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The computational fabrication pipeline for 3D printing is much like a compiler — users design models in
Computer Aided Design (CAD) tools that are lowered to polygon meshes to be ultimately compiled to machine
code by 3D slicers. For traditional compilers and programming languages, techniques for checking program
invariants are well-established. Similarly, methods like differential testing are frequently used to uncover bugs
in compilers themselves, which makes them more reliable.

The fabrication pipeline would benefit from similar techniques but traditional approaches do not directly
apply to the representations used in this domain. Unlike traditional programs, 3D models exist both as
geometric objects (a CAD model or a polygon mesh) as well as machine code that ultimately runs on the
hardware. The machine code, like in traditional compiling, is affected by many factors like the model, the
slicer being used, and numerous user-configurable parameters that control the slicing process.

In this work, we propose a new algorithm for lifting G-code (a common language used in many fabrication
pipelines) by denoting a G-code program to a set of cuboids, and then defining an approximate point cloud
representation for efficiently operating on these cuboids. Our algorithm opens up new opportunities: we
show three use cases that demonstrate how it enables (1) error localization in CAD models through invariant
checking, (2) quantitative comparisons between slicers, and (3) evaluating the efficacy of mesh repair tools. We
present a prototype implementation of our algorithm in a tool, GlitchFinder, and evaluate it on 58 real-world
CAD models. Our results show that GlitchFinder is particularly effective in identifying slicing issues due to
small features, can highlight differences in how popular slicers (Cura and PrusaSlicer) slice the same model,
and can identify cases where mesh repair tools (MeshLab and Meshmixer) introduce new errors during repair.

CCS Concepts: • Software and its engineering→ Software testing and debugging; • Theory of compu-
tation→ Denotational semantics; Operational semantics; • Applied computing→ Computer-aided
manufacturing.

Additional Key Words and Phrases: G-code, operational semantics, invariant checking, differential testing

1 Introduction

Programming language and compiler researchers have noted similarities between traditional com-
piler toolchains and computational fabrication pipelines. Akin to source code, designers prepare
a 3D model in computer-aided design (CAD) programs, export it to a polygon mesh which func-
tions like a conventional intermediate representation (IR), that is then “compiled” to instructions
for a computer-aided manufacturing (CAM) tool which runs these instructions to fabricate the
physical model. Over the years, there has been work on correct-by-construction computer-aided
design (CAD) compilers, tools that reverse engineer polygonal meshes to CAD models, program
synthesizers for CAD, and domain specific languages (DSLs) targeting various fabrication related
tasks [29, 72, 73, 87, 96, 101–103].

In this work, we use techniques from program semantics and differential testing to automate the
detection of errors in models as well as in tools used in the 3D printing fabrication pipeline.
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Fig. 1. 3D printed mechanical part (center) diverges from the original design (left) due to thin walls. The

slightly curved gap in the model (highlighted by the red square) when printed, appears as a rectangular gap.

The heatmap generated by our work (right) reveals this deviation before the model is printed.

The 3D printing fabrication pipeline. First, a user designs their model using geometric
constructs in a CAD software. These can be textual programmatic systems like OpenSCAD [77], or
interactive 3D geometric manipulation software like SolidWorks [92], Onshape [76], and Rhino [83].
The CAD software then generates a low-level polygon mesh by compiling the user’s high-level de-
sign into a set of triangles that represent the surface of the model. Next, a slicer (e.g., PrusaSlicer [81],
Cura [23], Simplify3D [88], Slic3r [89]) slices the mesh, usually to generate 2D horizontal layers
from which it then emits G-code [55, 90] for a 3D printer to execute.

G-code is a programming language for numerical control, developed in the 1960s and defined by
the RS-274 standard [55]. It is the de facto standard for computer aided manufacturing on machines
like 3D printers, laser cutters, and CNC (Computer Numerical Control) mills. G-code is analogous
to low-level machine instructions but omits constructs like loops and conditionals. The 3D printers
we focus on are fused-deposition modeling (FDM) printers, which heat and melt polymer filament
and lay it down on a “print-bed” through an extruder to create a 3D object. The process of laying
down the plastic is specified by commands embedded in the G-code that move the extruder in 3D
space while extruding plastic. The 3D printer’s firmware [54, 65] interprets these commands. Other
G-code commands heat the print bed and the extruder, select and switch between possibly multiple
extruders, perform calibration, etc. [1].
Challenges with 3D printing. In practice, 3D printing requires repeated attempts before a

successful print [46]. A part may fail to print correctly due to various reasons. The design itself may
have issues like feature sizes that are too small for a given hardware. The mesh may have problems
like flipped normals due to which the “inside” and “outside” of the model may be swapped. And
finally, the slicer may fail to generate G-code due to bugs in the slicer itself or in some cases the
generated G-code may not accurately represent the original model. To overcome these challenges,
users may have to change/fix the design, fix mesh errors (e.g., holes, duplicate vertices and faces,
invalid 2-manifold) using (often multiple!) mesh repair tools like MeshLab [110] and Meshmixer [6]
before slicing, adjust various settings that are used to configure slicers like filament extrusion rate,
temperature, change filament, and so on, or use different slicers to overcome slicing errors and
differences due to heuristics used in slicing algorithms. Since 3D printers are slow, a single 3D print
can take from many hours to days, making this iterative process time and resource intensive.

Debugging G-code is like debugging low-level assembly. Originally intended for small, low-cost
microcontrollers optimizing for factors like frame resonance, acceleration, and toolhead inertia,
standard G-code lacks control flow and uses fully unrolled loops. This results in extremely long,
straight-line programs. Commands specify absolute or relative positions via floating-point constants
derived from high-level 3D models, making it hard to trace code back to the original geometry.

The Problem: Lack of G-code analysis tools. Being able to (1) check invariants of the G-code
before starting a print, and (2) compare the output of various tools that are used for slicing and
repairing meshes via differential testing can help make the G-code more reliable and the tools
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Fig. 2. (Left) GlitchFinder’s kernel first reconstructs a set of cuboids from a G-code program to denote it.

From the reconstructed cuboids, GlitchFinder then generates a point cloud. (Right) This kernel can then be

used for comparing two G-code programs to generate a difference heatmap and a difference distribution

graph. As later sections will show, both model invariant checking and differential testing can be reduced to a

comparison of two G-code programs.

more robust, ultimately leading to a more efficient fabrication process. In traditional compilers and
programming languages, there is decades of research on program analysis and differential testing;
similar techniques would benefit computational fabrication.
However, traditional approaches do not directly apply to this domain because representations

like CAD designs, polygon meshes, and G-code are different from typical programs. CAD designs
and meshes are for example representations of an object’s geometry, whereas the G-code that
ultimately runs on CNC machines is expected to produce the same geometry (modulo physical
constraints) while also being affected by factors like the slicer being used, the printer the G-code
is being generated for, and the settings used to slice the model [95]. Two G-code programs that
correspond to the same model can also be different based on the slicing algorithm used, making it
even harder to compare G-code programs from two different slicers.

The choice of representation being analyzed or used for comparing slicers and mesh repair tools
is an important one — a model may represent a valid geometry at the CAD or mesh level but fail to
slice or print correctly (Figure 1 shows a real-world example). Thus using a mesh representation
for differential testing of slicers and mesh repair tools may reveal little about whether the output
of these tools will ultimately lead to successful printing and slicing.
Our solution and insights. We address these challenges by proposing a new technique for

analyzing G-code programs. Our work is guided by the following three key insights.
Our first insight is that analyzing G-code captures the combined effect of the CAD design, the

slicer used, and slicer settings. This is analogous to analyzing low-level bytecode as opposed to
source code. We show how this “analyze-what-executes” approach helps check key invariants and
localize potentially problematic regions of a model that may not print successfully, even if the
model at the CAD design or mesh level represents a valid geometry.

Our second insight is a G-code program can be lifted by constructing a set of cuboids that denotes
the program. Being able to represent a G-code program in this manner gives us a way to analyze
G-code programs and compare them by comparing the set of cuboids they represent.
Our third insight is that by comparing two G-code programs we can differentially test mesh

repair tools and slicers. We show that this is an effective approach for comparing the behavior of
different slicers, and for evaluating the efficacy of popular mesh repair tools.

As shown in the heatmap in Figure 1 (right), our technique successfully localizes the part of the
model in Figure 1 (left) that failed to print correctly (dark red in Figure 1, center). Crucially, it finds
the problem by statically analyzing the G-code, before the model is printed.
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We built a prototype tool, GlitchFinder, to implement our approach. GlitchFinder reconstructs
a set of cuboids that denotes a G-code program (Figure 2, left). To efficiently compare two G-code
programs, GlitchFinder uses a sampling-based approach to approximate a point cloud from
the cuboid set (Figure 2, left). GlitchFinder uses a second algorithm to efficiently compare
two point clouds to generate a difference heatmap for visualizing the differences between two
programs (Figure 2, right). We use GlitchFinder to (1) localize errors on 56 complex, real-world,
3D models, (2) compare two popular slicers to identify different behaviors on the same models,
and, (3) compare two popular mesh repair tools to evaluate their efficacy. This paper makes the
following contributions:
• A new method for analyzing G-code programs by reconstructing a cuboid set which is then
approximated as a point cloud and an algorithm for comparing two point clouds.
• Using point cloud comparison for invariant checking to localize problematic parts of a 3D
model that cannot be identified from the CAD design or mesh representation.
• Using point cloud comparison to differentially test slicers and mesh repair tools.
• A prototype implementation in a tool dubbed GlitchFinder, and its evaluation over real-
world models, popular slicers, and mesh repair tools.

The rest of the paper is structured as follows: Section 2 provides background on slicing and
G-code, Section 3 presents big step operational semantics for the linear motion subset of G-code this
work targets and our cuboid reconstruction algorithm, Section 4 presents a sampling-based point
cloud generation approach from the reconstructed cuboids and a new algorithm for comparing
two G-code programs, Section 5 discusses showing the output of comparing two G-code programs,
Section 6 has implementation details and limitations, Section 7 shows how G-code analysis helps
check invariants of 3D models, Section 8 shows how G-code comparison enables differential testing
of slicers and mesh repair tools, Section 9 presents related work, and Section 10 concludes.

2 Background on G-code ...

G1 X151.801 Y158.165

G1 F1800 E -0.75

G1 F600 Z2.3

G0 F18000 X150.411 Y157.446 Z2.3

G0 X159.094 Y155.912

G1 F600 Z2.1

G1 F720 E0.75

G1 F2400 X160.02 Y156.838 E0.147

G1 X159.914 Y156.974 E0.01936

...

Figure 3 shows three different representations of the mechani-
cal part in Figure 1 alongside analogies to a traditional compiler
pipeline. The high-level CAD design must first be converted
into a triangle mesh representation from which a slicer (e.g.,
Cura [23]) generates G-code, a preview of which is shown to
the right in Figure 3 (including a close up view of the extruded
lines in the preview). A slicer must first be configured with a
variety of settings before it can generate G-code [95] with the most important one being the model
of the 3D printer for which the G-code is to be generated. This, in turn, dictates additional settings
like the diameter, 𝑑 , of the nozzle on the printer’s extruder, from which material is deposited.
This work focuses on G-code representing linear motion, generated through the commonly used
approach of uniform, planar slicing [28, 60]. For a model of height 𝐻 and for a uniform layer height
ℎ, this method generates 𝑁 slices where 𝑁 = ⌈𝐻/ℎ⌉. The layer height ℎ is another parameter that
is set to a fixed value in the slicer before slicing a model. These slices are parallel to a horizontal
“print bed” as shown in Figure 3 (right) — the extruder of a 3D printer deposits filament along the
2D lines in each layer.
The snippet above shows examples of G-code instructions from the preview shown in Fig-

ure 3 (right).1 A single straight line may be broken down into multiple instructions depending on
the specific slicing algorithm used in a slicer. G0 represents movements that do not extrude filament,

1The full G-code program contains other non-motion commands for setting temperature, selecting from among multiple
extruders, and controlling peripherals such as lights.
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CAD design Triangle mesh G-code
Slicer<Settings>CAD tool

 source code, e.g., C<latexit sha1_base64="aZQQTo6zPxye5k4UYGtf4O1cfGw=">AAAB73icbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPqAdSibNtKGZJCYZsQz9CTcuFHHr77jzb0zbWWjrgQuHc+7l3nsixZmxvv/tLS2vrK6tFzaKm1vbO7ulvf2GkakmtE4kl7oVYUM5E7RumeW0pTTFScRpMxreTPzmI9WGSXFvR4qGCe4LFjOCrZNaHayUlk/FbqnsV/wp0CIJclKGHLVu6avTkyRNqLCEY2Paga9smGFtGeF0XOykhipMhrhP244KnFATZtN7x+jYKT0US+1KWDRVf09kODFmlESuM8F2YOa9ifif105tfBVmTKjUUkFmi+KUIyvR5HnUY5oSy0eOYKKZuxWRAdaYWBfRJIRg/uVF0jitBBeV87uzcvU6j6MAh3AEJxDAJVThFmpQBwIcnuEV3rwH78V79z5mrUtePnMAf+B9/gDNsI/U</latexit>⇡  conventional IR, e.g., LLVM<latexit sha1_base64="aZQQTo6zPxye5k4UYGtf4O1cfGw=">AAAB73icbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPqAdSibNtKGZJCYZsQz9CTcuFHHr77jzb0zbWWjrgQuHc+7l3nsixZmxvv/tLS2vrK6tFzaKm1vbO7ulvf2GkakmtE4kl7oVYUM5E7RumeW0pTTFScRpMxreTPzmI9WGSXFvR4qGCe4LFjOCrZNaHayUlk/FbqnsV/wp0CIJclKGHLVu6avTkyRNqLCEY2Paga9smGFtGeF0XOykhipMhrhP244KnFATZtN7x+jYKT0US+1KWDRVf09kODFmlESuM8F2YOa9ifif105tfBVmTKjUUkFmi+KUIyvR5HnUY5oSy0eOYKKZuxWRAdaYWBfRJIRg/uVF0jitBBeV87uzcvU6j6MAh3AEJxDAJVThFmpQBwIcnuEV3rwH78V79z5mrUtePnMAf+B9/gDNsI/U</latexit>⇡  machine instructions, e.g., x86<latexit sha1_base64="aZQQTo6zPxye5k4UYGtf4O1cfGw=">AAAB73icbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPqAdSibNtKGZJCYZsQz9CTcuFHHr77jzb0zbWWjrgQuHc+7l3nsixZmxvv/tLS2vrK6tFzaKm1vbO7ulvf2GkakmtE4kl7oVYUM5E7RumeW0pTTFScRpMxreTPzmI9WGSXFvR4qGCe4LFjOCrZNaHayUlk/FbqnsV/wp0CIJclKGHLVu6avTkyRNqLCEY2Paga9smGFtGeF0XOykhipMhrhP244KnFATZtN7x+jYKT0US+1KWDRVf09kODFmlESuM8F2YOa9ifif105tfBVmTKjUUkFmi+KUIyvR5HnUY5oSy0eOYKKZuxWRAdaYWBfRJIRg/uVF0jitBBeV87uzcvU6j6MAh3AEJxDAJVThFmpQBwIcnuEV3rwH78V79z5mrUtePnMAf+B9/gDNsI/U</latexit>⇡

Fig. 3. Left to right: high-level CAD design, triangle mesh, a preview of the generated G-code for the

mechanical part shown in Figure 1, and a zoomed in view of the cuboids represented by each G-code

instruction which forms the basis of our semantics. Below each representation, we provide an analogy from a

traditional compiler pipeline. The extruder of a 3D printer deposits filament along the horizontal lines in each

layer of the G-code to manufacture the object.

whereas G1 represents extruding movements. In the instruction, G0 F18000 X150.411 Y157.446 Z2.3,
F represents the “feed rate” which indicates how fast the extruder must move (18000mm/min),
and X, Y, and Z indicate the absolute (or relative2) position of the extruder after this instruction is
executed. For example, in the absolute setting, after executing this instruction the extruder would
end up at the 3D coordinate: (150.411, 157.446, 2.3).
When an argument is omitted, its last value is used. Therefore, in the next instruction in the

snippet, G0 X159.094 Y155.912, the extruder moves to the coordinate (159.094, 155.912, 2.3) at the
same speed as the previous instruction. Here, the Z coordinate also remains the same. The difference
between any two consecutive distinct values of Z should always be ℎ, the layer height chosen for
this model (in this case, 0.2mm). The E in the instruction G1 F2400 X160.02 Y156.838 E0.147 states
that 0.147mm of filament is extruded during this movement. Commands like G0 and G1 are similar
to assembly instructions and intended to run on CNC machines. G-code programs are stateful: both
instructions update the position of the toolhead (e.g., extruder of a 3D printer) and G1 additionally
also adds filament either directly on the print bed or on top of previous layers. This observation
guides how we define the state of a G-code program in Section 3.1.

3 Formalizing Linear Motion G-code Program

Our key idea is that by analyzing G-code programs, (1) we can check invariants of models and
localize problematic parts, and (2) compare two G-code programs for differentially testing slicers
and mesh repair tools. To analyze a G-code program comprised only of linear motion, we lift the
program to a set of cuboids and approximate it as a point cloud. To that end, we first provide formal
semantics for G-code.

3.1 Semantics of gcode
ℎ
𝑑
that Guides Cuboid Reconstruction

We define gcodeℎ
𝑑
to be a G-code program that is parametrized by 𝑑 , the extruder nozzle diameter on

the 3D printer for which some slicer generated the G-code, and ℎ the fixed layer height used when
configuring the slicer. Figure 4 shows the formal syntax of gcodeℎ

𝑑
, specifically the subset of G-code

this paper targets: linear motion G-code. In Figure 4, pos represents the position arguments of G0
and G1 and attribute is used for arguments E and F. A gcode

ℎ
𝑑
can be empty or a list of commands

(we model linear motion commands G0 and G1).
These commands (cmd) are instructions for an extruder on a 3D printer to deposit filament in

a 2D horizontal layer such that the resulting material (e.g., plastic) deposition constructs the 3D
model. The extruder has a heating element that melts the material which comes out from a nozzle
which typically has a round hole. If the nozzle was to extrude filament in free space, the filament
2G-code commands G90 and G91 switch between absolute and relative positioning respectively
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pos ::= (R, R, R) len ::= R rate ::= R attribute ::= E len | F rate

cmd ::= G0 (pos, attribute*) | G1 (pos, attribute*)

gcode
ℎ
𝑑

::= empty | cmd :: gcode
ℎ
𝑑

Fig. 4. Syntax of the subset of G-code this paper targets: linear motion generated by 3D printing slicers. We

define gcode
ℎ
𝑑
to be a G-code program whose layer height set to ℎ and which is generated for a 3D printer

whose extruder nozzle has diameter 𝑑 .

Fig. 5. (Left) Top view of the cuboid shown to the right. 𝑟 = 𝑑/2 is the radius of the nozzle on an extruder that

is moving from point 𝐴 to 𝐵. The outer rectangle 𝐶𝐷𝐸𝐹 approximates a rectangle of length 𝐴𝐵 together with

two semicircles protruding from either end. Intuitively, imagine these rounded ends are made by a circle of

radius 𝑟 centered at 𝐴 that is dragged to the point 𝐵. The dashed arrow depicts the trajectory of the nozzle’s

center — it moves from left to right. (Right) Reconstructed cuboid that denotes the line AB extruded by the

purple nozzle whose diameter is 𝑑 .

would therefore form a cylindrical shape along a line segment (similar to toothpaste out of a tube
in air). However, typically the nozzle extrudes on a horizontal print bed (subsequent layers are
extruded on top of the previous layer). The extruded cylinder will thus be “squished” between the
nozzle and the print bed (or previous layer) such that the top and bottom faces of the extruded
material are parallel to each other. Figure 3 (right) shows each extruded line up close for visual
understanding. Thus, the horizontal cross-section of an extruded line of material is a flat rectangle
with round corners.

Figure 5 (left) demonstrates this visually —𝐴𝐵 represents the top view of an extruded line between
two consecutive G-code instructions. The rounded ends can be imagined as being constructed by
dragging a circle of radius 𝑟 centered at 𝐴 to the point 𝐵, where 𝑟 = 𝑑/2 is the radius of the nozzle.
We ignore the rounded corners and approximate the line segments with the outer cuboids (top view
shown by 𝐶𝐷𝐸𝐹 in Figure 5, left) whose height is set to be the uniform layer height ℎ in the slicer
when generating the G-code for the model. Figure 5 (right) shows the 3D view of the reconstructed
cuboid whose top face is 𝐶𝐷𝐸𝐹 .
Figure 6 shows the big step operational semantics of gcodeℎ

𝑑
. We define the state 𝜎 of a gcodeℎ

𝑑

program to be a tuple whose first element, 𝑝𝑒 , is the current position of the extruder nozzle in 3D
space. We assume that initially it is at origin (see top of Figure 6). The second element in the tuple
is a set of cuboids that denotes the 3D object being constructed by gcode

ℎ
𝑑
. We represent a cuboid

with its top face (𝑓𝑡 ) and bottom face (𝑓𝑏 ) where a face is a 4-tuple made from vertex as shown.
We define two judgments: ⇓𝑑,ℎ and ⇓𝑝

𝑑,ℎ
. The first, ⇓𝑑,ℎ , evaluates a cmd (as shown in Figure 4)

to produce a new state. The attributes do not affect the semantics, as shown by _ in the inference
rules for G0 and G1. In the case of G0, no new cuboid is added in the new state: it remains 𝑐𝑠
which was the set of cuboids in the previous state. In the case of G1, a new cuboid is added to 𝑐𝑠
shown by 𝑐𝑠 ∪ {(𝑓𝑡 , 𝑓𝑏)}. The vertices for 𝑓𝑏 are computed as shown in Figure 6 using the rules
of trigonometry. The variable 𝑘 in Figure 6 represents the distance from a line’s endpoint to its
nearest cuboid vertex — in Figure 5 (left), 𝑘 is the length of 𝐴𝐶 , 𝐴𝐹 , 𝐵𝐷 , and 𝐵𝐸.
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𝑥, 𝑦, 𝑧 ∈ R vertex ::= (𝑥, 𝑦, 𝑧) origin ::= (0, 0, 0)

face ::= (vertex, vertex, vertex, vertex) cuboid ::= (face𝑡 , face𝑏)

state 𝜎 ::= (𝑝𝑒 , { c | c 𝑖𝑠 𝑎 cuboid }) 𝑝𝑒 ::= vertex

𝜎 ; 𝑠 ⇓𝑑,ℎ 𝜎 ′ 𝜎 ′; 𝑠𝑠 ⇓𝑝
𝑑,ℎ

𝜎 ′′

𝜎 ; 𝑠 :: 𝑠𝑠 ⇓𝑝
𝑑,ℎ

𝜎 ′′
gcode

ℎ
𝑑 (𝑝𝑒 , 𝑐𝑠); G0(𝑝, _) ⇓𝑑,ℎ (𝑝, 𝑐𝑠)

G0

𝑐𝑠′ = 𝑐𝑠 ∪ {(𝑓𝑡 , 𝑓𝑏)}
(𝑝𝑒 , 𝑐𝑠); G1(𝑝, _) ⇓𝑑,ℎ (𝑝, 𝑐𝑠′)

G1 where

𝑓𝑏 = (𝑝𝑒 +𝑣 (−𝑘 · cos(−𝜃 + 𝜋
4 ), 𝑘 · sin(−𝜃 +

𝜋
4 ), 𝑝𝑒𝑧),

𝑝 +𝑣 (𝑘 · cos(𝜃 + 𝜋
4 ), 𝑘 · sin(𝜃 +

𝜋
4 ), 𝑝𝑒𝑧),

𝑝 +𝑣 (𝑘 · cos(−𝜃 + 𝜋
4 ), −𝑘 · sin(−𝜃 +

𝜋
4 ), 𝑝𝑒𝑧),

𝑝𝑒 +𝑣 (−𝑘 · cos(𝜃 + 𝜋
4 ), −𝑘 · sin(𝜃 +

𝜋
4 ), 𝑝𝑒𝑧)), 𝑘 =

√
2(𝑑/2), 𝜃 = tan−1 (slope(−−→𝑝𝑒𝑝))

𝑓𝑡 = map(𝜆𝑣 . (𝑣 +𝑣 (0, 0, ℎ)), 𝑓𝑏)

Fig. 6. Big step operational semantics of gcode
ℎ
𝑑
. From Figure 5 (Left), 𝐴 is 𝑝𝑒 , 𝐵 is 𝑝 ,𝐶𝐷𝐸𝐹 is 𝑓𝑡 , and 𝑟 = 𝑑/2.

We define +𝑣 as the addition operator over two 3D vertices. As is standard, map applies its first argument, a

function, to all vertices in 𝑓𝑏 . The 𝑧 component of 𝑝𝑒 is shown by 𝑝𝑒𝑧 .

We use +𝑣 to indicate addition of two 3D vertices: 𝑣1 +𝑣 𝑣2 = (𝑣1𝑥 + 𝑣2𝑥 , 𝑣1𝑦 + 𝑣2𝑦, 𝑣1𝑧 + 𝑣2𝑧). Here,
𝜃 is the gradient (computed using the helper function slope in Figure 6) of the line joining 𝑝𝑒 and 𝑝 ,
shown by −−→𝑝𝑒𝑝 , i.e., 𝜃 is the angle between the 𝑥-axis and −−→𝑝𝑒𝑝 .
Since the top and bottom face are parallel, the coordinates of the vertices of 𝑓𝑡 only differ from

those of 𝑓𝑏 in the 𝑧 coordinate (as we denote each instruction as a cuboid), which is offset by
the layer height, ℎ. For both G0 and G1, 𝑝𝑒 is updated to 𝑝 which is the position argument. This
indicates that after this command is executed, the new position of the nozzle is 𝑝 .
The judgment ⇓𝑝

𝑑,ℎ
evaluates a gcode

ℎ
𝑑
program as shown in Figure 6 by folding over all the

commands in the program. The rule states that at state 𝜎 , if the command 𝑠 evaluates to produce
the 𝜎 ′ following the rules of ⇓𝑑,ℎ , and at state 𝜎 ′, the rest of program, 𝑠𝑠 evaluates to 𝜎 ′′, then the
entire program gcode

ℎ
𝑑
evaluates to generate the final state 𝜎 ′′.

This explains how, given a gcodeℎ
𝑑
program, GlitchFinder reconstructs a set of cuboids that

denotes the 3D model that would be printed upon executing gcode
ℎ
𝑑
on a 3D printer (Figure 2, left).

3.2 Approximating gcode
ℎ
𝑑
as a Point Cloud to Facilitate Comparison

Once a 3D model has been reconstructed from a gcodeℎ
𝑑
program as described in Section 3.1, it can

be used for many downstream applications. This work demonstrates two: (1) invariant checking of
3D models, and (2) differential testing of mesh repair tools and slicers. Our key observation is that
both tasks can be performed by comparing two gcode

ℎ
𝑑
programs. This comparison process is non-

trivial and naive approaches suffer from poor scalability, numerical errors, imprecise localization of
differences, and hard-to-interpret results. This section and the ones that follow tackle each of these
problems in turn.
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Algorithm 1 Point Cloud Comparison Algorithm
procedure point_cloud_segmentation(pc1, pc2, ubox)

bbox← getBbox(pc1, pc2)

n← countUnitBox (ubox, bbox)

boxed_point_sets← [ [ [], [] ] × n]

for all p ∈ P | P ∈ {pc1, pc2} do
offset← findBoxIndex (p, ubox, bbox)

boxed_point_sets [offset][i].append (p) ⊲ i ∈ {0, 1} depends on if p ∈ pc1 or pc2
end for

return (boxed_point_sets, n)

end procedure

procedure compare_point_clouds(boxed_point_sets, n)

hd_list← []

for all i ∈ range(n) do
P_1← boxed_point_sets [i][0]

P_2← boxed_point_sets [i][1]

P_1’← [] ⊲ P_1’s neighborhood

P_2’← [] ⊲ P_2’s neighborhood

for all j ∈ neighboringBox (i) do
P_1’.extend(boxed_point_sets[j][0])

P_2’.extend(boxed_point_sets[j][1])

end for

hd_list.append(max (oneWayHD(P1, P2’), oneWayHD(P2, P1’)))

end for

return hd_list

end procedure

A naive approach for comparing two gcode
ℎ
𝑑
programs, p1 and p2, once a 3D model is re-

constructed from gcode
ℎ
𝑑
as a set of cuboids, is to use set-theoretic constructive solid geometry

operations like difference [73, 77, 104] that are available in CAD tools: difference (union (c11, c12,

..., c1n), union (c21, c22, ..., c2m)), where union (c11, c12, ..., c1n) is the set of cuboids for p1, and
union (c21, c22, ..., c2m) is the set of cuboids for p2. If the result is ∅, that means the two programs
denote the same 3D solid. A nonempty result indicates differences. However, early experimentation
showed that for large models this fails to scale.
Therefore, in GlitchFinder, we present a more practical algorithm for comparing two gcode

ℎ
𝑑

programs. Our algorithm discretizes the cuboids into a set of points yielding a point cloud for the
reconstructed model (Figure 2, left).

To generate a point cloud to approximate the reconstructed cuboid set, GlitchFinder samples
the cuboids. A straightforward strategy is to use uniform sampling where the same number of points
are sampled from each cuboid. However, this would oversample short cuboids and undersample
long cuboids. We therefore define

Ω𝑔 : cuboid→ points

as a function that proportionally samples different numbers of points from differently sized cuboids,
depending on its dimensions. We use the parameter 𝑔 to indicate the sampling gap, which represents
the distance between any pair of neighboring points. Ω𝑔 then samples

(⌈(𝑙 + 𝑑)/𝑔⌉ + 1) · (⌈𝑑/𝑔⌉ + 1) · (⌈ℎ/𝑔⌉ + 1)
points for a cuboid with length 𝑙 + 𝑑 , where 𝑑 is the nozzle diameter, 𝑙 is the length of the extruded
line, and ℎ is the layer height. From Figure 5, the dimensions of the reconstructed cuboid are length:
(𝑙 + 𝑑), breadth: 𝑑 , and height: ℎ. This method produces point clouds that are usually smaller than
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Fig. 7. Artifacts at different stages of processing: the input model whose G-code we are lifting, the recon-

structed cuboid set, the approximated point cloud, and a subset of unit boxes overlaid on the point cloud.

what uniform sampling from the cuboids would produce, speeding up point cloud comparison. To
summarize, if 𝐺 is a gcodeℎ

𝑑
program and 𝐺 ⇓𝑝

𝑑,ℎ
(_, 𝐶), then flatmap(Ω𝑔, 𝐶) is the point cloud

GlitchFinder generates for 𝐺 . Next, we show how GlitchFinder compares two point clouds
using an augmented Hausdorff distance metric.

4 Comparing Point Clouds

To compare two point clouds obtained as described in Section 3.2, we treat each point cloud as a set
of points and introduce an augmented version of Hausdorff distance [71].

TheHausdorff distance is widely used for evaluating global similarity by calculating themaximum
of nearest-neighbor distances between two point clouds [5, 41, 47]. However, because it yields a
single metric for the entire comparison, we cannot localize faults to regions of the point cloud. To
address this, GlitchFinder segments each point cloud into multiple unit boxes and performs a
finer-grained analysis by comparing the subset of points within the corresponding unit boxes. This
segmentation, done naively, causes wild swings in the Hausdorff metric as points on the boundaries
of partitions get ascribed to different unit boxes due to floating-point errors. To counter this, we
introduce a novel augmented Hausdorff metric that compensates for points displaced into adjacent
unit boxes due to numerical errors.

4.1 Overall Approach

Our approach consists of two main steps: (1) point cloud segmentation followed by (2) point cloud
comparison by Hausdorff distance computation within each segment. To perform point cloud
segmentation, GlitchFinder first creates a single bounding box that encompasses the larger of
the two point clouds to be compared (getBbox) if the extents of the point clouds are different. The
bounding box is then uniformly divided into multiple smaller unit boxes. Users can specify the
dimensions of a unit box, which typically depend on the scale of the smallest feature differences
users aim to capture. We then place each point in each point cloud into a unit box depending on
its spatial position. This procedure is shown in POINT_CLOUD_SEGMENTATION in Algorithm 1. The
inputs to the procedure are the point clouds pc1 and pc2, and dimensions of the unit box, ubox.
The function countUnitBox computes the total number of unit boxes based on the dimensions of
the bounding box (bbox) and ubox. Then, the function findBoxIndex finds the closest unit box in
which to place a point.

Nowwe can compare two point clouds by computing the distance between corresponding subsets
of points in each unit box. Figure 7 visualizes the inputs and outputs of the different stages of
reconstruction and comparison.
In our context, the distance can be a numerical value, none, or∞, depending on the number of

points in the unit box, 𝑢. When both point clouds contain points in 𝑢, the distance is a numerical
value. If 𝑢 is empty for both point clouds (i.e., neither point cloud has points in 𝑢), we define the
the distance to be none. The∞ case occurs when only one point cloud has points in 𝑢, while the
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Fig. 8. Hausdorff distance (𝑦-axis) vs sampling gap (𝑥-axis) with and without floating point error handling.

other does not. However, we observe that many such cases arise as side effects of discretization
and quantization [32, 79] or floating-point errors.

To avoid labeling these cases as having∞ distance and to better highlight the primary differences
in model features, we adopt the following approach: for the point cloud that has no points in 𝑢, we
construct a neighborhood of points centered around 𝑢. This neighborhood includes points from all
adjacent boxes, i.e., boxes that either share a face, vertex, or edge with 𝑢. Including 𝑢, there are 27
such boxes. We then compute the Hausdorff distance from this neighborhood to the subset of points
in 𝑢 from the other point cloud. This is explained in detail in the following section (Section 4.2).

4.2 Handling Floating-point Error

When comparing two very similar point clouds, one would expect the Hausdorff distances to be
relatively small if there is no significant difference in model features. Additionally, the distance
should decrease as the sampling gap becomes smaller, since the sampled point cloud more closely
resembles the original model. However, this expected behavior is not observed when the standard
Hausdorff distance metric is applied to points within each unit box. To understand this phenomenon
better, we compared two point clouds, both reconstructed from the gcodeℎ

𝑑
program of a simple

rectangular prism model. One was the point cloud of the original model, and the other was the
point cloud of a rotated version of the model which was rotated back after reconstruction. Ideally,
these should be the same point cloud.

Figure 8a shows the Hausdorff distance between points in the two models within four randomly
selected, nonempty unit boxes. At the smallest sampling gap (0.02), the Hausdorff distance is
10× higher than the distance at the largest sampling gap (0.10). We discovered that these non-
monotonic fluctuations are caused by floating-point errors during point cloud segmentation. When
findBoxIndex determines the unit box a point belongs to, imprecise floating-point arithmetic can
result in a point from box 𝐴 being incorrectly assigned to a different box 𝐵 in the other model.
Since Hausdorff distance [11, 71] takes the maximum distance from any point in one point set to
the other point set, it is highly sensitive to inaccuracies arising from missing points in one of the
sets. Therefore, we develop the following technique to mitigate the effect of floating-point errors in
POINT_CLOUD_SEGMENTATION.
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We present a new augmented Hausdorff distance formula as follows: the distance between two
point sets 𝑋 and 𝑌 in a unit box 𝐵 is defined as

𝑑 ′𝐻 (𝑋, 𝑌 ) = max{sup
𝑥∈𝑋

𝑑 (𝑥, 𝑌 ′), sup
𝑦∈𝑌

𝑑 (𝑋 ′, 𝑦)} (1)

where 𝑑 denotes the standard Hausdorff distance formula between a point and a set of points. 𝑋 ′
and 𝑌 ′ are the respective neighborhoods of 𝑋 and 𝑌 (defined in Section 4.1), where a neighborhood
of a point set within a unit box 𝐵 contains points from all neighboring boxes of 𝐵, including points
from 𝐵 itself. This definition of 𝑑 ′

𝐻
(𝑋, 𝑌 ) ensures that, even if a point 𝑥 in 𝑋 cannot find its closest

point 𝑦 in 𝑌 due to misclassification of 𝑦, 𝑥 can still match with 𝑦 in 𝑌 ’s neighborhood 𝑌 ′. This
procedure is shown in COMPARE_POINT_CLOUDS in Algorithm 1. It takes the segmented point clouds
boxed_point_sets and number of unit boxes n as input and returns a list of augmented Hausdorff
distances, hd_list. In the algorithm, oneWayHD(X,Y) is equal to sup𝑥∈𝑋 𝑑 (𝑥, 𝑌 ). The Hausdorff
distance computed with Equation 1 now exhibits the expected monotonic behavior (Figure 8b).

5 Visualizing True Differences

Reconstructing point clouds from two gcode
ℎ
𝑑
programs enables invariant checking and differen-

tial testing of fabrication tools by allowing gcode
ℎ
𝑑
comparison. So far, we have described how

GlitchFinder performs this reconstruction and comparison. We now discuss how the results
are presented to the user. We visualize distances per unit box as a heatmap. However, mapping
magnitudes linearly to colors is ineffective because, alongside the true differences caused by faulty
models or slicer/mesh tool variations, there are also unwanted errors from discretization and
quantization [23, 79] that are either inherent to slicing, and can be introduced during point cloud
reconstruction, as well as floating-point errors inevitable in finite-precision arithmetic. Ideally,
GlitchFinder should highlight only true differences while filtering out these inherent artifacts.

5.1 Spatial Averaging to Reduce Unwanted Errors

On examining the distribution of distances computed using Algorithm 1, we observed that dis-
cretization and quantization errors are typically confined to specific regions of the model, such
as boundaries and areas connecting the inner wall and infill, while floating-point errors appear
relatively randomly. Therefore, GlitchFinder averages distances spatially by computing the mean
distance within each unit box and its immediate neighborhood. Specifically, the distance for unit box
𝐵 is now calculated as

[∑𝑛
𝑖=1 𝑑𝑖

]
/𝑛, where 𝑛 is the number of neighboring boxes of 𝐵 that contain

a numerical distance value. We preserve all distances that are none or∞ without modification.
While this averages out the effect of random unwanted errors in the heatmap, it can also reduce

the distances representing true differences. To address this, using box size smaller than the size of
the feature difference that user wants to detect is preferable. As demonstrated in our evaluation
(Table 8, Table 9 in Section 11), with sufficiently small unit box sizes, the heatmaps consistently
highlight areas with true differences.

5.2 Choosing Colors for Visualization

Heatmap colors are drawn from a continuous spectrum. Points in each nonempty unit box share
one color. Nonempty boxes that have ∞ distance are assigned the darkest possible color in the
spectrum. Otherwise, users set a threshold percentile parameter to determine the cut-off value for
distinguishing distances representing true differences from those representing unwanted differences.
For example, a 90𝑡ℎ threshold percentile means that all distances smaller than the 90𝑡ℎ percentile
of the distances are considered difference-free and are assigned the lightest possible color. This is
used to highlight true differences by filtering out other unwanted errors. We devised this strategy
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Fig. 9. Heatmap and distance distribution visualization: the bottom row uses spatial averaging.

after examining the distribution of true errors in detail, as described in Section 5.3. For distances
between the defined threshold and∞, we normalize their difference relative to the threshold over
the entire distance range and assign colors based on the normalized distances.

5.3 Analyzing Trends in Distance Distributions

Across benchmarks, both raw (Algorithm 1) and spatially averaged distance distributions (Sec-
tion 5.1) show that most unwanted errors, caused by discretization, quantization, or floating-point
arithmetic, tend to have small magnitudes. True differences, on the other hand, are relatively
infrequent compared to unwanted errors and typically exhibit much larger magnitudes. A distri-
bution graph of distances between two models with notable feature differences often exhibits a
right-skewed shape, where the maximum distance is significantly larger than the minimum. A
high percentile threshold therefore effectively separates true differences from noise. In contrast,
a distribution graph between two models without significant feature differences often tends to
exhibit a nearly normal or slightly left-skewed distribution shape. The distribution may become
more right-skewed as the unit box size decreases though still within a narrow range relative to
the sampling gap. GlitchFinder visualizes these differences via both heatmaps and distribution
graphs to help distinguish true faults. Figure 9 visualizes the difference heatmap for the model in
Figure 1. The final result (bottom right) demonstrates how averaging and using a threshold (90𝑡ℎ
percentile) allows immediate identification of the fault in the model.

6 Implementation

We implemented GlitchFinder in Python in approximately 1,200 LOC and it is publicly avail-
able [43]. The GlitchFinder “kernel” takes as input a G-code file (with .gcode extension) and
following the semantics in Section 3, reconstructs a set of cuboids. From that, the kernel generates
an approximate point cloud as explained in Section 4. The kernel can be used to compare two
G-code programs and output a heatmap image and a distance distribution graph. This can be used
for various downstream applications; this work demonstrates two (Section 7, Section 8).
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6.1 Complexity

We assess GlitchFinder ’s scalability by first deriving the asymptotic cost of each of its components
and showing that every stage grows linearly with the input geometry. Section 7.4 provides running
times from our evaluation.

GlitchFinder parses the input G-code files; for each linear motion command (with extrusion), it
computes vertices of the corresponding cuboid, making this phase run in time linear in the number
of commands. The proportional sampler is also linear in the number points generated. If the two
input models are misaligned, we rotate the second point cloud; this operation touches each of its
points only once and therefore runs in time proportional to the number of points in that cloud.
In point cloud segmentation (Algorithm 1), the only non-constant work is the loop that assigns
each point to its corresponding unit box, so the running time is linear in the total number of points
across the two clouds. For point cloud comparison we iterate over the unit boxes; in each box we
compute an augmented Hausdorff distance between the two point subsets it contains using SciPy’s3
scipy.spatial.KDTree: building a tree for a subset of𝑚 points and querying it once per point
costs O(𝑚 log𝑚), yielding an overall O(𝑁 log𝑁 ) across all points 𝑁 . The pipeline finishes with
error distribution and heatmap generation, each running in time linear in the number of unit boxes.

In general, point cloud comparison is the most time-consuming phase, with runtime dominated
by SciPy’s KDTree operations. Faster nearest-neighbor structures or optimized libraries could reduce
this time. The rest of the runtime is largely I/O. Additional implementation-level optimizations are
also possible: for example in the invariant checking application (Section 7), several comparisons
share the same original G-code; parsing and sampling that file once and reusing the resulting point
cloud across all comparisons would eliminate redundant work.

6.2 Limitations

GlitchFinder’s cuboid reconstruction algorithm uses a rectangular cuboid as an approximation
for each deposited plastic segment, which may introduce inaccuracies in modeling the G-code. In
particular, this prevents GlitchFinder from modeling G-code programs that use non-planar or
non-uniform slicing. G-code commands that encode non-linear movement (e.g., circular motion)
are also not supported; we only model G0 and G1. We produce a logical approximation of the
actual 3D model and do not consider the influence of temperature variations or filament properties.
GlitchFinder does not model friction, vibration, or mechanical properties, and focuses only on
the “core” program that is responsible for constructing the model ignoring non-motion instructions
that are present in all G-code programs. This means that GlitchFinder targets errors that are
directly attributable to digital artifacts: 3D designs, meshes, slicers, or a combination thereof. There
may however be other kinds of errors that can be attributed to the hardware, like loose printer
belts, insufficient (or excessive) cooling, etc. that GlitchFinder cannot identify.

7 Invariant Checking for 3D Models

This section evaluates our first claim that by analyzing gcodeℎ
𝑑
program using GlitchFinder, we

can statically check invariants of models to detect regions that are likely to print incorrectly, even
if they are valid 3D solids. First, we define a specific invariant of gcodeℎ

𝑑
programs checking which

has helped us identify problems in many benchmarks.
Motivation. In traditional compilers, the idea of equivalence modulo inputs [57] has been used

for testing compilers by perturbing programs to obtain semantically equivalent, yet syntactically
different inputs. This idea can be instantiated for the 3D printing domain as well. For example,
rotating a model should not affect the shape represented by the generated G-code; it should only

3https://scipy.org/
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change its orientation in 3D space. In fact, it is common knowledge [3, 66, 121] among users
interacting with 3D printing tools that comparing G-code programs sliced in different orientations
can reveal problems in 3D models and even expose bugs in slicers.4 Inspired by these observations,
we define the following invariant for G-code programs.

Rotation Invariant, I.We define a 3D triangle mesh as (R3,R3,R3). Let 𝑅 be a function that
rotates a mesh by a 3D vector and slices it (by invoking a slicer) to produce gcodeℎ

𝑑
. Let 𝑟𝑐 be a

function that rotates a cuboid set by a 3D vector. Let 𝑟𝑝 be a function that rotates a point cloud by a
3D vector.

𝑅 : (R, R, R) → mesh → gcode
ℎ
𝑑

𝑟𝑐 : (R, R, R) → cuboids → cuboids

𝑟𝑝 : (R, R, R) → points → points

Let𝑀 be amesh that produces a gcodeℎ
𝑑
program𝐺 ; let𝐺 ⇓𝑝

𝑑,ℎ
(_, 𝐶) and let 𝑃 = flatmap(Ω𝑔, 𝐶)

be the point cloud approximated from𝐶 . Let𝐺𝑣 be the gcodeℎ𝑑 obtained by slicing the rotated mesh,
𝑅(𝑣, 𝑀); let𝐺𝑣 ⇓𝑝𝑑,ℎ (_, 𝐶𝑣), and let 𝑃𝑣 = flatmap(Ω𝑔, 𝐶𝑣) be the point cloud approximated from
𝐶𝑣 . The rotation invariant states:

𝑟𝑐 (𝑣,𝐶) = 𝐶𝑣

i.e., rotation and denotation must commute. However, as mentioned in Section 3.2, checking this
does not scale to complex models. We therefore define and check the following approximate version
of this invariant over the point clouds:5

𝑟𝑝 (𝑣, 𝑃)
𝜖≈ 𝑃𝑣

Observe that checking I has now reduced to comparing two gcodeℎ
𝑑
programs by comparing

their point clouds which GlitchFinder enables.
Other affine transformations like translation and scaling also define valid invariants, i.e., they

commute with denotation. For example, translating a 3D mesh (𝑀) along the 𝑥-axis, slicing it,
computing the denoted cuboid set, and then translating the cuboids back should yield the original
cuboid set corresponding to𝑀 . The same holds for scaling and rotation. However, we hypothesize
that I is more effective for revealing model bugs and aiding differential testing of slicers and mesh
repair tools. Unlike translation and scaling which involve simple arithmetic, rotation requires
trigonometric functions which empirically appear to expose more errors.
The rest of this section evaluates our claim that by checking I, GlitchFinder can localize

problematic parts in large, real-world 3D models for which we analyze the difference heatmap and
distance distribution graph (Figure 2, right) produced by GlitchFinder.

7.1 Benchmarks

We used GlitchFinder to check I for 56 real-world models, including 50 problematic models that
failed to produce correct G-code programs as reported by users, and 6 error-free models. Among
the 50 problematic models, one is shown in Figure 1, a mechanical part from an open-source
project [33]. To select the remaining models, we manually examined GitHub issues and user forums
from two popular slicers, UltiMaker Cura [23]6 and Prusa [81]. We selected 50 issues / posts that
included a model that we could use for our evaluation. We obtained the 6 error-free models by
inspecting the Voron-0 3D printer parts repository [117] because parts for building 3D printers are
more likely to be error-free due to widespread use and extensive testing.
4https://github.com/Ultimaker/Cura/issues/16726#issuecomment-1719546101
5We emphasize that this does not mean the 3D model must be physically printed in the rotated orientation; indeed many
models are designed such that they can only successfully be printed in a particular orientation (e.g., due to overhang).
6We used the “Slicing Error” filter on Github.

https://github.com/Ultimaker/Cura/issues/16726#issuecomment-1719546101
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7.2 Experimental Setup

Our GlitchFinder results were obtained on CloudLab [30] xl170 machines which are 10-core
Intel E5-2640v4 running at 2.4 GHz with 64GB RAM and 6G SATA SSDs. To generate G-code, we
used the popular and actively maintained Cura slicer [23] running on Linux. We configure the
slicer with the following settings: 0.4mm nozzle diameter, 0.2mm layer height 100% infill density,
and no support structures or build plate adhesion (all other settings remained had default values).7

The axes and angles of rotation are parameters to GlitchFinder and therefore user configurable.
By inspecting problematic models, we observed that rotations about the major axes often lead to
different behaviors in problematic models. Since the slices are parallel to the 𝑋𝑌 plane (Section 2),
we found that most of the interesting errors are exposed when the rotation changes the orientation
of the object such that its base is no longer “on” the 𝑋𝑌 plane. As a result, rotation about the 𝑧-axis
does not expose as many errors. Therefore, we chose to rotate each model by two different vectors:
by (90, 0, 0) and by (0, 90, 0) (i.e., rotation about 𝑥 and 𝑦 axes). We also found that rotating by other
angles like 45 degrees tends to increase unwanted errors (like quantization errors) that do not
correspond to true differences.

For streamlining our evaluation, we wrote an automation script (called GlitchRunner) to which
we pass the 3D triangle mesh from the original model, the rotation angles, the sampling gap (𝑔), the
unit box dimensions (see Algorithm 1 for point cloud segmentation), and a threshold percentile (see
Section 5 for heatmap and distribution graph). These arguments are all user configurable. Section 11
lists the parameters for all our benchmarks. GlitchRunner automates the rotation, the slicing
(by invoking the Cura slicer’s CuraEngine directly), and ultimately invokes GlitchFinder. For
some models, GlitchRunner first scales them to fit within Cura’s build plate for before slicing.
GlitchFinder’s kernel (Figure 2, left) reconstructs the cuboid set and approximates the point cloud
for each model, performs POINT_CLOUD_SEGMENTATION, and ultimately runs COMPARE_POINT_CLOUDS

(Algorithm 1). Since each model is rotated both about the 𝑥 and𝑦 axes, GlitchFinder produces two
heatmaps and distribution graphs for each benchmark. GlitchRunner takes these and generates a
combined heatmap and distribution graph by computing the average distance for each unit box.8

7.3 Results

In all 50 problematic benchmarks, GlitchFinder successfully identified the problematic areas.
Based on the original discussion about the model posted by users, we classify these models into
three categories based on the kind of problem they exhibit: models with small feature sizes (12),
non-watertight models (33), and models with flipped normals (5), and discuss our findings.

7.3.1 Models with Small Features. Figure 10 presents the overall heatmaps and distribution graphs
for a collection of 12 models with small geometries. GlitchFinder is particularly effective in
these scenarios, as the differences in G-code resulting from small features are often too subtle
and difficult to detect manually. Cura failed to slice the Amy and Warrior models entirely in their
original orientations. To address this, we applied a 90-degree rotation about the 𝑧-axis and treated
this rotated orientation as the original for these models.
We highlight four models (Arm, VertexProblem, Dragon, Amy): these exhibit varying degrees

of mesh flaws, which are detectable by existing mesh tools according to the discussions in the
Github issue where we found the models. However, in all these cases, the only flaw in the generated

7These settings are not intended for actual printing; they are only used for statically comparing two G-code programs using
GlitchFinder.
8This requires that all hd_list are generated using the same dimensions of ubox and bounding box. During the averaging,
distances with a none value are ignored, and whenever any distance within a unit box is∞, the average distance for that
box is set to∞.
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VertexProblem

Beard Sword GhostMask

Cloud

DragonArm ERCF

Amy

CresGaruru Warrior Car

Fig. 10. Output of GlitchFinder on 12 benchmarks with small feature sizes. We omit the axis labels for space

— 𝑥-axis is distance and 𝑦-axis is #unit boxes (same as elsewhere). Dark red regions highlight small features

due to which they failed to be sliced correctly. Lines to the right in the distribution graphs indicate that

there were unit boxes that had large distances between the two point clouds. Red lines in the distribution

graphs indicate that some unit boxes had∞ distance, meaning that those boxes contained no points in one

of the two point clouds. Both of these indicate true differences. The bar for∞ is chosen such that it is slightly

farther on the 𝑥-axis from the maximum numeric value distance.

G-code was that it was missing the parts that contained small or intricate features. This suggests
that the slicer was able to correct for the bad geometry but failed to handle the small feature size.
For example, as reported in the Github issue for the Arm model, the user observed that even after
repairing the mesh, there was no significant difference in the generated G-code, rendering the use
of mesh repair tools on these models ineffective.
This highlights a broader challenge in 3D printing: many imperfections in 3D printing arise

due to fine features, yet, existing mesh tools do not typically check for this issue. The reason is
that the smallness of a feature is relative to the nozzle size and slicing parameters and therefore
its effects only manifest after slicing (generating G-code). GlitchFinder can detect this class of

problems precisely because it targets G-code, which captures the interplay between the 3D model, the
choice of slicing software, and the settings used to configure the slicer. GlitchFinder is capable
of identifying differences arising from this combination of factors, all of which play a crucial role
in the actual 3D printing process. This is analogous to static analysis tools that verify bytecode
instead of source code, thereby not needing to trust the compiler.

7.3.2 Non-Watertight Models. Figure 11 and Figure 12 show the overall heatmaps and distribution
graphs for 33 models which have geometric defects preventing watertight closure. Of the 33
models, 7 (Airplane, Frame, Gun, Man, Tabby, Tray, and Truss) were scaled by users to expose
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Adapter Tray Bottlecap

Tardis Radenci CircularHole

Clip TrussBatman

Ring

Sterm

Gun

FaucetHead Borboleta

Trash Samurai

SlicesShip

Bolt Bagon DoubleCube

Fuselage_A Fuselage_B HolyGrail

Fig. 11. Output of GlitchFinder on the 24 of 33 non-watertight benchmarks. The dark red regions highlight

parts that caused slicing to fail. We omit the axis labels for space — 𝑥-axis is distance and 𝑦-axis is #unit

boxes. Lines to the right in the distribution graphs and red lines have the same meaning as Figure 10.

issues; we replicated those scalings. Non-water-tightness accounts for a significant fraction of
slicing failures, often preventing slicers from reliably generating G-code. While some mesh repair
tools [6, 7, 110] can correct for non-water-tightness, they do not all check for the same errors, and
there is no guarantee that the repaired models will always result in a correct slicing (Section 8.2).
GlitchRunner bypasses these limitations by enabling checking I rather than locating specific
flaws: it identifies regions violating I, regardless of the underlying nature of the mesh defect. User
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Frame Turbo Man

OmegaBoard Ford Horse

TabbyAirNozzleAirplane

Fig. 12. Continuation of Figure 11: Output of GlitchFinder on the remaining 9 of 33 non-watertight bench-

marks. The dark red regions highlight parts that caused slicing to fail. We omit the axis labels for space —

𝑥-axis is distance and 𝑦-axis is #unit boxes. Lines to the right in the distribution graphs and red lines have the

same meaning as Figure 10.

Carcasa Vents

Drum Tapa HexagonalCap

Fig. 13. Output of GlitchFinder on the 5 benchmarks with flipped normals. The dark red regions highlight

parts that caused slicing to fail. Lines to the right in the distribution graphs and red lines have the same

meaning as Figure 10.

reports also indicate that some models in this category (e.g., Tardis and Ford) could be successfully
repaired by specific mesh repair tools, yielding correct slicing results. However, other models like
Fuselage_A and Man are still incorrectly sliced even after mesh repair.

7.3.3 Models with Flipped Normals. Figure 13 shows the heatmaps and distribution graphs for 5 out
of the 50 models for which the only issue was “flipped normals.” A normal is a vector perpendicular
to the faces of a triangle mesh and typically points outward from the surface, indicating the “outside”
of the model. In case of a flipped normal, this perpendicular vector points “inwards” which can
confuse slicers into filling a region which is supposed to be a hole. Applying a rotation that orients
the hole in a direction that is not orthogonal to the slicing direction can frequently resolve the issue.
Therefore, checking I is well-suited for detecting models with such problems. In Cura, flipped
normal issues are not immediately evident upon loading the model unlike non-watertight models
which are more visibly flagged by an error message. Instead, users must manually identify these



Formalizing Linear Motion G-Code for Invariant Checking and Differential Testing of Fabrication Tools 328:19

DriveFrameUpper SpoolHolderT8NutBlock

M2Nut RearBedMountLeft RearBedMountRight

Fig. 14. Output of GlitchFinder on 6 error-free models: the slightly left-skewed / approximate normal

distance graph suggests that the differences are due to unwanted errors.

problems by inspecting the preview of the G-code (that most slicers support) to detect “overhangs”
that appear in unusual locations, such as on the top surface of the model. This is particularly tedious
for large or complex models but something that checking I with GlitchFinder can easily detect.

7.3.4 Addressing False Positives with Distribution Graphs. By design, GlitchFinder highlights
regionswith relatively significant deviationswhich could indicate true differences but also unwanted
errors (Section 4.1, Section 5). These unwanted errors can be viewed as being analogous to false
positives in traditional program analyses. The heatmaps on their own cannot distinguish between
these two cases. To address this, GlitchFinder also generates the distance distribution graph.

We ran GlitchFinder on 6well-tested, error-freemodels obtained from a repository that contains
parts of a 3D printer [111–116] (such mechanical parts are reasonably error-free) to demonstrate
that heatmaps alone are not sufficient for identifying true differences and the distribution graphs
are required for effectively distinguishing between true differences and unwanted errors (Figure 14).
All distributions appear approximately normal or slightly left-skewed, which is consistent with
our earlier observations (Section 5.3) that true differences tend to have an outliers characteristic.
For one example (T8NutBlock), we show both the heatmap and distribution graph — the heatmap
shows that the areas with the darkest colors correspond to the edges or boundaries of the inner
hole in the design. These regions show discretization artifacts [32], where the slicer attempts to
approximate the circular geometry using discrete linear plastic extrusions.

Summary. The key takeaway from this evaluation is that checking I with GlitchFinder can
localize problematic parts in 3D models arising due to different types of errors. GlitchFinder’s
heatmap visualization provides an actionable diagnostic tool for the 3D printing workflow, enabling
users to address slicing challenges through multiple strategies. For locally problematic regions (e.g.,
thin features marked in heatmaps), thickening those parts, adjusting parameters (minimum line
width, resolution), or changing to a smaller nozzle can help mitigate the problem.

We note that goal for GlitchFinder is not to replace mesh repair tools and other debugging
strategies — rather it can serve as a guide to help users identify the root cause of a failed slicing
attempt by localizing the error-prone parts of their model. While there is no single tool that can
detect all kinds of problems, GlitchFinder is the first tool that covers a much wider range of errors
than existing mesh or design level tools. Since GlitchFinder reasons about G-code, it can detect
errors that arise due to the effect of slicing parameters and other slicer-level factors.
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7.4 Running Times

We ran each benchmark three times, and report the running times as mean ± 95% confidence
interval. Across all 56 benchmarks, the running times span 182 ± 2.3s for the fastest model (Frame)
to 2055 ± 9.2s for the slowest (Man). A per-model breakdown of the running times is in Table 8
and Table 9 in Section 11. Since no directly comparable prior tool exists, we compare the running
time against the printing time estimates provided by the Cura slicer in Figure 15. For most models,
GlitchFinder completes its invariant checks much faster than the actual print, especially for
larger ones like Batman (see Table 8). Three of the small models Arm, DoubleCube, Beard print
too quickly for analysis time to be faster. However, the printing time estimates typically exclude
ancillary delays (bed heating, nozzle cooling, etc.) which would only add to the actual print times.

8 Differential Testing of Fabrication Tools
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Fig. 15. Comparing GlitchFinder’s

running time to estimated print times

across all 56 benchmarks. Plots are
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This section evaluates our second claim that by comparing
gcode

ℎ
𝑑
programs, GlitchFinder finds differences between

slicers and can evaluate the efficacy of mesh repair tools. For
both cases, we validated the differences highlighted in the
heatmaps by manually performing a visual comparison of the
G-code and the model.

8.1 Comparing Slicers using GlitchFinder

Slicers can produce different G-code for the same model be-
cause slicing is fundamentally a path planning problem. They
use heuristics to optimize for continuous extrusion, fewer un-
necessary movements, and fabrication time. These choices can
lead to different outcomes depending on the slicer and model.
Some slicers are also tailored for specific printers, limiting
their generality. Even with the same slicer, different settings
(e.g., seam placement) can change start and end points for layers, resulting in different G-code. We
therefore used GlitchFinder to compare the behaviors of two widely used slicers, Cura-5.3.1 and
PrusaSlicer-2.7.4, running on MacOS M1, on a set of problematic 3D models. The goal is to identify
differences in slicing outcomes and understand how each slicer handles specific geometries.

8.1.1 Benchmarks and setup. We used the 50 problematic models from Section 7, as well as two
additional models (Haut, DrillJig) from PrusaSlicer’s issues that can be sliced correctly in Cura
but not in PrusaSlicer (52 models in total). We imported each model into both slicers, generated the
G-code, and ran GlitchFinder on it. We configured both slicers with the same settings.

8.1.2 Results. For 12 of the 52 models, Cura and PrusaSlicer produced similar G-code based on
visual inspection. The remaining 40 models — including all models from Section 7.3.1 and 7.3.3,
as well as 21 models from 7.3.2 — demonstrate differences in slicing behaviors between the two
slicers. Specifically, PrusaSlicer fails to generate G-code for 2 models (GhostMask and DoubleCube),
resulting in no heatmap for these cases. For 2 models both slicers resulted in incorrect slicing
but in different, non-overlapping parts of the model. Cura produces G-code that more accurately
represents the original model for 16 of the other 36 models, while PrusaSlicer produces more
accurate G-code than Cura on the rest of the 20 (out of 36) models. We show detailed results on 10
representative models, including the CAD design, rendered G-code from Cura and PrusaSlicer and
the corresponding heatmaps. For 5 of these Cura-produced G-code more faithfully represents the
original model compared to PrusaSlicer, while the other 5 are the opposite.
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Table 1. Comparison of slicing results between Cura and PrusaSlicer for five representative models where Cura

outperforms PrusaSlicer. The leftmost column shows each model’s CAD design in OpenSCAD, followed by

G-code visualizations from Cura (middle-left) and PrusaSlicer (middle-right), and heatmaps in the rightmost

column. While Cura produces better results overall compared to PrusaSlicer, only the first two models are

sliced correctly, and the remaining three models showed slicing errors (Section 7), demonstrating that both

slicers struggle with these particular geometries despite Cura’s relative advantage.

Model G-code (Cura) G-code (Prusa) Heatmap

The first 2 models included in Table 1 are Haut and DrillJig. Like the 3rd and 4th model in the
table, both these models exhibit non-watertight mesh issues. Among the 21 non-watertight models
that exhibit differences in slicing behavior, Cura outperforms PrusaSlicer in 14 cases, including
a model for which PrusaSlicer fails to generate G-code. PrusaSlicer produces G-code that more
precisely represents the model in 9 cases; for example, the last 2 models in Table 2. Although Cura
might appear to have an advantage in handling non-watertight models, only 1 out of 5 models with
flipped normal issues is handled better in Cura.

The remaining models are all handled better by PrusaSlicer — it resolved the issues and generated
G-code, as demonstrated by the first model in Table 2. Among the 12 models with small features,
excluding 1 model for which PrusaSlicer fails to generate G-code and 2 models where the outcome
is difficult to determine, PrusaSlicer performs better in 7 cases. Two of these cases are highlighted
as the 2nd and 3rd models in Table 2. In contrast, Cura generates better slicing results in only 2
cases, one of which is showcased as the final model in Table 1.

Overall, we conclude that Cura and PrusaSlicer are good at handling different kinds of problematic
models — Cura was able to handle the non-watertight models better than PrusaSlicer but was
outperformed by the latter on the flipped normal models and small-feature models.

8.1.3 Summary. This study shows how GlitchFinder can be used to differentially test slicers
across a diverse set of 3D models. The output heatmaps correctly highlighted the discrepancies
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Table 2. Comparison of slicing results between Cura and PrusaSlicer for five representative models where

PrusaSlicer outperforms Cura. The leftmost column shows each model’s geometry in OpenSCAD, followed by

G-code visualizations from PrusaSlicer (middle-left) and Cura (middle-right), with heatmaps in the rightmost

column. PrusaSlicer achieves completely correct slicing for only the first and last models, while producing

more accurate results than Cura for the remaining three cases.

Model G-code (Prusa) G-code (Cura) Heatmap

Table 3. Comparing Meshmixer and MeshLab on 37 benchmarks that had no suggested fix on their cor-

responding Github issue. Note that for 3 models not accounted for in this table, Meshmixer showed a

combination of partial improvement with newly introduced defects.

Mesh Tool Complete resolution Partial improvement Not fixed New slicing defects
MeshLab 5.4% (2/37) 5.4% (2/37) 78.3% (29/37) 10.8% (4/37)
Meshmixer 8.1% (3/37) 8.1% (3/37) 45.9% (17/37) 29.7% (11/37)

between the two programs in all cases. GlitchFinder can be used by developers to compare slicers.
For users of slicers, GlitchFinder can act as a guide for deciding which slicer to select for their
model. GlitchFinder can empower both developers to improve their software and users to achieve
optimal slicing results. Indeed, users can compare G-code produced by the same slicer with different
settings to evaluate the effects of configuration settings on slicing quality.
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Table 4. Comparison of slicing outcomes before and after MeshLab’s repair. Columns show: (1) original

CAD model, (2) G-code from defective mesh, (3) G-code from repaired mesh, and (4) heatmap. MeshLab

successfully resolved all mesh defects, producing a fully correct slicing result.

Model G-code (Original) G-code (MeshLab) Heatmap

8.2 Comparing Mesh Repair Tools using GlitchFinder

It is common in the fabrication community to use mesh repair tools to fix meshes and re-slice when
the original model fails to slice. We compare two popular mesh repair tools: MeshLab [110] and
Meshmixer2017 [6] to evaluate their effectiveness in fixing problematic 3D models that fail to slice
correctly in the Cura slicer.

8.2.1 Benchmarks and setup. We selected 37models from the 50-model benchmark suite in Section 7
for which a viable repair solution was not already suggested by someone on the corresponding
GitHub issue. These models cover all three defect categories (small features, flipped normals, and
not-watertight models) in Section 7. For each model, we used both Meshmixer and MeshLab to
repair the mesh. We used Meshmixer’s “inspector” feature that can auto-repair all errors. MeshLab
has many mesh repair functionalities of which we applied 5 fixes to each model: removing duplicate
faces, removing duplicate vertices, removing unreferenced vertices, removing zero area faces, and
repairing non-manifold edges. We then sliced both repaired meshes with Cura and compare the
G-code against the original (uncorrected) G-code using GlitchFinder. We define 4 outcomes:
• Complete resolution: All original slicing errors are corrected with no residual defects.
• Partial improvement: A subset of the original slicing errors persists.
• Not fixed: The repaired mesh has identical slicing failures as the original mesh.
• New slicing defects: New errors emerged that were not present for the original mesh.

8.2.2 Results. Table 3 summarizes the results. For both tools, many models remained unfixed
for slicing purposes. Notably, for Meshmixer, 8.1% (3 models) showed the combination of partial
improvement with newly introduced defects. For both tools, all successfully repaired models
(complete or partial fixes) were non-watertight, suggesting that non-watertight models are a
primary source of repairable slicing errors. Meshmixer also tends to change geometrically valid
models, particularly those containing fine features (e.g., CresGaruru and BearingInsert). In these
cases, Meshmixer not only failed to resolve the original slicing defects, but also either introduced
extraneous features or, more often, removed features from the original model, thus ultimately
producing worse slicing outcomes. For both tools, we show two representative cases each: one
demonstrating successful repair (Table 4, Table 6) and one showing worsened slicing after repair
(Table 5, Table 7).

8.2.3 Summary. This showed yet another application of GlitchFinder— by enabling G-code
comparison it allowed us to compare the efficacy of popular mesh repair tools when used in the
context of slicing models for 3D printing. We found that both mesh repair tools tend to have many
“false negatives”, i.e., they do not successfully fix the models even when they generate an output.

9 Related Work

Programming languages for fabrication Prior work has used program synthesis, term rewriting,
and decompilation techniques to reconstruct CADmodels from polygon meshes [4, 16, 18, 29, 52, 72,
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Table 5. Comparison of slicing outcomes before and after MeshLab’s repair. Columns show: (1) original

CAD model, (2) G-code from defective mesh, (3) G-code from repaired mesh, and (4) heatmap. MeshLab

introduced critical errors in this case, incorrectly filling all designed holes in the model. The original G-code

only exhibited partial slicing defects at a single circular corner (top-left) feature.

Model G-code (Original) G-code (MeshLab) Heatmap

Table 6. Comparison of slicing outcomes before and after Meshmixer’s repair. Columns show: (1) original

CAD model, (2) G-code from defective mesh, (3) G-code from repaired mesh, and (4) heatmap. Meshmixer

successfully addressed all geometric flaws, resulting in a correct slicing.

Model G-code (Original) G-code (Meshmixer) Heatmap

Table 7. While manually corrected for manifold errors by the user, this model still showed slicing failures in

fine features (e.g., thin cape). Meshmixer further degraded results by removing certain mesh elements at the

model’s foot and ankle area, which can be clearly seen in the heatmap.

Model G-code (Original) G-code (Meshmixer) Heatmap

74, 86, 99], provided a formal semantics for CSG and mesh [73, 87] which has been used to develop
semantics preserving compilers and decompilers [73], and laid the foundation for developing tools
like debuggers and analyzers for toolpaths [103]. Vespidae [36] allows users to develop and visualize
custom toolpaths. Imprimer [101] has explored literate programming in the context of CNC milling.
In concurrent work, Tekriwal and Sottile [98] presented the first mechanized semantics of a subset
of G-code and a formally verified interpreter in Why3 and Rocq. Our definition of state, 𝜎 , is similar
to the machine’s physical state defined by Tekriwal and Sottile [98] although they do not “lift” the
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G-code commands by modeling them as cuboids. However, none of these formally reason about
G-code for checking invariants of models or differential testing of fabrication tools.

Understanding G-code. GSim (Tsoutsos et al. [104]) decompiles G-code to obtain an approxima-
tion of the input as a CSG model. We implemented Tsoutsos et al. [104]’s approach and found that
their method for reconstructing G-code using CSG does not scale for comparing G-code programs
(Section 3.2). Recent work [8, 50, 64] has used large language models (LLMs) for debugging and
comprehension of G-code and for CAD/CAMmore broadly. García Domínguez et al. [38] developed
an algorithm for constructing point clouds from scanned objects and compiling them directly
to toolpaths. We start with G-code (which is closer to toolpaths) and reconstruct a point cloud
modeling the lines in the G-code. Yanamandra et al. [122] used machine learning to reverse engineer
the toolpath used to manufacture a 3D object using fiber reinforced ABS filament. Baumann et al.
[9] developed a simulation technique based on contour detection for reverse engineering STL
meshes from G-code. Prior work has studied techniques for optimizing the orientation of a model
when 3D printing in order to increase mechanical strength [26, 106], and developed methods for
analyzing the quality of 3D printed objects [118]. While in this work we targeted uniform, planar
slicing [28, 60], other slicing techniques [32, 39] are witnessing adoption in many tools [59].

Studying slicers. Šljivic et al. [124] and Mohd Ariffin et al. [69] compared slicers by analyzing
printed objects, while Bryła [12] examined how filament, slicer, and printer together affect output.
These works studied the manufactured results rather than the G-code itself. Bryła and Martowicz
[13] conducted a syntactic comparison of G-code from two slicers [23, 81], examining how identical
settings yield different artifacts. In contrast, we use GlitchFinder to semantically analyze slicer
behavior, highlighting differences in how each handles geometric challenges. Recent work [95]
explores interactive tuning via parameter adjustment.

10 Conclusion

In this work, we lay the groundwork for formal reasoning of toolpaths in the form on G-code. We
defined semantics for linear-motion G-code and developed GlitchFinder, a static analysis tool
for comparing G-code programs. We showed two key applications of GlitchFinder: checking
model invariants and differential testing of slicers and mesh repair tools and demonstrated both
on real-world models and popular tools. By operating directly on G-code, GlitchFinder enables
rigorous analysis of slicer behavior and can be integrated into CI pipelines to monitor tooling
quality. Future directions include supporting additional slicing strategies and exploring further
applications of high-level geometry reconstruction from G-code.
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11 Parameters for running GlitchFinder

The parameters used in our evaluation are shown in Table 8 and Table 9. The value of Sampling Gap
depends on the size of the smallest feature in the model. Selecting an appropriate Unit Box Size is
crucial, as it helps isolate errors and ensures the heatmaps accurately highlight problematic regions.
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The right value will obtain the “right” number of errors – a number which does not overwhelm
the user but still provides “actionable” information, a key criteria for success in traditional static
analysis tools. We list the values that we found worked best for each model.

Table 8. Parameters used for all 58 benchmarks in our evaluation: 50 models with errors, 6 error-free Voron-0

models, and 2 additional models we used for comparing Prusa and Cura slicers (Section 8.1). All dimensions,

sampling gaps, and unit box sizes are given in millimeters (mm). Running time of GlitchFinder for the

invariant checking application (Section 7) in seconds is shown in the last column. DrillJig and Haut were
not included in the invariant checking benchmark suite, so no runtime data are reported for them. Times

are presented as mean ± 95% confidence interval, rounding the mean up to the next whole second and the

interval up to the next-highest tenth of a second.

Name Dimensions Sampling Gap Unit Box Size Time (s)

Adapter [84] 130.0 × 130.0 × 6.7 0.5 1.0 × 1.0 × 1.0 485 ± 8.1
AirNozzle 19.4 × 19.3 × 31.3 0.08 0.6 × 0.6 × 0.6 530 ± 1.6
Airplane [62] 98.8 × 41.1 × 65.9 0.5 1.5 × 1.5 × 1.5 483 ± 2.0
Amy [27] 76.9 × 88.3 × 5.0 0.3 1.0 × 1.0 × 0.5 607 ± 3.1
Arm [78] 11.8 × 8.9 × 10.2 0.03 0.2 × 0.2 × 0.2 616 ± 0.2
Bagon [107] 60.8 × 83.2 × 112.9 1.0 2.0 × 2.0 × 2.0 564 ± 1.0
Batman [15] 189.9 × 239.6 × 155.0 1.5 2.0 × 2.0 × 2.0 1600 ± 9.7
Beard [49] 27.5 × 10.5 × 8.1 0.05 0.3 × 0.3 × 0.3 215 ± 1.8
BearingInsert [33] 40.0 × 25.0 × 7.0 0.08 0.6 × 0.6 × 0.6 785 ± 6.0
Bolt [53] 28.0 × 27.9 × 43.0 0.1 0.3 × 0.3 × 0.8 1119 ± 10.0
Borboleta [51] 20.8 × 38.0 × 20.0 0.1 0.3 × 0.3 × 0.3 813 ± 7.0
Bottlecap [34] 33.0 × 33.0 × 10.3 0.1 1.0 × 1.0 × 1.0 358 ± 0.5
Carcasa [35] 100.0 × 61.0 × 22.4 0.2 0.8 × 0.8 × 0.5 1081 ± 3.1
Car [94] 36.4 × 78.7 × 21.8 0.2 0.8 × 0.8 × 0.8 483 ± 4.4
CircularHole [21] 110.0 × 200.0 × 12.0 0.5 1.0 × 1.0 × 1.0 409 ± 3.6
Clip [93] 28.8 × 40.1 × 21.9 0.1 1.0 × 1.0 × 1.0 697 ± 3.8
Cloud [19] 41.5 × 66.8 × 15.0 0.08 0.3 × 0.3 × 1.0 791 ± 1.0
CresGaruru [10] 138.6 × 136.8 × 98.1 1.0 2.0 × 2.0 × 2.0 364 ± 1.1
DoubleCube [17] 3.6 × 3.3 × 2.8 0.01 0.05 × 0.05 × 0.05 1087 ± 2.4
Dragon [123] 14.5 × 29.5 × 36.3 0.1 0.5 × 0.5 × 0.5 237 ± 3.1
DrillJig [67] 57.0 × 57.1 × 48.3 0.1 0.8 × 0.8 × 0.8 N/A
DriveFrameUpper [111] 61.0 × 50.0 × 22.5 0.2 1.0 × 1.0 × 1.0 510 ± 2.6
Drum [31] 163.0 × 163.0 × 38.0 1.2 2.0 × 2.0 × 2.0 1148 ± 7.0
Fuselage_A [56] 99.5 × 100.5 × 133.4 1.5 2.0 × 2.0 × 2.0 789 ± 6.9
Fuselage_B [70] 120.3 × 137.2 × 85.8 1.0 2.0 × 2.0 × 2.0 851 ± 4.5
FaucetHead [14] 35.0 × 34.9 × 42.0 0.2 1.0 × 1.0 × 1.0 521 ± 2.5
Ford [68] 244.7 × 153.4 × 113.1 0.5 2.5 × 2.5 × 2.5 1213 ± 3.0
Frame [40] 260.9 × 75.0 × 0.6 0.1 1.0 × 1.0 × 0.3 182 ± 2.3
GhostMask [91] 150.0 × 70.6 × 162.3 0.6 1.5 × 1.5 × 1.5 868 ± 2.2
Gun [80] 32.0 × 27.8 × 212.1 0.3 0.6 × 0.6 × 1.0 1092 ± 16.6
Haut [48] 247.3 × 67.5 × 211.0 0.85 3.0 × 3.0 × 1.0 N/A
HexagonalCap [82] 20.9 × 24.1 × 17.2 0.1 0.5 × 0.5 × 0.5 487 ± 3.9
HolyGrail [3] 15.2 × 15.2 × 6.3 0.05 0.3 × 0.3 × 0.3 294 ± 1.7
Horse [37] 43.5 × 49.2 × 53.6 0.1 0.8 × 0.8 × 0.8 1656 ± 25.5
M2Nut [112] 145.0 × 5.5 × 2.4 0.1 1.0 × 0.2 × 0.2 255 ± 1.5
Man [22] 58.8 × 32.0 × 149.6 0.3 0.6 × 0.6 × 0.6 2055 ± 9.2
OmegaBoard [58] 245.0 × 191.0 × 13.2 0.8 1.2 × 1.2 × 1.0 693 ± 4.0
Ring [120] 90.0 × 90.0 × 10.0 0.5 1.0 × 1.0 × 1.0 384 ± 3.1
Radenci [25] 250.3 × 250.0 × 150.0 0.5 3.0 × 3.0 × 3.0 789 ± 7.3
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Table 9. Continuation of Table 8: Parameters used for all 58 benchmarks in our evaluation: 50 models with

errors, 6 error-free Voron-0 models, and 2 additional models we used for comparing Prusa and Cura slicers. All

dimensions, sampling gaps, and unit box sizes are given in millimeters (mm). Running time of GlitchFinder

in seconds is shown in the last column. Times are presented as mean ± 95% confidence interval, rounding the

mean up to the next whole second and the interval up to the next-highest tenth of a second.

Name Dimensions Sampling Gap Unit Box Size Time (s)

RearBedMountLeft [113] 45.9 × 35.7 × 29.8 0.2 0.6 × 0.6 × 0.6 594 ± 2.6
RearBedMountRight [114] 45.9 × 56.9 × 29.8 0.2 0.8 × 0.8 × 0.8 613 ± 4.2
Samurai [61] 39.4 × 63.5 × 87.3 0.3 0.8 × 0.8 × 0.8 1100 ± 9.7
Ship [2] 36.6 × 27.7 × 65.5 0.1 0.5 × 0.5 × 0.5 1578 ± 27.5
Slices [108] 148.0 × 198.4 × 40.3 0.3 2.0 × 2.0 × 0.5 751 ± 2.1
SpoolHolder [115] 92.0 × 60.0 × 15.0 0.3 1.0 × 1.0 × 0.5 488 ± 3.6
Sterm [20] 115.9 × 147.1 × 50.7 1.0 2.0 × 2.0 × 2.0 662 ± 1.2
Sword [24] 198.1 × 120.6 × 35.7 0.5 1.0 × 1.0 × 1.0 1077 ± 8.9
T8NutBlock [116] 39.2 × 28.0 × 25.0 0.1 0.5 × 0.5 × 0.5 1287 ± 7.6
Tabby [63] 96.8 × 140.7 × 98.7 0.8 2.0 × 2.0 × 2.0 1471 ± 8.8
Tapa [119] 10.7 × 61.0 × 19.5 0.1 0.5 × 0.5 × 0.5 597 ± 4.2
Tardis [85] 100.0 × 129.8 × 110.0 0.4 1.0 × 1.0 × 1.0 1810 ± 6.5
Trash [75] 15.9 × 17.2 × 9.8 0.05 0.3 × 0.3 × 0.3 264 ± 2.2
Tray [109] 295.8 × 295.8 × 10.8 3.0 5.0 × 5.0 × 1.0 527 ± 2.2
Truss [66] 24.7 × 21.8 × 18.5 0.1 0.5 × 0.5 × 0.5 263 ± 0.2
Turbo [97] 150.0 × 150.0 × 150.0 0.8 2.0 × 2.0 × 2.0 1130 ± 6.2
Vents [100] 140.0 × 140.0 × 22.0 0.8 1.2 × 1.2 × 1.2 1306 ± 7.3
VertexProblem [105] 17.2 × 4.0 × 60.0 0.1 0.5 × 0.5 × 1.0 273 ± 3.0
Warrior [121] 35.7 × 34.1 × 57.2 0.1 0.7 × 0.7 × 0.7 1052 ± 4.1
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