax this.

7

2.2 Concepts and Notation
It is necessary to introduce several concepts and some notation before the primary matter.
The following will briefly introduce qubits, quantum gates and quantum programs. An
introduction to basic notions of Boolean formulas and the decision problem of satisfying said
formulas is also provided.

2.2.1 Qubits
Quantum bits, shortened to qubits, are the quantum equivalent of classical bits. A qubit
takes on a quantum state, which can be represented mathematically by a tensor of dimension
one with a size of two. Each entry of this quantum state vector is the complex value amplitude
of the state being in the zero and one state, respectively. This is displayed formally in
Figure 2.1. The number of qubits available in a quantum computer can be thought of as the
memory resource that we are constrained by when writing quantum programs.

|qi〉 =
[
a0
a1

]
= a0 |0〉+ a1 |1〉 (2.1)

a0, a1 ∈ C ∧
√
(a0)2 + (a1)2 = 1 (2.2)

|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
(2.3)

Figure 2.1: The mathematical representation of a qubit. Note that
a0 and a1 are the amplitude for the corresponding qubit’s states.

We will use the notation qi for qubits in order to uniquely identify them. The quantum
state of the qubit qi is represented by the tensor described above, which is sometimes called
the wave function ψ. The special quantum states |0〉 and |1〉 represent the basis states which
we call the computational basis states. These are named as such as we are usually only going
to (or are able to) initialize computation of a quantum program with these bases.

Qubits are realized physically in various implementations, which we are not particularly
concerned with in this report. A quantum register is a sequence of qubits in a specified order
which can be represented by a joint state. The state vector representing the joint quantum
state of a qubit register is computed by taking the tensor product of the individual states.
The quantum register is shown mathematically in Figure 2.2.

Note though that once we apply an operation to the register basis, we may not necessarily
be able to separate the register state vector into its components. When this inseparability
occurs, we say that the quantum state or qubits in the register are entangled.

2.2.2 Quantum Gates
A quantum gate is an operation which acts on quantum registers. Quantum gates are rep-
resented mathematically by a unitary operation as shown in Figure 2.3. The gate operation

8

R = [q1, ..., qn] (2.4)

|R〉 =

{
(∀qi ∈ R)[|qi〉 ∈ {|0〉 , |1〉}]

⊗n
i=1 |qi〉

otherwise
[
a00...0 a00...1 ... a11...1

] (2.5)

a00...0, ..., a11...1 ∈ C ∧
√

(a00...0)2 + ...+ (a11...1)2 = 1 (2.6)

Figure 2.2: The mathematical representation of a qubit register.

takes as input a qubit register (state vector) which it will act on. The operation output is the
transformation described by the gate. Formally, this is the result of matrix multiplication
of the state vector with gate unitary matrix.

U ∈ C2n × C2n (2.7)
U †U = I (2.8)

Figure 2.3: The mathematical representation of a quantum gate’s
unitary operation U on n qubits. The dagger (†) denotes the conju-
gate transpose of the matrix.

2.2.3 Quantum Programs
Quantum programs or quantum circuits are the construct used to compose quantum opera-
tions on individual qubits or qubit registers. There are two canonical, but equivalent, ways
to represent quantum programs. The first is a textual, code-like, assembly language which
gives a description of the quantum registers and the gates in the circuit in order they should
be computed. The most common implementation of such a language is called the Open
Quantum Assembly Language or OpenQASM [11]. The other way quantum programs are
represented is by a visual approach. Gates are laid out as time goes on from left to right.
An example of each of these representations can be seen in Figure 2.4.

Note that the quantum assembly code is a linearization (topological ordering) of the
directed acyclic graph representing data dependencies between gates in the program.

2.2.4 Boolean Satisfiability
The Boolean satisfiability problem (frequently abbreviated as SAT) is a decision problem
which decides whether there exists an assignment of truth values to Boolean variables which
satisfies (makes true) the given Boolean formula.

All Boolean formulas can be converted to a logically equivalent canonical form called
conjunctive normal form (CNF). Conjunctive normal form represents a Boolean formula as
a conjunction (AND operation) of disjunctions or clauses (OR operations). In each clause,

9

OPENQASM 2.0;
include "qelib1.inc";

qreg q[5];

x q[0];
h q[0], q[1], q[2], q[3], q[4];
swap q[1], q[3];
cx q[0], q[1];
ccx q[1], q[3], q[2];
cx q[1], q[3];
ccx q[3], q[4], q[2];

(a) A simple quantum program written
to the OpenQASM standard. Each line
of the program shows the operation to
be performed followed by the qubits it
operates on.

q0
q1
q2
q3
q4

X
H
H

H
H

H

(b) A simple quantum circuit. This
is how quantum programs are typically
described diagrammatically. Each line
represents a qubit and read from left
to right shows how gates are applied to
qubits at each time step.

Figure 2.4: Two methods of representing the same quantum program.
One shows an assembly-like representation in Open QASM and the
other is a graphical circuit-like diagram.

the variable and the existence or non-existence of a negation are referred to together as a
literal. This representation is the most common form used in solving SAT problems. An
example of a Boolean formula and its CNF representation can be found in Figure 2.5.

The SAT problem belongs to the complexity class of NP-complete problems [12], making
it a challenging problem to solve for arbitrary Boolean formulas. However, state-of-the-art
SAT solvers which have been developed over the past two decades are very efficient with
real world problem instances [13]. Formulating problems in the language of a constraint
satisfaction problem lends itself to be converted to and solved as a SAT problem. This work
concerns itself with constraint satisfaction to solve the quantum program optimizations, and
transform our problems to SAT prior to solving as part of the optimization process.

Boolean Formula (x0 → x1) ∧ (x2 ∨ x1) (2.9)
CNF (¬x0 ∨ x1) ∧ (x2 ∨ x1) (2.10)
Satisfying Assignment x0 = F, x1 = T, x2 = F (2.11)

Figure 2.5: A boolean formula and its corresponding CNF formula.
A satisfying assignment for both equivalent formulas is below both.

10

Chapter 3

Background

To the best of our knowledge, no evidence of prior work on quantum program optimizations
using quantum computers has been identified. Prior work has been conducted in the areas of
quantum program optimization and quantum search algorithms. A search into these topics
was conducted in order to bridge these technologies into the desired compilation system.
The following sections describe the landscape of classical quantum program optimization
schemes and quantum satisfiability algorithms.

3.1 Quantum Program Optimization
Quantum program optimization has been approached in a multitude of ways. using tem-
plates to aid in simplification of quantum program [5], constraint based optimization [2],
temporal planner based compilers [14], as well as other tactics. These methods are suitable
for very specific use cases but garner issues around generality, optimality and scalability.
The following summaries describe just a few of these methods.

3.1.1 Template-Based Simplification
The quantum program optimization tactics proposed by Maslov et al. [5] work by making
local optimizations via a heuristic approach. In a fashion similar to peephole optimization,
the proposed system uses templates or patterns within the quantum program and swaps
them with simpler and faster equivalent operations. This has the result of reducing the
overall runtime of the program, which can have impacts on the result accuracy when the
program is run, and can make long programs short enough to be executable. Even though
the programs this system can work on are restricted to only using certain operations, more
work could be done to alleviate this restriction. Employing such a system may be useful for
preprocessing circuits prior to a more rigorous optimization procedure.

3.1.2 Constraint Based
A constraint based approach to quantum circuit optimization has been proposed for noisy
intermediate scale quantum computers by Murali et al. [2]. This approach, although similar

11

to our constraint based model, assumes a specific hardware layout of the qubits similar to
the layout provided in IBM’s 16 qubit quantum computer. Their method takes inspiration
from path routing rules used in circuit board design, mapping swap operations onto the
mesh layout of the qubits. Although this work is efficient for such architectures, our pro-
posed approach aims to be general and configurable for any hardware, without sacrificing
performance. Other constraint based approaches have been proposed which follow similarly
by framing the task of optimizing or compiling quantum circuits to a given hardware [4,15].

3.1.3 Minimum Linear Arrangements
Pedram and Shafaei provide a system for minimizing the number of SWAP operations needed
to allow two-qubit operations to be performed [3]. In their model, they only consider hard-
ware which is arranged in a linear nearest neighbor architecture. They construct a graph
of the qubits which interact through two qubit operations and construct a minimum linear
arrangement problem which they solve and use that to assist in a greedy, backtracking-like
mechanism to schedule gates into a solution.

3.1.4 Gate Transformation and Commutation
Gate transformations and commutation can be performed to make quantum programs more
resource efficient by exchanging and swapping more efficient gates or sets of gates for less
efficient ones. In this method [7], they propose such a model which allows gates to be
reformulated from time inefficient gates to ones which utilize as many qubits as possible at
each time-step. This approach is similar in principle to the template based approach but
varies in that it allows for a more general and granular notion of equivalent substitutes for
gates.

3.1.5 Temporal Planners
Another method to mitigate quantum state decoherence and reduce runtime of quantum
programs is by the use of a temporal planner. State-of-the-art temporal planners have
been assessed for completing this task for a particular quantum algorithm on linear nearest
neighbor hardware arrangements [14]. Although a general approach, it seems to be similar
to the constraint based systems in both design and goal.

3.2 Quantum Satisfiability Algorithms
In order to self-host the program optimization procedure on a quantum computer, this
architecture uses existing quantum search algorithms. Part of the optimization procedure
will be to check if there exists a valid transformation of the circuit given some desired
properties of that circuit. Therefore we need a quantum algorithm to find if such a solution
exists. The following algorithm are several general approaches for exactly this process.

12

3.2.1 Grover’s Algorithm
Grover’s algorithm is a quantum algorithm that performs search of an unordered database
faster than classical algorithms [1]. The classical algorithm for this problem runs in linear
time (O(n)). This database within Grover’s algorithm is represented formally as an oracle
function. For our case, the oracle is implemented as a Boolean formula testing the satisfia-
bility of some set of Boolean logical clauses. Another way to describe this algorithm is that
it returns the unique assignment of values to variables in a function which produce a given
output. It cannot conclude the non-existence of such an assignment, only the existence of
such a solution. For Boolean functions, Grover’s algorithm can find a satisfying assignment
to the function, if one exists, but cannot state whether it does not exist. Grover’s algo-
rithm runs in O(

√
n), and is optimal for this task. This quadratic speedup over the classical

algorithm inspires the self-hosting optimization we wish to perform.
Although Grover’s algorithm offers quadratic speedup, trivial instances of our circuit

optimization model would require of Grover’s algorithm a number of qubits which would be
unrealistic to realize on actual hardware, at least as of the time of writing. This is because a
logical formula in conjunctive normal form which we want to represent in a quantum program
requires one qubit for each Boolean variable in the formula, one qubit for each clause, and
one qubit for the disjunction of all of the clauses. Our model will produce such formulas
with possibly several hundred Boolean variables on trivial input circuits.

There are some techniques to mitigate this which have been explored. Cerf and Grover
give a version of the original Grover’s algorithm algorithm which allows for nested runs of
Grover’s algorithm [16]. A block based approach to Grover’s algorithm checks for existence of
a solution given a partial assignment to the variables [17]. Both of these techniques should be
examined further by those wishing to exploit the structure of search problems. The technique
we employ takes inspiration from Dunkjo [18] where they propose a hybrid quantum-classical
solver which performs backtracking classically until the solution can be simplified to be small
enough to fit an Grover’s algorithm circuit on a small quantum hardware. This is discussed
in detail in chapter 5.

Although Grover’s algorithm is less complex to implement than others, there are other
approaches. We explore this next approach, quantum backtracking, as an alternative.

3.2.2 Quantum Backtracking
Backtracking is the task of incrementally constructing a partial solution to a constraint
satisfaction problem until either the partial solution is found to be invalid (in which case
we revert the incremental change), or a complete and valid solution is found. Many clas-
sical algorithms exist to perform backtracking, but we are interested if there are quantum
backtracking algorithms, and if so, whether they outperform classical algorithms.

It has been shown that, in theory, a quantum backtracking algorithm can outperform
the equivalent classical algorithm [19, 20]. Montanaro realizes this in an approach to quan-
tum backtracking algorithms via quantum walks [9]. This algorithm, under certain careful
circumstances, can have an exponential reduction in runtime as compared to an equiva-
lent classical backtracking algorithm. A study of the efficiency of this quantum algorithm
concluded that random instances can still realize speedup factors on the scale of orders of

13

magnitude over classical counterparts [21].
Several improvements to both the performance [10] and resource usage [22] of this al-

gorithm have also been formulated. Performance improvements were made which improved
the worst case runtime complexity of the algorithm. The original work’s worst case runtime
depends on the size of the backtracking tree of assignments to Boolean variables [9] whereas
this method only depends on the size of the tree which is explored during search. Under
practical conditions, it is expected that this tree is is significantly smaller than the full back-
tracking tree produced by [10]. Resource usage was reduced both for the number of data
qubits required as well as for circuit runtime [22]. An analysis of methods for ordering of
exploration of the variables was performed. The original algorithm was also iterated upon
by Montanaro to perform branch-and-bound tasks [23].

3.2.3 Quantum Approximate Optimization
The Quantum Approximate Optimization Algorithm (QAOA) is a quantum approximate
combinatorial optimization algorithm [24]. Combinatorial optimization is the task of finding
an assignment to variables which satisfies the maximum number of assertions from a corpus.
Approximate combinatorial optimization guarantees that we find a solution which generates
solutions that approximate the maximum number of satisfied assertions to within some ratio
ϵ > 0. Such algorithms could be used to find approximate maximally satisfying assignments,
which would be a useful mechanism for this work. This was not pursued as it is not well
understood if QAOA can produce similar quality approximately optimal solutions with less
time than classical approximate optimization algorithms.

3.2.4 Quantum Genetic Algorithms
Genetic algorithms are a class of approximate combinatorial optimization algorithms which
borrow notions from biology to evolve solutions. Generations of potential solutions are
considered chromosomes and have attributes iteratively mutated, and solution crossover is
applied between pairs as is done in real organism populations. Quantum genetic algorithms
are the quantum computing analog of genetic algorithms. Work has been done to imple-
ment quantum genetic algorithms [25, 26]. Although it does seem that there are statistical
advantages to using quantum genetic algorithms over their classical counterparts, it suffers
the same issue that QAOA has: it is not clear yet if there exists a performance improvement
over classical methods for the same problem.

14

Chapter 4

Quantum Program Optimization

4.1 Introduction
This chapter will discuss the architecture for optimization of quantum circuits. There are
a series of phases to the proposed system, which are outlined in the following section (sec-
tion 4.2). In order to iteratively arrive at an optimal quantum program, a control procedure
is implemented to handle this process. It is provided a program transformed according to the
constraint model, and arrives at the optimal circuit. This process is outline in section 4.3.

4.2 Procedure for Self-Hosted Quantum Optimizations
The following is an outline of the end-to-end procedure used to optimize quantum programs
using a self-hosting optimization approach.

1. Input Quantum Circuit: We take as input a virtual quantum circuit which we want
to optimize. A virtual quantum circuit is one that does not have any mapping of the
circuit to physical hardware. The quantum registers within the circuit can then be
thought of as virtual quantum registers.

2. Quantum Circuit Preprocessing: Minor preprocessing must be performed on the
input circuit to ensure it will be compatible with the given hardware. This includes
checking that the circuit qubit register is not bigger than the number of available qubits
on the machine. If the given hardware does not support a certain gate in our input
circuit, an automated process should try to find a reasonable decomposition of this
gate into several compatible gates.

3. Pack Qubits: Some quantum circuits our system will receive will not be packed. A
quantum circuit is packed if it is as a virtual circuit whose only utilized qubits are
consecutive, as well as lexicographically minimal. This means that there are no qubits
unused (i.e. no gates on the qubit) within the circuit between used qubits that do
have gates on them. This also implies that the qubits of least index should be used
first. This is shown visually in Figure 4.1. As part of our preprocessing procedure, we
remap qubits to be consecutive with each other and expand the circuit register to be

15

equal to the number of qubits available to the quantum hardware. Taking the original
circuit as input to the CSP generation process would add unnecessary complexity, so
we re-order the qubits in this manner to simplify the next steps. We hold onto the
mapping between unpacked and packed circuit so that we can reverse this mapping
later on.

q0
q1
q2
q3
q4

H

X

(a) An unpacked circuit. The
qubits being used are q0, q3,
q4. We prefer to take in a cir-
cuit with the lexicographical
ordering of the qubits.

q0(q0)
q1(q3)
q2(q4)

q3
q4

H

X

(b) A packed, consecutively
ordered remapping of the cir-
cuit in Figure 4.1a. The
qubits being used are q0, q1,
q2.

Figure 4.1: An example of the packing process of virtual quantum
circuits, before and after.

4. Generate Constraint Satisfaction Problem from Input Circuit: The packed
circuit is used in a process which generates the constraint satisfaction problem (CSP)
based on the model outlined in chapter 6. This process generates a quantifier free finite
domain (QFFD) constraint satisfaction problem. To be a QFFD CSP, a problem’s
constraints must be expressible without using logical quantifiers and all variables must
be bounded by constraints such that they can only take on a finite set of values. The
quantum algorithms that will solve the CSP will expect all variables to be of a Boolean
type. There is a procedure which we can use to convert a QFFD problem to a Boolean
QFFD problem by generating new variables which correspond to the setting of an
integer variable to one of the finite set of values which it can take on. The mappings
between the original variables and their new Boolean counterparts is maintained so
that we can reverse this process. At this point, if we wish to run the optimization on
a classical solver such as Z3 [13], we could use the CSP at this point for this task. We
regularly do this for validation purposes, using small problem instances.

5. Transform CSP to Boolean CNF: The next phase performs an automated trans-
formation process from a Boolean QFFD problem to a Boolean formula in conjunctive
normal form (CNF). Logical operators which are not conjunction and disjunction need
to be removed, for techniques for this are well known. The method for this, given by
Tseitin [27], introduces new variables to obtain a CNF formula linearly increasing the
size of the formula. There are some constraints which span many variables, so once this
transformation is complete a procedure splits the clauses which are longer than some
given length into pieces. Keeping these clauses at their normal length is unwanted as
the required gate for that clause would have to be decomposed into too many sub-
operations. When splitting the clause into smaller parts, an auxiliary Boolean variable

16

is added to each of the clauses to tie the two clauses together, mimicking the same
truth values as the original clause.

6. Start Optimization Controller: The optimizer is started and passed the hardware
description, and the constraint satisfaction problem in its present CNF form. This
controller runs until the an optimal solution to the problem is found. It returns the
complete assignment of values to the CSP variables. Those values are then used in
construction of an optimized physical circuit. The process of this optimization is
outlined in section 4.3.

7. Construct Optimized Physical Circuit from Model: The optimized physical
circuit is constructed from the assigned values returned by the optimizer. The physical
circuit, is a quantum circuit which is mapped to hardware. We use the original circuit
along with the physical-to-virtual qubit mappings and SWAP gate insertion variables
to construct the physical circuit. The qubit mappings instruct on how the circuit
input and output should be mapped when the new circuit is ran and measured. Gate
qubit mappings are used to remap gate registers. Assignment to SWAP insertion
variables will inform the placement of new SWAP gates. These are the items which
are necessary to building the physical circuit. The descriptions of these constraint
variables are covered in detail in section 6.4.

4.3 Controller for Optimization Solver
This controller’s goal is to delegate execution of quantum SAT solver programs to the quan-
tum computer hardware, until the optimal solution is found. This optimization scheme
requires that we have a process which controls the optimization procedure using a classical
computer to perform the delegation to a quantum computer. The solver program receives as
input an instance of the CSP modeled on the virtual quantum circuit as well as a description
of the quantum computing hardware.

Once the constraint satisfaction problem is generated, this CSP is passed to the optimizer.
This optimizer controls successive runs of a quantum satisfiability algorithm on quantum
computer. In the following process, we are not concerned with the specific changes need to
use one quantum satisfiability algorithm or another. Instead, the procedure is outlined with
the intent that any suitable algorithm can be dropped in place. Note that the optimizer’s
goal is to find the most efficient circuit based on several optimization criteria. For each step
the optimizer takes we will do the following:

1. Decide Values for Optimization Criteria: The optimizer will begin each step by
determining the values for the optimization criteria which will be taken on by the CSP.
The process for deciding these values is discussed in subsection 4.3.1.

2. Fixing Optimization Criteria: The provided CSP will have several variables for the
optimization criteria, which constrain the other variables in the CSP. The optimizer
will fix the optimization criteria to a specific value, decided by the prior step. For
example, the CSP will have a variable for the optimization criterion specifying the

17

number of SWAP gates that can be inserted. This variable conditions other variables
in the CSP.
The optimization controller will pick values for each optimization criterion in this
manner and sets a strict equality constraint for each criterion. With each of these
variables constrained in this manner, the solver will search for a solution to the problem
given desired properties of the output circuit.

3. Simplification of the CSP: Now that constraints are set on the optimization cri-
teria the controller will apply some fast (classical) simplifications to the CSP. This
simplification step can be performed on the CSP at any time but is at least done at
this point to propagate the fixed criteria variables as constants throughout the CSP.
This has the potential to quickly eliminate many constraints or fix other variables, or
at least possibly tighten their bounds.

4. Construct Boolean Logic Oracle from CNF: An automated transformation is
then used to construct a quantum circuit to represent the Boolean logical circuit from
the CNF formula. Depending on the quantum solver algorithm, this circuit is con-
structed differently. For Grover’s algorithm, there exists a straight forward proce-
dure [28] for constructing a oracle from CNF formulas. For quantum backtracking,
techniques exist to construct clause checking circuits [9, 22].

5. Quantum Solver Setup with Oracle: We pass the oracle to a routine to generate
the quantum solver circuit to be run on a quantum computer. This routine will fill in
the solver circuit with the oracle where it is needed.

6. Run Quantum Solver and Read Result: The quantum solver circuit will then be
dispatched to the quantum computer. A result will be obtained back from the solver
circuit’s measurement. Depending on the type of quantum solver algorithm being
used, this step of the procedure could vary. This implementation specific routine could
involve different control behavior depending on the solver algorithm chosen. In our
case, this control process runs a hybrid quantum-classical solver. It uses a classical
solver along with iterations of Grover’s algorithm to build a satisfying assignment to
the CSP.

7. Use Solver Results to Inform Optimization: The result of the solver will inform
the setting of the criteria. The solver algorithm will return whether the settings of the
criteria was feasible or not. If it was feasible, the assignment of values to variables is
returned from this procedure in order to reconstruct the optimized physical circuit.

The optimization controller runs this process for each step until a stopping condition is
reached. This stopping condition can occur once we have found the optimal result, or if no
feasible result could be found. The final optimized assignment from the controller is passed
to a set of routines to map the solver result output to the CSP variables and then to an
optimal quantum circuit.

18

4.3.1 Objective Optimization
As part of the optimization procedure, values for the optimization criteria must be set at
each step. There are multiple criteria which are used as objectives in the proposed constraint
model. A Pareto optimization method is used to arrive at the best circuit possible under the
model. This Pareto optimization function tries to achieve a Pareto efficient assignment to
the criteria. A Pareto efficient result, in our case, is one in which we cannot minimize (and
therefore improve) any of the criteria further without increasing another, or that further
minimization would arrive at an infeasible result. The definitions of the criteria are outlined
in section 6.6.

4.4 Conversion from Optimizer Solution to Optimized
Circuit

After optimization is complete, that system will return a Boolean assignment to the SAT
instance. We also have the original circuit and the mapping of CSP variables to Boolean
variables. With all of this information we can convert the SAT assignment back into a
quantum program. In our case the solver we use handles this on its own by holding onto
the mappings of the CSP variables to the Boolean SAT variables and reverses this mapping
given an assignment. CSP variables can be Boolean or integer variables and the latter are
mapped to a binary representation.

19

Chapter 5

Quantum Program Solver

5.1 Introduction
The quantum satisfiability solver is the system in this architecture which takes an instance
of the constraints on a quantum program, performs a quantum algorithm to search for a
solution to satisfy the constraints, and outputs a solution which satisfies the constraints. It
will also specify if no solution were found. In general, a satisfiability solver is an algorithm
or computer program that decides on a solution to decision problem, such as a constraint
satisfaction problem, and terminates by outputting a solution or stating the unsatisfiability
of the problem. More specifically, we are concerned with Boolean satisfiability solvers, which
operate on Boolean variables and formulas.

A quantum satisfiability solver embodies the same concepts as classical solvers, but use
quantum algorithms to achieve the same goal. For both classical and quantum solvers there
are several families of algorithms for solving satisfiability problems, but several quantum
algorithms for this have been shown to asymptotically outperform their classical analogues
[1, 9, 10].

In this system, the implementation consists of a hybrid quantum-classical satisfiabil-
ity solver. This hybrid solver utilizes a classical solver to driver and hands off sufficiently
small sub-problems to the quantum computer for solving. The specifics of this solver, and
motivations for this choice are discussed in the following sections (section 5.2, section 5.3
respectively). Implementation specific details are discussed in section 5.4. We finish this
chapter with a discussion of improvements and other solver schemes which could be in-place
replaced with the hybrid approach.

5.2 Limitations
The space-complexity requirements of SAT will be at least proportional to the number of
variables in the SAT problem, O(n). This is because the assignment returned will be of size
O(n) bits. Therefore, as the assignment is constructed that O(n) bits must be available to
store the assignment for the lifetime of the solver. The size of the Boolean SAT instances
produced by our model cannot be solved in whole by a quantum algorithm for this type
of search. Such an algorithm would require a qubit register of size at least O(n) to store

20

the final assignment. For Boolean SAT problems with more than around 70 variables, there
does not yet exist a massive enough qubit register to support even the assignment for such
problems, let alone state for the solver. Conversely, it is important to note that if we provide
a quantum hardware with a number of qubits, say O(m), then problems of this size or smaller
can be solved on the hardware.

In Vedran and Dunjko’s work describing a SAT algorithm for small quantum devices, they
discuss an approach obtaining speedup via a hybrid quantum-classical solver [18]. Given the
n Boolean variables solved by classical solver and m is the number of qubits in the small
quantum device. This systems uses a classical satisfiability algorithm until the assignment
is of size n − m. As soon as the assignment is of this size, the remaining m variables are
solved by Grover’s algorithm. The worst case time-complexity of a classical SAT solver is
O(2n) and Grover’s algorithm runs in time O(2n/2). Therefore, it is stated that the worst
case runtime of this hybrid solution would be:

O(2n−m + 2m/2) n� m (5.1)
We can also consider n as the number of bits used by classical solver and m as the

number of qubits. A complete assignment contains n+m Boolean values mapped to Boolean
variables. Naively, this new hybrid classical-quantum method would seem to be the superior
algorithm against the purely classical approach for any setting of m ∈ [1, n], but the authors
ask us to consider average case performance of a simple SAT algorithm: Schöning’s algorithm
[29, 30]. Although by far not the current state-of-the-art, this algorithm has average case
runtime complexity of O

(
4
3

n).
Let us consider now what settings for n and m that make the hybrid approach better

than Schöning’s algorithm:

2n−m + 2m/2 >

(
4

3

)n

(5.2)

In order to do better than Schöning’s algorithm for sufficiently large n we must have
some minimum ratio of classical bits to qubits representing the SAT problem which would
make this hybrid approach better than Schöning’s algorithm. Vedran and Dunjko find this
ratio to be:

m

n
> 0.74 n→ ∞ (5.3)

This ratio is not favorable if we wish to employ a small quantum device such as those
available at the time of writing for large SAT problems. Nonetheless, such a solver would
prove that implementing a hybrid quantum-classical SAT solver is possible.

Although this analysis shows we may not do better trying to solve larger SAT problems
with this approach, it has proved to be the simplest to implement. This is the way we have
chosen to approach the limitations imposed by the state of quantum computing hardware
while still solving larger SAT problems. 1

1This analysis is a necessary reconstruction of that provided in [18]. Refer for more details in context as
they apply the analysis differently as a pretext for wholly different approach from ours. The main difference
is that they go on to propose a method which does not suffer from a “threshold” of qubits to classical bits
at which the polynomial-time speedup is realized.

21

5.3 Hybrid Solver
The hybrid classical-quantum solver copes with the aforementioned limitations by making
use of a classical backtracking SAT solver to arrive at partial solutions which can allow the
quantum SAT solver to manage small problems. Traditional backtracking SAT solvers exam-
ine partial assignments to variables in a SAT instance by adding literals to the assignment
recursively. At each recursive step, all of the clauses must either be satisfied or have an
undefined truth value. If the assignment derives a clause which is false, we remove the latest
literal in the assignment (we “backtrack”) and try an alternative path to a satisfying assign-
ment. In our approach we take advantage of the varying length of these partial assignments
at various points in the backtracking procedure.

We modify the classical backtracking technique to accommodate the quantum solver
such that it respects the quantum hardware’s memory resources. By exploiting the recursive
structure of the backtracking procedure we can make additional checks at each step of the this
process for our purposes. In this case, each recursive step is augmented with an additional
check to learn if it is possible to run the quantum solver algorithm at this point in the
backtracking algorithm.

The number of qubits used by the quantum SAT algorithm will be directly related to
the number of unassigned variables and clauses not yet satisfied. Given a partial assignment
and the clauses for the problem, the solver applies unit propagation of only the assignment
literals to the clauses to eliminate all of the clauses satisfied by the assignment. A unit is a
clause which contains one literal. Unit propagation is a process which allows us to remove
literals from clauses as well as entire clauses from a CNF formula which contain a clause
which is a unit. All other literals are left as they are. This now simplified problem is much
smaller now that it does not contain the unnecessary information of satisfied clauses and any
instances of the assigned variables.

The number of unassigned variables and clauses can now be calculated and then passed to
a mathematical expression which describes the number of qubits used by the chosen quantum
algorithm. In this implementation the whole expression is represented as:

of Hardware Qubits ≥ 1 + # of Unassigned Variables
+ # of Clauses without Truth Value

(5.4)

We are using Grover’s algorithm with a basic layout for the quantum SAT solving pro-
cedure but note that this expression would differ depending on the quantum SAT method
that is used. The expression describes parametrically that the quantum procedure requires
a qubit for each variable which it will solve for as well as each clause, plus one more for the
indicating if the sub-problem is satisfied. If the resulting number is greater than the available
qubits on hardware the classical backtracking will be informed to continue the classical pro-
cess. If in fact the number of qubits needed is less than or equal to the number of available
hardware qubits we can attempt to use the quantum solver to complete the problem.

At this point the quantum solver procedure must build a quantum program to run on
a given quantum computer. This procedure is given the simplified set of clauses and will
return one of the following:

22

• A satisfied result containing the assignment of truth values to each variable.

• An inconclusive result for if a satisfying completion of the assignment was not found.

• An unsatisfied result to tell the solver that it found proof of unsatisfiability.

If the satisfied result is received it is applied to the classical assignment and the solver
return the assignment in full to the variable remapping and optimization procedures. Oth-
erwise with an unsatisfied result the solver will be informed the sub-problem is unsatisfied.
Lastly, an inconclusive response prompts the solver to continue as if the quantum solver was
never run.

Figure 5.1: An example of the backtracking “tree” where each node
is a decision or some set of decisions being made on a Boolean vari-
able or variables. The “C” nodes are those performed by the classical
solver and “Q” are nodes solved by the quantum solver. Note that
backtracking will go back up the tree and to some new truth assign-
ment for a decision above the failed node.

5.4 Implementation
Our hybrid SAT solver implementation uses the Z3 satisfiability modulo theory (SMT) solver
[13] and the QuEST [31] quantum simulator.

The Z3 SMT solver contains a state-of-the-art SAT solver. Z3’s SAT solver performs
backtracking along with myriad improvements on the baseline solver. Z3 also has tactics for
converting problems from QFFD problems to Boolean SAT, which is used by our system prior
to arriving at the solver. This SAT solver was modified to execute two callback functions
for the purpose of checking the qubit requirements and running the solver respectively. Our
system allows the user to change these callbacks so that a new check can be easily replaced
for a different quantum algorithm, hardware configuration or so that the simulated solver
can be easily replaced with a call to a quantum computer.

A quantum simulator is used and not actual quantum computing hardware due to the
limitations of current quantum hardware. It was determined that the most fit-for-purpose

23

quantum computing hardware available comes from IBM’s Quantum Experience, 15-qubit
machine but it was inadequate nonetheless. The length of circuits we would have needed to
run would have exceeded the capability of this system. Also, the required number of requests
to their system for one run of this whole system would exceed the feasible throughput of
requests to this hardware. Due to this, the alternative has been to perform simulation of the
quantum circuits which otherwise would be run on quantum hardware. The simulator chosen
was the Quantum Exact Simulation Toolkit (QuEST) for its performance and scalability to
distributed and GPU systems [31].

Grover’s algorithm was implemented within the QuEST framework so that it could re-
ceive CNF Boolean formulas and convert them to a quantum oracle. The original formulation
of Grover’s algorithm assumes a unique solution satisfying the function or oracle. The algo-
rithm can be extended to support search for any solution of a known number of solutions k
by reducing the number of iterations which the algorithm runs for by said factor k. Further,
if the number of solutions is not known, then Grover’s algorithm should be run multiple
times, incrementally increasing the number of iterations with each run. At the end of each
incremental run the probabilities of measuring each assignment are computed and the as-
signment which is most probable is checked against the original clauses for satisfiability. If
that solution does not satisfy all of the clauses, Grover’s algorithm is rerun with the next
number of iterations. If satisfied, the quantum solver is done and returns the result to Z3.
A maximum number of iterations is set and if a solution is not found within that number of
iterations, the result returned to Z3 is that the QuEST solver was inconclusive in its finding
of a solution. Therefore, Z3 will be informed that it should continue as if the quantum solver
was not run.

Once a satisfiable result or no solution is found, Z3 returns the assignment of Boolean
variables. This is then returned to the optimization process for analysis of the optimization
criteria and conversion back to a quantum circuit.

24

Chapter 6

Quantum Program Constraint Model

6.1 Introduction
The following chapter discusses the details of the constraint model used in the optimization
process. The constraint model requires that a virtual quantum circuit, a target quantum
computer hardware description and settings for the optimization criteria be provided in order
to generate an instance of the model. Assignments to the constraint variables will inform the
optimization process as to how to transform the original circuit into an optimized, physically-
mapped circuit according to the model.

The following section (section 6.2) will discuss the problem addressed by this model in
detail. The next sections describe the model as a formal constraint satisfaction problem. The
first section (section 6.3) describes and instruments major constructs within the model, such
as quantum circuits, devices and gates. A section devoted to the variables used in the model
(section 6.4) as well as the constraints on those variables (section 6.5) is provided. Lastly,
a section about the model’s optimization criteria (section 6.6) and how they are calculated
using constraints, is provided.

6.2 Problem Statement
This constraint model aims to yield solutions to the following problem: Given a virtual
quantum circuit, Cvirt, (i.e. where qubit registers are virtual or logical) and a hardware
description for a quantum device, M, compute the necessary details needed to build an
optimized physical circuit, Cphys, under the constraints of the hardware and criteria. The
general goal of the optimization criteria are to accomplish the following:

• Minimal Circuit Width: As a preprocessing step, the circuit is packed so that the
physical number of qubits ever touched by the realized quantum circuit is minimized.

• Minimal Circuit Depth: We want to minimize depth to allow us to run circuits
which would be otherwise unrealizable. In our current scheme, circuit depth is the
same as circuit end time.

25

• Minimal Total Gate Count: This is the total number of gates in the circuit. This
criterion is a good approximate for the depth measure. In our case, we can just
measure the number of SWAP gates added, as the model does not account for any
gate elimination or substitution yet.

• Minimal Noise: We need to minimize the measurement noise by using and as few as
possible of the noisiest gates that some hardware implementations provide.

Values for an absolute maximum circuit depth (dmax) and gate count (gmax) must also
be defined. As of now, the equivalent value to maximum circuit depth is maximum circuit
time (tmax). The section on timing (subsection 6.3.4) gives insight as to why the terms are
equivalent for now. These values are provided as a technical measure so as to keep the
objectives within a finite domain.

In order to generate an instance of this model, an instance of the constructs formalized
in section 6.3 must be provided. In particular one quantum circuit and one quantum device
must be defined. Also necessary are settings for the maximum bounds on certain variables
as outlined. Settings for optimization criteria must also be given. Given all of these settings,
a well defined instance of the model can be formulated.

Note that gate depth and gate count are, in some cases, affected by the other and in
other cases are mutually exclusive. Also of note is that this model is not proven to produce
the perfect solutions yet, nor is this claimed. For an example of a case where this model
would not be able to improve the input circuit, see section 8.3, which gives an example of
such a situation.

6.3 Constructs
There are several overarching model constructs that are central to formulating this constraint
model. In this section, formal descriptions of these constructs are provided.

6.3.1 Quantum Circuit
A quantum circuit is the description of the ordered set of operations (quantum gates) to
be applied to the qubit register. In order to construct an instance of this model, one such
circuit must be provided. We define a quantum circuit formally as:

C = 〈Γ,Rvirt〉 (6.1)
Γ = (Gi|Gi.Rgate ⊂ Rvirt ∧ i ∈ [1..g]) (6.2)

Rvirt = {q1, ..., qm} (6.3)

Where the quantum circuit, C, is defined by a tuple containing the following:

• Γ: The sequence of g gates in the order they are applied to the circuit qubit register.
Each gate must use qubits from the circuit register.

26

• Rvirt: The virtual qubit register of the circuit, which is a set of m virtual qubits. A
virtual qubit, sometimes called a logical qubit [7] are not assigned to actual hardware
qubits in a one-to-one mapping. They are therefore virtual or logical qubits as they
do not have a physical mapping.

6.3.2 Quantum Gate
Quantum gates are the operations that act on qubits. The operation that is performed
on a quantum state is called a unitary operation. A unitary operation can be represented
by a square matrix whose conjugate transpose is the operation’s own inverse. We define a
quantum gate as:

G = 〈Rgate, Ugate〉 (6.4)
Rgate = {q1, ..., qr} (6.5)
Ugate ∈ {U : U ∈ C2r × C2r ∧ U †U = I} (6.6)

Where the quantum gate, G, is defined by a tuple containing the following:
• Rgate: The gate input and output qubit register within a circuit. This register is of

size r.

• Ugate: The unitary matrix representing the operation performed by this gate. All gates
must be unitary except those that perform measurement.

6.3.3 Quantum Device
A quantum device is a real world machine which allows us to run quantum programs. It
describes the gates and registers allowed by circuits executable on the machine. It also
establishes where two qubit gates are allowed between qubits. We define a quantum device
as:

M = 〈Rphys, C,ΣG, tmax〉 (6.7)
Rphys = {q1, ..., qn} (6.8)

C = {(qu, qv) : qu, qy ∈ Rphys ∧ qu 6= qv} (6.9)
ΣG ⊆ U(G) (6.10)

Where the quantum device, M, is defined by a tuple containing the following:
• Rphys: The physical qubit register of the device, which is the set of n physical qubits.

A physical qubit has a one-to-one correspondence to a specific qubit within some real-
world device.

• C: The physical hardware qubit coupling map. The coupling map describes which
qubits are allowed to have two qubit gates between them. It is represented as a
directed graph. An edge from qu to qv indicates that a two qubit gate can be placed
between them with the gate control at qu and gate target at qv. A example of such a
graph is shown in Figure 6.1.

27

• ΣG: The alphabet of quantum gates that can be represented on this hardware. It is a
subset of all possible gates in the universe of gates, U(G). Usually we will have some
shorthand to denote common gate types (for example, X for Pauli X, H for Hadamard,
CNOT for conditional negation, and SWAP for the swap gate).

• tmax: The maximum time the device can run a circuit for in discrete time steps. This
is a simplification of reality for now, which eliminates circuits which are too long for
the device.

As in automata theory, we can say that there is a language of quantum circuits, LC,
compatible with some quantum device M . This language can be thought of as a subset of
the universe of all possible quantum circuits:

LC(M) ⊆ U(C) (6.11)

q1

q2

q3

q4

q5

Figure 6.1: A coupling graph for a quantum computer device with 5
qubits.

6.3.4 Time
Time, as it is represented within this model, is a unitless ordinal measure. Each time step in
this model assumes all gates that are compatible with the device M can be executed within
one time step. In other words, all gates executed on a given hardware take the same amount
of time to execute.

This assumption that all gates execute in the same amount of time is not fully represen-
tative of the real world. In fact, different gates on different devices take different amounts of
time to execute. Future work on how this model may change to accommodate non-uniform
gate execution times is explored in section 8.5.

We define the domain for all time in this model by the following range T .

T = [0..tmax] (6.12)

All timing related variables within the constraint model must remain within this bounded
region.

28

q0
q1
q2
q3 H

X

Figure 6.2: A quantum circuit showing the time steps, or layers of
the circuit. The vertical dotted lines indicate the separation of of
each time step.

6.4 Variables
The following is the formal description of the variables used in the constraints within this
model. Many of these variables have the same role within the constraints but represent
distinct parts of the input constructs. Therefore, an array-like notation is used to denote
and differentiate unique variables. The left hand side is an abbreviation of the variable name
(such as GST for gate start time) and the right hand side is a list of fields which identify
the unique instance of the variable (such as [Gi, qphys] for gate start time). Lastly, we will
use object notation to access members of the various inputs we provide. For example, the
quantum device, M, contains a coupling graph, C. We show that we are accessing the
device’s coupling graph by a period between the two, M.C.

6.4.1 Gate Start Time
Each gate must start at a specific time. We introduce an integer variable to represent the
time that the gate starts at for each physical qubit:

GST [Gi, qphys] ∈ T (Gate Start Time) (6.13)

6.4.2 Gate Duration
Gates have an amount of time they actually take to run. This variable denotes the amount
of time spent on a physical qubit, qphys, by a particular gate, Gi. We introduce an integer
variable to represent the duration of a gate for each physical qubit:

GD [Gi, qphys] ∈ T [Gi, qphys] (Gate Duration) (6.14)

6.4.3 Synthesized Swap Gates
Swap gates may need to be inserted to make a virtual circuit physically realizable. There
are several reasons a swap gate may need to be inserted before a gate. Common reasons to

29

add swap gates to a circuit can be to bring qubits adjacent for an operation and to optimize
later operations. Synthesized swap gates are organized onto layers prior to each gate and can
only be inserted between qubits with an edge in the device coupling map, C. Swap layers
identify the order new swap gates are to be inserted in to the physical circuit. There are a
fixed number of swap layers for each gate, in this case the number of swap layers for each
gate is equal to the number of couplings in the coupling map.

The boolean variable SGI denotes whether a swap gate is to be inserted in the physical
circuit for a specific coupling and layer. The integer variable SGD is the sum of swap gate
durations of all swaps inserted before a given gate for a certain physical qubit.

SGI[Gi, l, c] ∈ {True,False} (Swap Gate Insertion) (6.15)
SGD[Gi, qphys] ∈ T (Swap Gate Duration) (6.16)
Gi ∈ C.Γ (6.17)
l ∈ [1..|M.C|] (6.18)
c ∈ M.C (6.19)

Note that the number of layers, l, is equal to the number of couplings in the device,
M.C.

6.4.4 Physical-to-Virtual Qubit Mappings
Each circuit can have qubit registers remapped for the purpose of fixing the mapping of
physical-to-physical qubits in an efficient manner. The following are the different qubit
mappings used:

IQM [qphys] ∈ Rvirt ∪ {q∅} (Input Qubit Mapping) (6.20)
GQM [Gi, qphys] ∈ Rvirt ∪ {q∅} (Gate Qubit Mapping) (6.21)

SQM [Gi, l, qphys] ∈ Rvirt ∪ {q∅} (Swap Qubit Mapping) (6.22)

Each of these qubit remappings is used respectively for the circuit input, each gate’s input,
and each swap layer. Note that each qubit in Rvirt is uniquely mapped to one physical qubit
for each of these mappings. Unmapped physical qubits map to a dummy virtual qubit, q∅.

6.5 Constraints
The following are the constraints for this model. These constraints, given a circuit C and
device M, model the necessary modifications to the circuit to map it to the device.

6.5.1 Bounded Gate Start Time and Duration
Each gate in the input circuit, C, must start at a certain time. More strictly, each gate in
the circuit must assign a bounded start time for each of the device’s physical qubits.

30

GST [Gi, qphys] ∈ T (6.23)
0 ≤ GST [Gi, qphys] ≤ M.tmax (6.24)

The same thing is asserted against the gate duration:

GD [Gi, qphys] ∈ T (6.25)
0 ≤ GD [Gi, qphys] ≤ M.tmax (6.26)

For gate duration it is important to note that the duration of a qubit can be zero when the
gate does not operate on that qubit.

6.5.2 Swap Gate Duration
Sets of synthesized swap gates will run for a certain amount of time. A visual of this is
shown in Figure 6.3. The total duration of all of the swap gates prior to a gate, over each
physical qubit is given as:

SGD[Gi, qphys] =
∑
c∈C

{
1 SGI[Gi, l, c] = True ∧ qphys ∈ c

0 otherwise
(6.27)

qphys0

qphys1

qphys2

qphys3

qphys4

· · ·
· · ·
· · ·
· · ·
· · ·

1
1
1
1
0

Figure 6.3: A set of synthesized SWAP gates which each consume
some amount of time. The active SWAP gates in black consume 1
time step across the top 4 physical qubits.

6.5.3 Gate Duration
The gate duration must be at least as long as the gate run time. This run time of a gate
is one unit of time. The swap gate duration is added to this value to obtain the total gate
duration. This constraint for a single qubit gate is defined as:

(GQM [Gi, qphys] = qgate) → (GD [Gi, qphys] = 1 + SGD[Gi, qphys]) (6.28)
∀Gi ∈ Γ (6.29)
∀qvirt ∈ {qvirt 7→ GQM [Gi, qphys] : ∀qgate ∈ Gi.Rgate, qphys ∈ Rphys} (6.30)

31

Two qubit gates require more to be constrained than in the single qubit gate case. We need
to ensure that all qubits not only take on the latest time of their inputs, but also that all
gate outputs must end at the same time. The constraint in this case is as follows:(∧

qj

∧
qk

GQM [Gi, qj] = Rgate[1] ∧GQM [Gi, qj] = Rgate[2]

)
→ (6.31)(

GD [Gi, qj] ≥ 1 + SGD [Gi, qj] (6.32)
∧GD [Gi, qk] ≥ 1 + SGD [Gi, qk] (6.33)
∧GD [Gi, qj] ≥ 1 + SGD [Gi, qk] (6.34)
∧GD [Gi, qk] ≥ 1 + SGD [Gi, qj] (6.35)
∧GST [Gi, qj] +GD [Gi, qj] = GST [Gi, qk] +GD [Gi, qk]

)
(6.36)

∀Gi ∈ Γ (6.37)
∀qvirt ∈ {qvirt 7→ GQM [Gi, qphys] : ∀qgate ∈ Gi, qphys ∈ Rphys} (6.38)
qj, qk ∈ M.Rphys ∧ qj 6= qk (6.39)

6.5.4 Gate Input Adjacency
In order to have two qubits physically interact as they would in two qubit gates we need
them to be physically close. We represent this by the device’s coupling map. If a directed
edge between two qubits exists, then a two qubit gate can be placed there. There are a
number of caveats to this statement when we consider certain hardware implementations
(such as CZ but not CNOT gates on certain edges), but for now we keep this rule simple and
defer expanding it to future work. For single qubit gates, no input adjacency is physically
needed, as they only depend on a single qubit. Two qubit gates require this constraint on
their inputs to ensure virtual gate qubit inputs are mapped to physically adjacent qubits.
We formalize this as follows:∨

c∈M.C

(GQM [Gi, c[1]] = Gi.Rgate[1] ∧GQM [Gi, c[2]] = Gi.Rgate[2]) (6.40)

∀(Gi ∈ C.Γ) (6.41)

6.5.5 Gate Input Matches Last Swap Layer
A gate’s input qubit mapping should inherit the mapping of the last swap layer for that
gate. This is to ensure the permutation of qubits in the gate’s swap layers are propagated
to that gate.

GQM [Gi, qphys] = SQM [Gi, |C|, qphys] (6.42)
∀(Gi ∈ C.Γ) (6.43)

32

qphys0

qphys1

qphys2

qphys3

· · ·
· · ·
· · ·
· · ·

q1

q0

q∅

q∅
→

q1
q0

q∅

q∅

Figure 6.4: On the left is a mapping of a CNOT gate that may not
be allowed if there is no coupling between physical qubits q1 and q3.
The right shows a possible valid mapping for this gate when there is
a coupling between the qubits q1 and q2

.

6.5.6 Gate Starts After All Prior Gates Finish
A gate cannot start before its input qubits are done with prior computations. Checking the
gate end time (sum of start time and duration) from the prior gate is sufficient because of
the topological ordering of the gates.

GST [Gi, qphys] ≥ GST [Gi−1, qj] +GD [Gi−1, qj] (6.44)
∀(Gi ∈ C.Γ ∧ i > 1) (6.45)
∀qj ∈ {qphys ∈ Rphys : ∀qgate ∈ Gi.Rgate ∧ qgate 7→ GQM [Gi, qphys]} (6.46)

qphys0

qphys1

qphys2

qphys3

0
0
0
0

A 1
1
0
0

B

1
1
1
1

C

1
2
2
1

D

1
2
3
1

E

G1 G2 G3 G4 G5GST [G1] GST [G2] GST [G3] GST [G4] GST [G5]

Figure 6.5: A visual example of this constraint. Circles in the circuit
are the minimal values for the gate start time.

6.5.7 Swap Gate Insertion Unique For Swap Layer
One synthesized swap gate can be accommodated in each swap layer. Either one or no swap
gates is allowed to be inserted in a layer. An example of properly assigned sequence of swap
gates is shown in Figure 6.6. 1

(∀Gi, l)[(∃!c ∈ C)[SGI [Gi, l, c] = True]] ∨ [(∄c ∈ C)[SGI [Gi, l, c] = True]] (6.47)

1The quantifier notation ∃! denotes not only the requirement for existence but also for uniqueness.

33

qphys0

qphys1

qphys2

qphys3

· · ·
· · ·
· · ·
· · ·

X

Synthesized Swap Gates

Figure 6.6: The swap layers prior to a gate each with one synthesized
swap gate. The dotted lines indicate separate layers.

6.5.8 Swap Gate Insertion Swaps Mappings
A swap qubit mapping is going to permute the prior qubit mapping, this will either be a
prior swap layer mapping or the circuit input mapping.

PQM [Gi, l, qphys] =


IQM [qphys] l = 1 ∧ i = 1

GQM [G(i−1), qphys] l = 1 ∧ i > 1

SQM [Gi, l − 1, qphys] l > 1

(6.48)

SQM [Gi, l, qphys] =

{
SwapQubits(PQM [Gi, l, qphys], c) SGI [Gi, l, qphys ∈ c] = True
PQM [Gi, l, qphys] SGI [Gi, l, qphys ∈ c] = False

(6.49)

6.6 Optimization Criteria
The optimization criteria within the model can be thought of as special variables. Each of
these variables is an objective that the optimization controller sets in each step. The criteria
depend on other assignments to variables. This then makes the goal to find an assignment
to the other variables which satisfies these criteria.

6.6.1 Minimum Number of Swap Gates Inserted
We find the valid assignment to the model which minimizes the number of swaps we insert:

MSGI (Cvirt,M) = min

(∑
Gi∈Γ

∑
l∈[1..|C|]

∑
c∈C

{
1 SGI [Gi, l, c] = True
0 SGI [Gi, l, c] = False

)
(6.50)

6.6.2 Minimum Circuit Depth
We find the valid assignment to the model which minimizes the overall depth of the circuit.
This is also, as of now, the same as saying we find the minimum total circuit end time.

34

MCD(Cvirt,M) = min
(

max
qphys∈M.Rphys

(GST [G|Γ|, qphys] +GD [G|Γ|, qphys])
)

(6.51)

Currently, we take these criteria and find the Pareto efficient solution. This means
that we jointly attempt to minimize both criteria until improvements to one will begin to
detriment the other. This yields efficient physical circuits.

35

Chapter 7

Results

7.1 Introduction
In this chapter we will discuss the results we obtained from the implemented system. This
includes both an experimental analysis of the quantum solver as well as the model’s ability
to optimize quantum programs. An analysis of edge cases which are difficult or impossible
for our model to optimize is also provided in a subsequent section. First, we begin with the
experimental results.

7.2 Experiments
In order to assess this system, there are two metrics used to quantify how well the system
performs as a whole. Performance of the system was measured as one of these metrics to
understand how a purely classical solver compares to our hybrid solver. A comparative
analysis of our optimization strategy against other optimization strategies was formulated
to understand how resources are saved in these models. The following discusses both the
experimental design and results.

7.2.1 Experimental Design
Performance Analysis We assume that we are given a random distribution of quantum
programs and hardware descriptions as input to our system. As the number of qubits
available to our hybrid solver increases, we should see an increase in performance on average
as compared to just using the classical solver.

Performance of the hybrid solver is measured by counting the number of classical solver
decisions along side the number of Grover’s algorithm iterations which are performed. A de-
cision in a backtracking solver such as the one we use, is the event when any variable changes
truth value. As we increase the number of qubits we expect the number of Grover’s algo-
rithm iterations to increase and the number of decisions decrease. As Grover’s algorithm’s
worst case time complexity for SAT is O(2n/2) and backtracking is O(2n), we expect that the
number of decisions which are replaced by the quantum solver will indicate a performance
improvement.

36

Comparative Analysis The other metric that was quantified was the performance of
our optimization model against another system for optimizing quantum programs. For our
case, the system chosen was QisKit’s Terra framework [32]. Terra is a low-level quantum
programming framework with a transpiler collection which, among other things, can perform
various levels of program optimization. We will utilize the moderate, normal and aggressive
optimizations provided by the transpiler and assess the difference from our model by the
reduction of the runtime of the circuit from the original circuit and the change in number of
gates.

7.2.2 Experimental Results
The following are the results of the experiments laid out above. Both an analysis of the
system’s performance and comparison to QisKit is provided. All experiments were run
on a machine running Ubuntu 18.04 on an AMD EPYC 7502P 32-Core processor with 256
gigabytes of system memory.

Performance Analysis

The performance of the hybrid system was analyzed by varying our simulated quantum
solver’s number of available qubits and then measuring the performance of the classical and
quantum solver. We measured these performance metrics by counting the number of decisions
made by the classical SAT solver along with the number of Grover iterations required by the
quantum solver. In order to analyze this performance we randomly generated a sample of
10 circuits and coupling graph pairs. In this sample we fixed the number of gates and the
number of qubits to 5 and 3 respectively. The coupling graphs were each a random linear
arrangement. The number of available qubits was varied from 0 to 30. In Figure 7.1 we can
see the results of this experiment.

Figure 7.1: The average number of Grover iterations and SAT deci-
sions when varying the number of solver qubits.

As can be seen in Figure 7.1, even for a small circuits and hardware configurations the
number of SAT decisions exceeds the number of possible Grover iterations by several orders

37

of magnitude. That being considered, we also measured the number of SAT decisions which
were replaced by a number of Grover iterations. This is displayed in Figure 7.2.

Figure 7.2: A logarithmic plot of the average number of Grover it-
erations replacing some number of SAT decisions when varying the
number of solver qubits.

In the above figure it can be seen that there is a polynomial speedup from the classical
solver to the quantum solver on these smaller subproblems. It is clear from these graphs
that although the number of solver qubits increasing denotes an increase in steps taken by
the quantum solver, this does not have any measurable affect on performance for circuits of
this size. This is expected as the ratio of Boolean variables to qubits is too low to see such
changes as is predicted in our discussion of the solver limitations in section 5.2.

Comparative Analysis

The comparative analysis of our optimization model against QisKit’s transpiler optimizations
measured two qualities of the output circuit: depth and total gates. Depth is a measure of
the runtime of the program and the total gate count is another important cost measure. Both
are costs or criteria our model optimizes for. Using a similar sample of circuits and coupling
graphs as in our performance analysis, we run our model against the 4 optimization levels
provided QisKit, obtaining the output circuit of each run. QisKit’s level 0 optimization is
supposed to simply map the circuit to the coupling graph with minimal effort while level 3
is supposed to offer the highest level of optimization.

In Figure 7.3 we show the average percentage increase in depth after each optimization
scheme has been applied to the input circuit. Similarly, Figure 7.4 shows the average per-
centage increase in gate count after each optimization scheme has been applied to the input
circuit.

We can see that our model succeeds in this task as it is able to provide a highly optimized
circuit whereas the QisKit optimizations do not achieve the same success. This is likely due

38

Figure 7.3: The average percentage increase in depth between
schemes.

Figure 7.4: The average percentage increase in gate count between
schemes.

to the fact that QisKit does not optimize the reordering of the input qubit register whereas
our model allows such remapping. Also, QisKit uses an approximate scheme for reducing
circuit depth when routing gates, leading to extraneous SWAP gates being inserted. Overall,
by these metrics our method is successful but improvements to our procedure are necessary
to allow larger circuits, which QisKit can cope with, to be feasibly optimized.

7.3 Interesting Instances
Several instances or edge cases were encountered which illustrate the limitations of this
system. These edges cases are inputs to our system which fall into two categories: hard edge
cases and impossible instances. Hard cases are those which can be optimized but the solver
is going to spend a significant amount of time on this. Impossible instances are those which

39

our model does not support finding the optimal solutions which are trivial to optimize. The
next subsections outline a few salient examples of these two cases.

7.3.1 Hard Instances
As previously stated, these hard instances are those which are solvable within the model but
may be difficult for the solver to arrive at a solution.

One of the hard cases we identified was the Toffoli gate. These three-qubit gates cannot
be directly implemented on quantum computers and must be decomposed into many gates.
This decomposition is shown in Figure 7.5. This is not particularly hard when the number
of physical qubits is three but becomes challenging when more physical qubits and couplings
are added as in Figure 7.6. It follows that multiple of these gates in series would also be
very challenging to optimize. A potential solution to this would be to introduce the notion
of a subroutine into our model to allow those routines to be optimized as a subproblem and
then optimized within the larger circuit.

q0
q1
q2

=

H T † T T †
T

T

T

T †

H

Figure 7.5: A Toffoli, sometimes called a CCNOT or CCX gate, and
one of its common decompositions.

q0
q1
q2
q3
q4
q5

=

H T † T T †

T

T

T

T †

H

Figure 7.6: A Toffoli gate spanning multiple qubits.

7.3.2 Impossible Instances
The impossible to optimize cases display the limitations of the model in its current state.
Future directions for this work should aim to address the more general issue displayed by
these examples.

One case that was identified was that our model does not support analysis of gate com-
mutation. If gates are allowed to commute then we would be able to swap pairs of gates to
better utilize each qubit at each time step.

Another case we identified was gate composition and decomposition. Consider a quantum
computing hardware which directly supports the SWAP gate. Also consider a user provides
a program to be run on the hardware where they have decomposed the SWAP gates in their

40

(a) An example circuit a programmer
may provide containing nine alternating
CNOT gates.

(b) A composition of the nine CNOT
gates in Figure 7.7a into three consecu-
tive SWAP gates.

(c) A further composition of Figure 7.7b
into one SWAP gate.

Figure 7.7: An example of composition as described in subsec-
tion 7.3.2.

circuit into CNOT gates, such as in Figure 7.7a. This is action on behalf of the user was
unnecessary given that the hardware supports the SWAP operation. An intermediate system
such as ours should cope with these user mistakes by composing these gates as seen step
wise in Figure 7.7b down to a single SWAP gate in Figure 7.7c.

Gate decomposition is the inverse of this issue, and our model also does not cope with
it. Gate decomposition would explore sets of gates which could implement an unsupported
operation on a given hardware. For example, suppose we have a controlled Z gate (CZ)
with the control on logical qubit 0 and the target on logical qubit 1. Suppose the program
optimizer knows that CZ gates are not supported on the hardware directly and that controlled
gates can only be placed with the control on physical qubit 1 and the target on physical qubit
0. The optimizer has several options:

• It could simply remap the logical qubits so that the CZ gate is mapped to the hardware
correctly, then decompose the CZ gate to gates which are supported by the hardware.

• It could decompose the CZ gate into several gates that could be more resource efficient
for the circuit as a whole.

Neither of these options would be fully supported by our system as it exists now as we
do not have a way to model these gate decompositions yet. Modeling this task would involve
allowing new gates to be inserted on the fly, changing fundamentally how gates, time, and
qubit mappings are formulated within our model.

41

Chapter 8

Future Work

8.1 Introduction
Initially the goal of this system was to build a self-hosting quantum program optimization
system as a proof-of-concept. Although this has been done, there are many areas to improve
the proof-of-concept design to a more capable system. The following sections touch on ideas
for the future of this work.

8.2 Improvements to Hybrid Quantum-Classical Solver
The argument that we posit is that we can speed up the optimization procedure through
using quantum algorithms to host the optimization procedure. Yet, the analysis in section 5.2
has shown that we cannot practically speedup this architecture without many more qubits
using Grover’s algorithm. The aim of implementing this hybrid solver realizes self-hosting
but improvements to realize speedups of this process remains to be made. Future work
could implement a new replacement to the current quantum solver based on any a variety
of quantum backtracking algorithms [9, 10, 22]. The current theory supports a potential
speedup over classical equivalent algorithms for a quantum backtracking solver.

8.3 Modeling Gate Commutation
Gate commutation is a very promising optimization strategy for reducing quantum circuit
depth. This quantum circuit optimization technique is introduced and employed by Itoko
et al. [7] but only commutes gates in an effort to find a local optimum circuit under their
model. We would aim to do this in an effort to globally improve circuit performance. This
property of the gates in a quantum circuit allow us to commute two gates if doing so results
in a reduced gate depth. Two gates commute if their unitary operations, rather the unitary
matrices, commute.

U1U2 = U2U1 (8.1)
U1, U2 ∈ C2n × C2n (8.2)

42

For example, consider a circuit with a Hadamard gate followed by a CNOT gate as is
shown in the colored gates in Figure 8.1. Such a circuit could have these two gates commuted
within a larger program in order to decrease total circuit depth. An example of this is given
visually in Figure 8.1.

q0
q1
q2

H

H

=
H

H

Depth 3 Depth 2

Figure 8.1: An example of a quantum program which can be reduced
in depth by applying commutation of the blue and red gates.

Mathematically, an inspection of the unitary matrices of these gates reveals whether it
is possible for this gate pair to commute.

(I ⊗H) ∗ CNOT = CNOT ∗ (I ⊗H) (8.3)
If the equality holds then we can consider commuting these gates in the constraint model.

This would allow the gates to be swapped, potentially increasing the number of gates which
can run at the same time. This would decrease the depth of the circuit overall. For any
given circuit, this commutativity property of two gates would need to be determined for each
unique pair of unitary operations that appear in the circuit. The results of this check could
then be considered in the constraint model. Considerations for how this is to be formalized
will be defined in the future.

8.4 Modeling Physical Hardware Noise
Quantum computing hardware will always be susceptible to noise from the environment.
This quantum circuit optimization model should be able to capture and account for this.
Depending on the device used, different quantum gates have different probability of success.
We expect the quantum computer device manufacturer to provide high quality experimental
analysis of this error rate as part of the device specification. This data can then be incor-
porated into the constraint model to inform the optimization procedure. In turn this would
produce circuits that yield more accurate measurement results given we consider overall
measurement error as a new optimization criteria.

8.5 Modeling Gate Timing
Similar to how various gates have different noise and error rates, different gates available on
the same hardware take different amounts of time to complete. For example, the relative
time needed to compute CNOT gates is typically longer than single qubit gates, such as
Hadamard and Pauli-X gates. Modeling this by taking a configuration of the timings for
each gate supported on a hardware will allow us to better represent optimized circuits.

43

Further, such timings would be useful in generating a more accurate schedule for the gates.
This is something our model does not accommodate for, as we assume all gates take one unit
of time each.

8.6 Simplifying Coupling Constraints through Inspec-
tion of Sub-graphs

Let us consider the hardware coupling map for a feasible quantum computer. In this coupling
map is a graph represented by a mesh of qubits such as can be seen in Figure 8.2. If our
circuit utilizes a subset of available qubits, we can map this circuit to many isomorphic
subgraphs of the coupling map. This reduces the number of such subgraphs inspected by
the solver. This has the potential to reduce the problem size, pruning the assignment search
space.

q0
q1
q2

X

(a) A simple circuit with sev-
eral two qubit gates.

q0

q1

q2

(b) A graph of the connec-
tions between qubits in the
circuit.

q11 q12

q21

q13

q22

q14

q23 q24

q31 q32 q33 q34

(c) A coupling graph with
two subgraphs in red and
blue that the circuit could be
mapped to.

Figure 8.2: An example of the subgraph isomorphism issue described
in this section.

Note that the subgraph isomorphism problem is reducible to a satisfiability problem,
which we can run using the quantum satisfiability solvers discussed prior. We can run
this for specific problem instances and cache the results for even faster later use in similar
instances.

8.7 Efficient Gate Compositions and Decompositions
and Similar Cost Reductions

Several approaches to quantum program optimization examine the composition and decom-
position of various gates [5–7,33]. A set of quantum gate can be composed if the product of
those gates produces a new single gate that is compatible with the target quantum device.
Gate decomposition works similarly, but one gate produces several compatible gates. This
can be shown formally via the products of the unitary operations:

44

U =
m∏
i=1

Ui (8.4)

U,Ui ∈ C2n × C2n (8.5)

We hope to employ some of these notions into our constraint model for preprocessing
circuits prior to our optimization procedure. One possible decomposition of a SWAP gate is
shown in Figure 8.3. In Figure 8.4 an example of a cost efficient decomposition of a bridge
gate is shown as presented by Itoko et al. [7].

q0
q1

=

Figure 8.3: The decomposition of a SWAP gate into 3 consecutive
CNOT gates.

q0
q1
q2

= =

Figure 8.4: A CNOT with span across another qubit and a series
of decompositions of the gate. From left to right: 1) A CNOT gate
spanning over an intermediary qubit. 2) the swap based approach,
which may not be supported on all hardware implementations and
is costly, possibly decomposing to a circuit of depth 7, and 3) The
bridge gate approach to this CNOT. Note that it only requires CNOT
gates in one direction and is depth 4.

8.8 Modeling Subroutines
In many cases certain patterns of gates are used multiple times in a given quantum program.
In our model, we could simplify the program by modeling subroutines in the quantum solver.
By first optimizing these repeated patterns, or subroutines, and then using the produced sub-
routine circuits we can insert in place after optimizing the program surround the subroutines.
This would reduce the runtime of the optimization process for many practical circuits which
have many repeated components.

8.9 Configurable Hardware Model
We would like to improve the current system’s usability by providing a convenient mechanism
to describe the desired quantum hardware. This would allow the user to give a specification
of the hardware just as the user can already easily specify the input quantum program.

45

Chapter 9

Conclusion

A system has been presented for self-hosted quantum program optimization. We use a
constraint model and quantum satisfiability algorithms to find optimized quantum programs.
Other work has not attempted to show a self-hosted quantum optimization process, but this
work begins the discussion of such topics. We have made the source code for this project
available for anyone to use.

The source code for this work can be found at https://github.com/CantelopePeel/QQ.
Within this repository you can find the necessary scripts to set up this framework as well as
a step by step example of the process we implement. Auxiliary repositories for our modified
version of the Z3 SMT solver and QuEST quantum simulator can be found at https://
github.com/CantelopePeel/Z3 and https://github.com/CantelopePeel/QuEST, respec-
tively.

This model and the architecture as a whole are a leading step towards efficient cost
reduction measures for quantum computation, using quantum computation itself to achieve
that end.

46

https://github.com/CantelopePeel/QQ
https://github.com/CantelopePeel/Z3
https://github.com/CantelopePeel/Z3
https://github.com/CantelopePeel/QuEST

Chapter 10

Appendix A: System Architecture

Below is a diagram depicting our full system architecture as describe in the primary matter
of this thesis.

Figure 10.1: System architecture diagram.

47

Bibliography

[1] L. K. Grover, “A fast quantum mechanical algorithm for database search,” arXiv:quant-
ph/9605043, Nov. 1996. arXiv: quant-ph/9605043.

[2] P. Murali, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Formal Constraint-
based Compilation for Noisy Intermediate-Scale Quantum Systems,” Microprocessors
and Microsystems, vol. 66, pp. 102–112, Apr. 2019. arXiv: 1903.03276.

[3] M. Pedram and A. Shafaei, “Layout Optimization for Quantum Circuits with Linear
Nearest Neighbor Architectures,” IEEE Circuits and Systems Magazine, vol. 16, no. 2,
pp. 62–74, 2016.

[4] G. Meuli, M. Soeken, and G. De Micheli, “SAT-based {CNOT, T} Quantum Circuit
Synthesis,” in Reversible Computation (J. Kari and I. Ulidowski, eds.), Lecture Notes
in Computer Science, (Cham), pp. 175–188, Springer International Publishing, 2018.

[5] D. Maslov, G. W. Dueck, D. M. Miller, and C. Negrevergne, “Quantum Circuit Simplifi-
cation and Level Compaction,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 27, pp. 436–444, Mar. 2008. arXiv: quant-ph/0604001.

[6] X. Zhang, H. Xiang, T. Xiang, L. Fu, and J. Sang, “An efficient quantum circuits
optimizing scheme compared with QISKit,” arXiv:1807.01703 [quant-ph], July 2018.
arXiv: 1807.01703.

[7] T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo, “Optimization of Quantum Circuit
Mapping using Gate Transformation and Commutation,” arXiv:1907.02686 [quant-ph],
July 2019. arXiv: 1907.02686.

[8] A. Zulehner, A. Paler, and R. Wille, “An Efficient Methodology for Mapping Quantum
Circuits to the IBM QX Architectures,” arXiv:1712.04722 [quant-ph], June 2018. arXiv:
1712.04722.

[9] A. Montanaro, “Quantum walk speedup of backtracking algorithms,” arXiv:1509.02374
[quant-ph], Sept. 2015. arXiv: 1509.02374.

[10] A. Ambainis and M. Kokainis, “Quantum algorithm for tree size estimation, with appli-
cations to backtracking and 2-player games,” arXiv:1704.06774 [quant-ph], Apr. 2017.
arXiv: 1704.06774.

48

[11] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open Quantum As-
sembly Language,” arXiv:1707.03429 [quant-ph], July 2017. arXiv: 1707.03429.

[12] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third
annual ACM symposium on Theory of computing, STOC ’71, (Shaker Heights, Ohio,
USA), pp. 151–158, Association for Computing Machinery, May 1971.

[13] “Z3Prover/z3,” Dec. 2019. original-date: 2015-03-26T18:16:07Z.

[14] D. Venturelli, M. Do, E. Rieffel, and J. Frank, “Compiling quantum circuits to realistic
hardware architectures using temporal planners,” Quantum Science and Technology,
vol. 3, p. 025004, Feb. 2018.

[15] M. Soeken, G. Meuli, B. Schmitt, F. Mozafari, H. Riener, and G. De Micheli, “Boolean
satisfiability in quantum compilation,” Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 378, p. 20190161, Feb. 2020.

[16] N. J. Cerf, L. K. Grover, and C. P. Williams, “Nested quantum search and NP-complete
problems,” Physical Review A, vol. 61, p. 032303, Feb. 2000. arXiv: quant-ph/9806078.

[17] L. K. Grover and J. Radhakrishnan, “Is partial quantum search of a database any
easier?,” arXiv:quant-ph/0407122, July 2004. arXiv: quant-ph/0407122.

[18] Vedran Dunjko, Y. Ge, and J. I. Cirac, “Computational speedups using small quantum
devices,” July 2018.

[19] E. Dantsin, V. Kreinovich, and A. Wolpert, “On Quantum Versions of Record-breaking
Algorithms for SAT,” SIGACT News, vol. 36, pp. 103–108, Dec. 2005.

[20] E. Dantsin and A. Wolpert, Quantum Versions of k-CSP Algorithms: a First Step
Towards Quantum Algorithms for Interval-Related Constraint Satisfaction Problems.

[21] E. Campbell, A. Khurana, and A. Montanaro, “Applying quantum algorithms to con-
straint satisfaction problems,” Quantum, vol. 3, p. 167, July 2019. arXiv: 1810.05582.

[22] S. Martiel and M. Remaud, “Practical implementation of a quantum backtracking al-
gorithm,” arXiv:1908.11291 [quant-ph], Aug. 2019. arXiv: 1908.11291.

[23] A. Montanaro, “Quantum speedup of branch-and-bound algorithms,” arXiv:1906.10375
[quant-ph], June 2019. arXiv: 1906.10375.

[24] E. Farhi, J. Goldstone, and S. Gutmann, “A Quantum Approximate Optimization Al-
gorithm,” arXiv:1411.4028 [quant-ph], Nov. 2014. arXiv: 1411.4028.

[25] B. Apolloni, C. Carvalho, and D. de Falco, “Quantum stochastic optimization,” Stochas-
tic Processes and their Applications, vol. 33, pp. 233–244, Dec. 1989.

[26] Kuk-Hyun Han and Jong-Hwan Kim, “Quantum-inspired evolutionary algorithm for a
class of combinatorial optimization,” IEEE Transactions on Evolutionary Computation,
vol. 6, pp. 580–593, Dec. 2002.

49

[27] G. S. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” in Au-
tomation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970 (J. H.
Siekmann and G. Wrightson, eds.), Symbolic Computation, pp. 466–483, Berlin, Hei-
delberg: Springer, 1983.

[28] “Using Grover’s Algorithm | CNOT.”

[29] T. Schoning, “A probabilistic algorithm for k-SAT and constraint satisfaction problems,”
in 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039),
pp. 410–414, Oct. 1999. ISSN: 0272-5428.

[30] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
P. Raghavan, and U. Schöning, “A deterministic (2−2/(k+1))n algorithm for k-SAT
based on local search,” Theoretical Computer Science, vol. 289, pp. 69–83, Oct. 2002.

[31] “QuEST-Kit/QuEST,” Mar. 2020. original-date: 2017-03-28T12:00:18Z.

[32] “Qiskit/qiskit-terra,” Apr. 2020. original-date: 2017-03-03T17:02:42Z.

[33] M. Mottonen and J. J. Vartiainen, “Decompositions of general quantum gates,”
arXiv:quant-ph/0504100, Apr. 2005. arXiv: quant-ph/0504100.

[34] P. J. Coles, S. Eidenbenz, S. Pakin, A. Adedoyin, J. Ambrosiano, P. Anisimov,
W. Casper, G. Chennupati, C. Coffrin, H. Djidjev, D. Gunter, S. Karra, N. Lemons,
S. Lin, A. Lokhov, A. Malyzhenkov, D. Mascarenas, S. Mniszewski, B. Nadiga,
D. O’Malley, D. Oyen, L. Prasad, R. Roberts, P. Romero, N. Santhi, N. Sinitsyn,
P. Swart, M. Vuffray, J. Wendelberger, B. Yoon, R. Zamora, and W. Zhu, “Quantum
Algorithm Implementations for Beginners,” arXiv:1804.03719 [quant-ph], Apr. 2018.
arXiv: 1804.03719.

[35] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, “A software methodology for compiling
quantum programs,” Quantum Science and Technology, vol. 3, p. 020501, Feb. 2018.

[36] A. Leporati and S. Felloni, “Three ”Quantum” Algorithms to Solve 3-SAT,” Theor.
Comput. Sci., vol. 372, pp. 218–241, Mar. 2007.

[37] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: An Open Source Software Framework
for Quantum Computing,” Quantum, vol. 2, p. 49, Jan. 2018. arXiv: 1612.08091.

[38] S. Achour and M. Rinard, “Time Dilation and Contraction for Programmable Analog
Devices with Jaunt,” in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems - ASPLOS
’18, (Williamsburg, VA, USA), pp. 229–242, ACM Press, 2018.

[39] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat, “Combinatorial
Sketching for Finite Programs,” in Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
XII, (New York, NY, USA), pp. 404–415, ACM, 2006. event-place: San Jose, California,
USA.

50

[40] S. Achour, R. Sarpeshkar, and M. C. Rinard, “Configuration Synthesis for Pro-
grammable Analog Devices with Arco,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’16, (New
York, NY, USA), pp. 177–193, ACM, 2016. event-place: Santa Barbara, CA, USA.

[41] J.-P. Watson, C. A. Phillips, and R. D. Carr, “Solving a Scheduling Problem for a Quan-
tum Computing Architecture Using Constraint Programming.,” Tech. Rep. SAND2008-
7438C, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), Nov. 2008.

[42] Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, “Automated optimization of
large quantum circuits with continuous parameters,” npj Quantum Information, vol. 4,
pp. 1–12, May 2018.

[43] A. Parent, M. Roetteler, and K. M. Svore, “Reversible circuit compilation with space
constraints,” arXiv:1510.00377 [quant-ph], Oct. 2015. arXiv: 1510.00377.

[44] C. A. Trugenberger, “Quantum optimization for combinatorial searches,” New Journal
of Physics, vol. 4, pp. 26–26, Apr. 2002.

[45] S.-T. Cheng and M.-H. Tao, “Quantum cooperative search algorithm for 3-SAT,” Jour-
nal of Computer and System Sciences, vol. 73, pp. 123–136, Feb. 2007.

[46] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Chapter 2 Satisfiability Solvers,”
in Foundations of Artificial Intelligence, vol. 3, pp. 89–134, Elsevier, 2008.

[47] F. G. S. L. Brandao and K. Svore, “Quantum Speed-ups for Semidefinite Programming,”
Sept. 2016.

[48] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Noise-
Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers,” in
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, (New York, NY,
USA), pp. 1015–1029, ACM, 2019. event-place: Providence, RI, USA.

[49] S. M. Saeed, X. Cui, R. Wille, A. Zulehner, K. Wu, R. Drechsler, and R. Karri, “To-
wards Reverse Engineering Reversible Logic,” arXiv:1704.08397 [cs], Apr. 2017. arXiv:
1704.08397.

[50] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete,
“Full-stack, real-system quantum computer studies: architectural comparisons and de-
sign insights,” in Proceedings of the 46th International Symposium on Computer Archi-
tecture - ISCA ’19, (Phoenix, Arizona), pp. 527–540, ACM Press, 2019.

[51] M. Side and V. Erol, “Applying Quantum Optimization Algorithms for Linear Pro-
gramming,” Apr. 2017.

[52] J. Petke and P. Jeavons, “The Order Encoding: From Tractable CSP to Tractable SAT,”
in Theory and Applications of Satisfiability Testing - SAT 2011 (K. A. Sakallah and
L. Simon, eds.), vol. 6695, pp. 371–372, Berlin, Heidelberg: Springer Berlin Heidelberg,
2011.

51

[53] A. Ignatiev, J. Marques-Silva, and A. Morgado, “PySAT Documentation,” p. 73.

[54] J. Liu, B. Zhan, S. Wang, S. Ying, T. Liu, Y. Li, M. Ying, and N. Zhan, “Formal
Verification of Quantum Algorithms Using Quantum Hoare Logic,” in Computer Aided
Verification (I. Dillig and S. Tasiran, eds.), Lecture Notes in Computer Science, pp. 187–
207, Springer International Publishing, 2019.

[55] M. Santha, “Quantum walk based search algorithms,” arXiv:0808.0059 [quant-ph], Aug.
2008. arXiv: 0808.0059.

[56] Z. Bian, F. Chudak, R. Israel, B. Lackey, W. G. Macready, and A. Roy, “Mapping
constrained optimization problems to quantum annealing with application to fault di-
agnosis,” arXiv:1603.03111 [quant-ph], Mar. 2016. arXiv: 1603.03111.

[57] N. de Beaudrap and S. Gharibian, “A linear time algorithm for quantum 2-SAT,”
arXiv:1508.07338 [quant-ph]. arXiv: 1508.07338.

[58] I. Arad, M. Santha, A. Sundaram, and S. Zhang, “Linear-Time Algorithm for Quantum
2SAT,” Theory of Computing, vol. 14, pp. 1–27, Mar. 2018.

[59] S. Bravyi, “Efficient algorithm for a quantum analogue of 2-SAT,” arXiv:quant-
ph/0602108, Feb. 2006. arXiv: quant-ph/0602108.

[60] E. Farhi, S. Kimmel, and K. Temme, “A Quantum Version of Sch\”oning’s Algo-
rithm Applied to Quantum 2-SAT,” arXiv:1603.06985 [quant-ph], Mar. 2016. arXiv:
1603.06985.

[61] A. Ambainis, “Quantum walk algorithm for element distinctness,” arXiv:quant-
ph/0311001, Oct. 2003. arXiv: quant-ph/0311001.

[62] T. Hogg, “Adiabatic Quantum Computing for Random Satisfiability Problems,” Phys-
ical Review A, vol. 67, p. 022314, Feb. 2003. arXiv: quant-ph/0206059.

[63] A. Ambainis, “Quantum search algorithms,” arXiv:quant-ph/0504012, Apr. 2005. arXiv:
quant-ph/0504012.

[64] W. L. Yang, H. Wei, F. Zhou, W. L. Chang, and M. Feng, “Solution to Satisfiability
problem by a complete Grover search with trapped ions,” Journal of Physics B: Atomic,
Molecular and Optical Physics, vol. 42, p. 145503, July 2009. arXiv: 0811.2905.

[65] J. HV, H. Thapliyal, H. R. Arabnia, and V. K. Agrawal, “Ancilla-Input and
Garbage-Output Optimized Design of a Reversible Quantum Integer Multiplier,”
arXiv:1608.01228 [quant-ph], Aug. 2016. arXiv: 1608.01228.

[66] Y. Wang, “A Quantum Walk Enhanced Grover Search Algorithm for Global Optimiza-
tion,” arXiv:1711.07825 [quant-ph], Nov. 2017. arXiv: 1711.07825.

[67] A. de Araújo and M. Finger, “Classical and quantum satisfiability,” Electronic Proceed-
ings in Theoretical Computer Science, vol. 81, pp. 79–84, Mar. 2012. arXiv: 1203.6161.

52

[68] A. Younes and J. E. Rowe, “A Polynomial Time Bounded-error Quantum Algorithm
for Boolean Satisfiability,” arXiv:1507.05061 [cs], July 2015. arXiv: 1507.05061.

[69] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Is Quantum Search Practical?,”
arXiv:quant-ph/0405001, Apr. 2004. arXiv: quant-ph/0405001.

[70] D. Bacon, “CSE 599 d-Quantum Computing The Quantum Circuit Model and Universal
Quantum Computation,” 2006.

[71] A. M. Childs, B. W. Reichardt, R. Spalek, and S. Zhang, “Every NAND formula of
size N can be evaluated in time N^{1/2+o(1)} on a quantum computer,” arXiv:quant-
ph/0703015, Mar. 2007. arXiv: quant-ph/0703015.

[72] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Špalek, and S. Zhang, “Any AND-
OR Formula of Size N Can Be Evaluated in Time $N^{1/2+o(1)}$ on a Quantum
Computer,” SIAM Journal on Computing, vol. 39, pp. 2513–2530, Jan. 2010.

[73] D. Gottesman and I. L. Chuang, “Quantum Teleportation is a Universal Computational
Primitive,” Nature, vol. 402, pp. 390–393, Nov. 1999. arXiv: quant-ph/9908010.

[74] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Pro-
ceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
vol. 439, pp. 553–558, Dec. 1992.

[75] Y. Ge and V. Dunjko, “A hybrid algorithm framework for small quantum comput-
ers with application to finding Hamiltonian cycles,” Journal of Mathematical Physics,
vol. 61, p. 012201, Jan. 2020.

[76] G. G. Guerreschi and M. Smelyanskiy, “Practical optimization for hybrid quantum-
classical algorithms,” arXiv:1701.01450 [quant-ph], Jan. 2017. arXiv: 1701.01450.

[77] I. Lynce and J. Marques-Silva, “Efficient data structures for backtrack search SAT
solvers,” Annals of Mathematics and Artificial Intelligence, vol. 43, pp. 137–152, Jan.
2005.

[78] H. Riener, R. Ehlers, B. Schmitt, and G. De Micheli, “Exact Synthesis of ESOP Forms,”
arXiv:1807.11103 [cs], July 2018. arXiv: 1807.11103.

[79] C. Dumitrescu, “A randomized, efficient algorithm for 3SAT,” arXiv:1703.01905 [cs],
Jan. 2018. arXiv: 1703.01905.

[80] A. Layeb and D.-E. Saidouni, “A Hybrid Quantum Genetic Algorithm and Local Search
based DPLL for Max 3-SAT Problems,” Applied Mathematics & Information Sciences,
vol. 8, pp. 77–87, Jan. 2014.

[81] C. Shao, Y. Li, and H. Li, “Quantum Algorithm Design: Techniques and Applications,”
Journal of Systems Science and Complexity, vol. 32, pp. 375–452, Feb. 2019.

[82] “Qiskit/qiskit,” Apr. 2020. original-date: 2018-12-12T22:04:07Z.

53

	Abstract
	Introduction
	Motivation
	Motivating Quantum Program Optimization
	Significance of Self-Hosting

	Concepts and Notation
	Qubits
	Quantum Gates
	Quantum Programs
	Boolean Satisfiability

	Background
	Quantum Program Optimization
	Template-Based Simplification
	Constraint Based
	Minimum Linear Arrangements
	Gate Transformation and Commutation
	Temporal Planners

	Quantum Satisfiability Algorithms
	Grover's Algorithm
	Quantum Backtracking
	Quantum Approximate Optimization
	Quantum Genetic Algorithms

	Quantum Program Optimization
	Introduction
	Procedure for Self-Hosted Quantum Optimizations
	Controller for Optimization Solver
	Objective Optimization

	Conversion from Optimizer Solution to Optimized Circuit

	Quantum Program Solver
	Introduction
	Limitations
	Hybrid Solver
	Implementation

	Quantum Program Constraint Model
	Introduction
	Problem Statement
	Constructs
	Quantum Circuit
	Quantum Gate
	Quantum Device
	Time

	Variables
	Gate Start Time
	Gate Duration
	Synthesized Swap Gates
	Physical-to-Virtual Qubit Mappings

	Constraints
	Bounded Gate Start Time and Duration
	Swap Gate Duration
	Gate Duration
	Gate Input Adjacency
	Gate Input Matches Last Swap Layer
	Gate Starts After All Prior Gates Finish
	Swap Gate Insertion Unique For Swap Layer
	Swap Gate Insertion Swaps Mappings

	Optimization Criteria
	Minimum Number of Swap Gates Inserted
	Minimum Circuit Depth

	Results
	Introduction
	Experiments
	Experimental Design
	Experimental Results

	Interesting Instances
	Hard Instances
	Impossible Instances

	Future Work
	Introduction
	Improvements to Hybrid Quantum-Classical Solver
	Modeling Gate Commutation
	Modeling Physical Hardware Noise
	Modeling Gate Timing
	Simplifying Coupling Constraints through Inspection of Sub-graphs
	Efficient Gate Compositions and Decompositions and Similar Cost Reductions
	Modeling Subroutines
	Configurable Hardware Model

	Conclusion
	Appendix A: System Architecture
	Bibliography

