
Tiny-QMoE
Jack Cashman

jcashman@u.rochester.edu
Jiaqi Nie

jnie7@u.rochester.edu

Abstract
The QMoE model [1] provides a practical approach for compression of massive Mixture-of-Experts (MoE) models.
QMoE offers a solution geared towards memory limitations that often reach terabyte scales, and it has the advantage
of working with high-sparsity models which implicitly lend themselves to compression techniques. QMoE also has
the advantage of only taking MoE models into account and does not evaluate its use with non mixture of expert
systems. Although this prior attempt focuses on the limitations of large servers with the latest NVIDIA hardware
which in the case of the H100 and V100 which have 80 GB of HBM (High Bandwidth Memory), what is not being
considered is a significantly more constrained environment, such as in the case of mobile devices which may have in
the case of the iPhone anywhere from 4 to 8 GB of unified memory which also needs to be shared with the operating
system and additional processes. Although edge devices such as phones and laptops are becoming increasingly more
computationally powerful, they are still not close to the level of advanced server machines such as NVIDIA. An
additional constraint that we must consider is that of latency. The communication time of sending a request to an
LLM server and then getting it back is an additional waiting time that can be removed. We may also want to use
LLM technology in environments where there is no reliable network connection. As will be discussed later, while the
latency of the internet is removed, the latency of the decompression is incurred. In this paper, we present a solution
to this highly-constrained memory problem. This takes the form of a re-imagined quantization compression schema
and execution such that models which would have normally exceeded the memory requirements of say a 2060 with
6 GB of VRAM. Specifically, Tiny-QMoE works on a variety of LLAMA 3.2 models and does so by quantizing the
models into 8-bit versions and then taking said models and storing them in a dictionary based compression format.

1 Introduction
LLM’s or large language models have in the last few years
experienced a meteoric rise in popularity. People have
used these models for an unbelievably wide array of nat-
ural language and reasoning applications. While demand
for these models is high, so to is the computational and
memory cost of inference. If a user were to try and run a
cutting edge large language model locally on device, they
will not be able to run it due to this memory. To get
around this issue, the conventional knowledge has been
that in order to run large language models locally, models
with a lower memory threshold are needed. This produc-
tion of smaller models comes at a noticeable cost in model
performance. Significantly shrinking the number of pa-
rameters and aggressive quantization often make models
so inaccurate that its output will be unusable by users.

Compared to previous solutions Tiny-QMoE comes at
the problem of memory constrain of mobile devices and
does so in a novel way. The system was required to make
significant changes to prior approaches. The main contri-
butions of this work are summarized as follows:

• Novel Compression Technique: Developed a

memory-efficient approach to run quantized large
language models (LLMs) locally without significant
degradation in model performance or latency. This
effort is accomplished through the storage of quan-
tized LLAMA 3.2 models[2] into a dictionary based
compression schema.

• Preservation of Model Accuracy: Demonstrated
the degree to which aggressive quantization can
maintain usability and output quality when applied
with our method. The issue of accuracy despite
quantization must be accomplished through a data
dependent approach rather than simply a naive re-
duction in value representation. The quantization of
smaller models also requires a less aggressive degree
of quantization for comparable reduction in perfor-
mance compared to that of significantly larger and
denser models.

• Enhanced Accessibility of LLMs: Enabled the
use of cutting-edge LLMs on resource-constrained de-
vices, bridging the gap between high computational
demands and device limitations. Large Language
Models should be able to be ran on more constrained

1

devices and in turn enable usage on device with the
benefit of working without internet connectivity. An
on device model would allow for more data privacy
as user prompts will not have to be sent to the web.
This privacy can minimize data tracking and the
fears of possible data breaches. LLM’s on mobile
devices may also bring the promise of better energy
consumption as many cutting edge arm chips may
outperform NVIDIA server scale AI systems in terms
of performance per watt. This increase in accessibil-
ity requires the rejection of hardware specific code
and in our current implementation focuses execution
of inference on CPU execution.

• Performance Evaluation: As we want to ensure
that our models are in fact as reduced in size as we
would hope for them to be and as performant both
in terms of latency and quality of output we must
run evaluations. Our evaluation of extensive exper-
iments showcasing the trade-off between model size
and performance across various reasoning and natu-
ral language tasks. We expect there to be an increase
in latency and a decrease in quality of output, but
not too much. Our focus given these setbacks comes
down to the compression which we aim to maximize.
If the model size is less than the memory of a system
then it would be able to operate within the respective
system which would mean that compression can ef-
fectively increase the amount of hardware any model
can be used on especially given our hardware agnos-
tic approach.

• Scalable Deployment of Variable Models: We
design our framework with the intentionality that it
can be applied to LLAMA 3.2 models of varying size
and capabilities. The approach allows for the goals
and limitations of the different implementations to
be scalable allowing users to opt between the range
of models.
Our range of LLAMA 3.2 models consists of the 1B
and 3B models but we plan to expand to include
11B and 90B where each model is named based on
the number of parameters they have where LLAMA
3.2 1B has one billion parameters and the rest follow
respectively. We have an expectation that as the
number of parameters increases the compression rate
will also increase.

Our proposed current work sadly comes with several
limitations however. This in turn makes it the case that
simply taking the implementation directly from QMoE[1]
would not be possible. QMoE simply cannot suit the al-
tered context of these both smaller and non-MoE models.
While the QMoE approach demonstrates significant ad-
vancements in compression and efficiency, these gains face

certain limitations associated with our approach:

• Dependence on High Sparsity: QMoE relies
heavily on high sparsity to achieve substantial com-
pression rates. This dependency makes it less effec-
tive for smaller and in turn less sparse models to
be used limiting its applicability in certain scenarios
like that of LLAMA 3.2 and other smaller to medium
sized models.
The dependency on high sparsity is reasonable in the
MoE context. The mixture of experts allows for an
increased parameter distribution through a subnet of
input tokens. Given that it is the case that smaller
and less dense models are less resistant to quanti-
zation noise (Frantar et al., 2022) our significantly
smaller models cannot be expected to be nearly as
resistant to this performance degradation.

• Hardware-Specific Implementation: The com-
pression schema in QMoE is implemented using
CUDA, which restricts its use to CUDA-compatible
devices. This serves as a limitation for hardware-
agnostic or diverse hardware environments.
Our goal for implementation is to make system that
can run reliably on nearly any CPU architecture.
This will come at the performance cost which can
be alleviate by future work in the form of a more
hardware specific approach that may use a solution
such as OpenCL or in the case of Apple hardware
OpenXLA.

2 Background
2.1 Quantization
Quantization is a technique which can be used to re-
duce the precision of numerical representations in ma-
chine learning models, typically converting floating-point
parameters to lower-bit integers. This approach reduces
memory usage and computational cost while aiming to
maintain model accuracy. Quantization plays a critical
role in enabling the deployment of large language mod-
els on resource-constrained devices. Quantization can
also help to improve the computational performance of
a model as the lower bits enable more parallelization and
faster compute.

For the training of models, it makes the most sense
to train with high accuracy so that the adjustments of
weights can be as precise as possible. High precision en-
sures that these updates are accurate, which is essential
for minimizing the loss function and converging to an op-
timal solution.

Training involves computing gradients, which can be
sensitive to small changes. High-precision calculations

2

reduce numerical instability, especially in deep networks,
preventing gradients from vanishing or even exploding.

The quantization used in that of QMoE was ternary
quantization. The ternary representation consists of us-
ing only three possible values. The compression looks at
each row of weights and enforces that each weight must
be the minimum weight, maximum weight, or zero. Given
a near normal distribution this representation inherently
causes high sparsity of nearly ninety percent in the case
of QMoE.

2.2 Compression
Compression techniques aim to reduce the size of ma-
chine learning models, improving memory efficiency and
computational performance. We achieve this through an
LZW-based schema, a dictionary-based compression algo-
rithm that dynamically builds a dictionary of substrings
encountered in the input data. LZW replaces these sub-
strings with shorter numerical codes, significantly reduc-
ing the size of data with repeated patterns.

During encoding, LZW starts with a dictionary con-
taining single-character substrings. It reads the input
string, identifies the longest substring already in the dic-
tionary, outputs its code, and adds a new substring to
the dictionary. When applied to machine learning mod-
els, LZW leverages recurring patterns in model weights
and parameters to achieve efficient compression. It will
be the case that when quantization is more aggressive,
so too will the compression as for in the case of ternary
quantization frequently occurring patterns are easier to
recognize than eight bit int representation. By exploit-
ing structure and redundancy, LZW helps significantly
reduce model size while preserving functionality.

2.3 Inference
Inference refers to the process of using a trained model to
make predictions or generate outputs. Efficient inference
is essential for deploying large language models, especially
in real-time or low-latency scenarios. Compression and
quantization directly impact inference performance by re-
ducing memory and computational requirements.

In our work, the inference process fundamentally di-
verges from conventional approaches that rely on fully ex-
panded, high-precision weight matrices. Rather than per-
forming inference on a large, static set of high-precision
parameters, our method encodes frequently occurring
patterns of quantized model weights into a compact
dictionary-based compression schema. During inference,
parameters are not decompressed yet and must do so on
a layer by layer basis and turn into the quantized model.
This reduces both the memory footprint and the compu-
tational overhead required to handle the model’s param-

eters. This is in stark contrast to traditional inference
pipelines, which more often than no demand substantial
memory bandwidth and or specialized hardware capabil-
ities.

2.4 Mixture of Experts (MoE)
The Mixture of Experts (MoE) architecture is designed
to increase a model’s parameter count—thus boosting
its modeling capacity—while keeping computational costs
nearly constant relative to a standard feed-forward net-
work. The core idea is to replicate certain model compo-
nents multiple times, thereby creating a set of “experts,”
each responsible for processing only a subset of the input
tokens. A dedicated “router” layer assigns tokens to indi-
vidual experts based on assignment scores, ensuring that
only a small portion of the full network is active for any
given token. This selective activation leads to increased
model capacity without a proportional increase in com-
putational cost, enabling more efficient scaling of large
language models.

2.5 Sparsity
Sparsity is the frequency of zero or near zero values in
a model. Exploiting sparsity enables significant reduc-
tions in memory and computation, which is particularly
best seen in the likes of in large-scale models. Sparsity is
closely tied to entropy and compressibility because when
parameters are predominantly zero or clustered around
a small set of values, the overall information content of
the weight distribution is reduced. The distribution and
variance of data plays a key role in determining the com-
pressibility of data. Models exhibiting higher sparsity
tend to have fewer distinct patterns within their param-
eters, effectively lowering the entropy of the parameter
distribution and reducing the LZW ability to achieve an
efficient dictionary on long patterns. Lower entropy im-
plies that the model’s weights can be encoded using fewer
bits on average, thus enhancing compressibility.

When dealing with large MoE-based architectures, ag-
gressive quantization can further amplify this sparsity.
Quantization of MoE models in ternary representation
makes it that they can have nearly a 90 percent spar-
sity (Frantar et al., 2022) whereas our quantized models
have close to zero. This creates a great deal of struc-
tured sparsity for ternary QMoE, where entire subsets
of parameters become compressible with minimal fidelity
loss. As a result, larger MoEs undergoing heavy quan-
tization not only maintain their expansive capacity but
also become more amenable to memory and computa-
tional optimizations based on sparse representations. In
contrast, significantly smaller models cannot be as aggres-
sively quantized without compromising their representa-

3

tional capacity and performance. Because these models
have fewer parameters and often rely on finer-grained pre-
cision to capture subtle patterns in the data, aggressively
pushing weights toward zero might degrade accuracy.

2.6 Rejecting CUDA and Hardware Ac-
celeration

CUDA is a parallel computing platform that enables effi-
cient implementation of QMoE’s decompression stage on
NVIDIA GPUs. However, this reliance on specific hard-
ware in the form of a reliance on CUDA restricts the
generalizability of the approach to other hardware en-
vironments. Developing a custom CUDA-based decom-
pression schema can yield significant latency reductions,
as it leverages GPU-accelerated parallelism to quickly
transform compressed sequences back into usable model
weights. By distributing the decompression workload
across thousands of GPU threads, the process can be ex-
ecuted at scale, thus minimizing stalls and bottlenecks in
the inference pipeline.

On the other hand, implementing the decompression
routine on the CPU provides a hardware-agnostic so-
lution that is not constrained by proprietary platforms
or vendor-specific toolchains. By avoiding CUDA, the
model becomes more portable, running effectively on a
wider array of devices, from desktop CPUs and mobile
chipsets to specialized accelerators that do not support
CUDA. This expanded compatibility eases deployment
concerns and future-proofs the approach against shifts in
hardware ecosystems. While a CPU-based solution may
not match the raw speedups offered by GPU accelera-
tion, it allows for broader dissemination, ensuring that
the compression-decompression pipeline is accessible and
maintainable across diverse computing environments. It
would also likely be the case that the latency incurred
by running any inference on CPU would better mask the
decompression latency.

3 Scaling Back Quantization For
Realistic Performance

Ternary quantization, which restricts weights to three dis-
crete values (e.g., wmin, 0, wmax), introduces a high de-
gree of information loss, especially in models with rela-
tively small parameter sizes like Llama 3.2-1B. Such ag-
gressive quantization reduces the representational capac-
ity of the model, severely affecting its ability to capture
intricate patterns in data. The resulting loss in granu-
larity can lead to significant degradation in performance,
as seen in our experiment where the model failed to gen-
erate coherent English responses. This suggests that the
limited weight resolution in ternary quantization disrupts

the balance between precision and generalization, making
it unsuitable for smaller models that rely on higher pre-
cision to maintain functionality.

We chose 8-bit quantization after an extensive series
of experiments involving ternary, 2-bit, 4-bit, 6-bit, and
8-bit naive quantization methods. Our naive quantiza-
tion algorithm operates by first determining the range of
weight values (minimum and maximum) for each layer
of the model. Specifically, the algorithm calculates a
scale factor based on the difference between the maximum
and minimum weight values and maps the weights to a
fixed range of discrete levels determined by the number
of quantization bits. For 8- bit quantization, weights are
mapped to 256 discrete levels (28 = 256) using this scale.
The quantization process is implemented in a Quantizer
class, which includes a find_params function to com-
pute the scale factor and zero point, and a quantize func-
tion to map the weights to their quantized values. If the
maxq parameter is set to negative (e.g., for ternary quan-
tization), the algorithm instead applies a simpler thresh-
old logic.

The algorithm iterates through all the parameter
weights of the model, and applies quantization as needed,
and runs the scaling and rounding process to replace
the original weights with their quantized counterparts.
This uniform quantization approach does not consider
the varying importance of different weights, which can
result in significant information loss, particularly when
using lower bit-width quantization. During our experi-
ments, while ternary, 2-bit, and 4-bit quantization caused
a severe loss of model functionality, 6-bit and 8-bit quan-
tization retained the model’s ability to generate coherent
outputs. Among these, 8-bit quantization produced re-
sponses with superior logical coherence and reasoning.

To further optimize model performance, we applied
GPTQ (Gradient Post-Training Quantization)[3], a data-
dependent quantization method. GPTQ addresses the
limitations of our naive algorithm by adapting the quan-
tization process based on the gradient and loss landscape
of the model, ensuring that the most critical weights for
model performance are preserved. By leveraging a small,
representative calibration dataset (the C4 dataset in our
experiments), GPTQ dynamically fine-tunes the quanti-
zation parameters, resulting in a model with much lower
information loss. We also experimented with using GPTQ
to perform a more aggressive 4-bit quantization. While
GPTQ was able to mitigate some of the performance
loss, the resulting 4-bit quantized model still failed to
match the performance of the 8-bit quantized model in
terms of both accuracy and coherence. This highlights the
challenges of aggressive quantization, as the reduced bit-
width introduces significant constraints on the model’s ca-
pacity to represent nuanced information. Consequently,
we concluded that 8-bit quantization strikes the optimal

4

balance between compression and performance, even with
advanced quantization techniques like GPTQ.
import torch
from transformers import AutoModelForCausalLM ,

AutoTokenizer
import torch .nn as nn

tokenizer = AutoTokenizer . from_pretrained ("meta - llama /
Llama -3.2 -1B")

model = AutoModelForCausalLM . from_pretrained ("meta -
llama /Llama -3.2 -1B")

device = "cuda" if torch .cuda. is_available () else "cpu"
model = model .to(device)

class Quantizer (nn. Module):
def configure (self , bits):

if bits == 1.5:
self.maxq = torch . tensor (-1)

else :
self.maxq = torch . tensor (2 ** int(bits) -

1)

def find_params (self , x):
dev = x. device
self.maxq = self.maxq.to(dev)

xmin = x.min ()
xmax = x.max ()

if self.maxq < 0:
self. scale = xmax
self.zero = xmin

else :
self. scale = (xmax - xmin) / self.maxq
self.zero = torch . round (-xmin / self. scale)

self. scale = self. scale . unsqueeze (0)
self.zero = self.zero. unsqueeze (0)

def quantize (self , x):
if self.maxq < 0:

return (x > self. scale / 2). float () * self.
scale + (x < self.zero / 2). float () *
self.zero

q = torch . clamp (torch . round (x / self. scale) +
self.zero , 0, self.maxq)

return self. scale * (q - self.zero)

quantizer = Quantizer ()
quantizer . configure (8)

def quantize_model_weights (model):
for name , param in model . named_parameters ():

if ’weight ’ in name:
with torch . no_grad ():

quantizer . find_params (param .data)
param .data = quantizer . quantize (param .

data)

quantize_model_weights (model)

Listing 1: Naive Quantization

4 8-bit Quantization Compression
Our compression scheme identifies frequently occurring
sequences of quantized parameters and assigns them short
codewords in a compression table. Sequences known to
the table are replaced by their codewords, while unknown
sequences are prefixed with a special codeword before be-
ing stored raw. This reduces repeated patterns and over-
all storage. Compression Code Below:

def find_frequent_sequences (quantized_model ,
sequence_length =4, top_k =2**16 - 1):

sequence_counts = Counter ()
for param in quantized_model . parameters ():

weights = param . flatten (). detach ().cpu (). numpy
(). astype (np. uint8)

sequences = (
tuple (weights [i:i + sequence_length])
for i in range (len(weights) -

sequence_length + 1)
)
sequence_counts . update (sequences)

most_frequent = sequence_counts . most_common (top_k)
compression_table = {seq: idx + 1 for idx , (seq , _)

in enumerate (most_frequent)}
return compression_table

Listing 2: Finding Frequent Sequences

def compress_model (quantized_model , compression_table ,
sequence_length =4):

compressed_files = []
param_index = 0
for param in quantized_model . parameters ():

weights = param . flatten (). detach ().cpu (). numpy
(). astype (np. uint8)

weights_length = len(weights)
compressed_param = []
i = 0
while i <= weights_length - sequence_length :

sequence = tuple (weights [i:i +
sequence_length])

if sequence in compression_table :
compressed_param . append (

compression_table [sequence])
i += sequence_length

else :
compressed_param . append (0 xFFFF)
compressed_param . extend (sequence)
i += sequence_length

remaining_weights = weights [i:]
if remaining_weights .size > 0:

compressed_param . append (0 xFFFF)
compressed_param . extend (remaining_weights)

compressed_param = np. array (compressed_param ,
dtype =np. uint16)

filename = f’compressed_weights_param_ {
param_index }. npy ’

np.save(filename , compressed_param)
compressed_files . append (filename)
param_index += 1

return compressed_files

Listing 3: Compressing Model Weights

Decompression reverses this process: codewords are
mapped back to their original sequences using the ta-
ble, and raw values are directly restored. This ensures
that when reconstructed, the model’s parameters match
the original exactly, preserving accuracy while lowering
memory requirements. Decompression Code Below:
def decompress_model (compressed_files ,

compression_table , sequence_length =4):
decompression_table = {idx: seq for seq , idx in

compression_table . items ()}
decompressed_weights = []
for filename in compressed_files :

compressed_data = np.load(filename)
i = 0
while i < len(compressed_data):

codeword = compressed_data [i]
i += 1
if codeword == 0 xFFFF :

Read raw values

5

raw_values = compressed_data [i:i +
sequence_length]. astype (np. uint8)

decompressed_weights . extend (raw_values)
i += sequence_length

else :
sequence = decompression_table [codeword

]
decompressed_weights . extend (sequence)

return np. array (decompressed_weights , dtype =np.
uint8)

Listing 4: Decompressing Model Weights

This compression methods which is used on the eight
bit quantized llama 3.2 models produces strong results.
As can be seen in table 1 when these models undergo the
process of quantization and compression their total size
becomes a fraction of what it once was. Assuming that
the performance of the models both in terms of latency
and accuracy remains which in that case would indicate
that we may be able to use larger models in more con-
strained cases especially in the cases of the 11B and 90B
models which we plan to test in future work.

Model Size

llama3.2-1B 2858 MB
llama3.2-1B Quantized 1469 MB
llama3.2-1B Quantized+Compressed 125.29 MB

llama3.2-3B 6584 MB
llama3.2-3B Quantized 3522 MB
llama3.2-3B Quantized+Compressed 187.97 MB

Table 1: Compression Results for 1B and 3B Models with
roughly a 23 and 35 times compression rate respectively.

5 Experiments
In this section, we benchmark to assess accuracy and la-
tency. Each configuration undergoes 8-bit quantization
and an additional compression step. We compare the
models:

• llama3.2-1B

• llama3.2-1B Quantized

• llama3.2-1B Compressed

• llama3.2-3B

• llama3.2-3B Quantized

• llama3.2-3B Compressed

All latency measurements are recorded on the same
hardware configuration, consisting of an Intel Xeon Gold
6130 CPU @ 2.10GHz and a Tesla V100-SXM2 GPU with
32GB of memory, averaging results over a fixed number

of samples. The primary metrics we consider are model
size, accuracy, and per-example latency across three core
evaluations: MMLU, ARC-Challenge, and ARC-Easy.

• MMLU (5-shot)[4]:Tests the model’s ability to an-
swer multiple-choice questions on a broad range of
subjects at a college level. The evaluation uses the
test set of the MMLU benchmark to assess perfor-
mance. In the 5-shot setting, a small set of demon-
stration examples is provided to guide the model in
understanding the task format and context. We re-
port both accuracy and latency as key performance
metrics.

• ARC-Challenge[5]: Tests the model on the
MMLU benchmark’s test set, which spans multiple
college-level subjects. Accuracy is calculated as the
percentage of correct answers based on the ground
truth. Few-shot evaluation is also supported, where
a small set of demonstration examples from the val-
idation set guides the model.

• ARC-Easy[5] : A challenging subset of the ARC
dataset, focusing on difficult science questions. Cor-
rectness is measured by comparing the predicted an-
swers with the provided ground truth.

The system is built using PyTorch and the Hugging Face
Transformers library, providing modular support for the
three benchmarks:

1. Model Loading: Pre-trained models are loaded,
with optional replacement of linear layers with com-
pressed counterparts for reduced model size.

2. Dataset Handling: Each benchmark’s dataset
is fetched and prepared, with optional few-shot
prompts generated using sampled examples from val-
idation or test sets.

3. Evaluation Pipeline: For each question:

• Prompts are generated and tokenized.
• The model computes the log-likelihood for each

answer option.
• The option with the highest score is selected as

the prediction.
• Accuracy is updated based on correctness, and

latency is measured per question.

Latency measurements during inference ensure precise
performance metrics, providing a comprehensive eval-
uation across MMLU, ARC-Challenge, and ARC-
Easy. This setup, executed on the specified hardware
configuration, ensures no data leakage and robust assess-
ment of the model’s performance.

6

Results: The table below presents the model sizes (after
quantization and compression), along with the accuracy
and latency results on MMLU (5-shot), ARC-Challenge,
and ARC-Easy. The quantized and compressed mod-
els aim to achieve similar accuracy to the uncompressed
baseline while significantly reducing model size and po-
tentially altering latency characteristics.

Model MMLU(5-shot) (%) Latency (s)
llama3.2-1B 29.3 0.1346
llama3.2-1B Quantized 29.25 0.2113
llama3.2-1B Compressed 29.25 0.2114
llama3.2-3B 35.34 0.3292
llama3.2-3B Quantized 35.31 0.5594
llama3.2-3B Compressed 35.31 0.5575

Table 2: MMLU (5-shot) results and latency for selected
llama3.2 configurations. Accuracy is reported in %, la-
tency in seconds.

Model ARC-Challenge (%) Latency (s)
llama3.2-1B 33.7 0.0922
llama3.2-1B Quantized 33.7 0.2609
llama3.2-1B Compressed 33.62 0.2733
llama3.2-3B 57.85 0.2504
llama3.2-3B Quantized 57.59 1.3574
llama3.2-3B Compressed 57 1.2866

Table 3: ARC-Challenge results and latency for selected
llama3.2 configurations. Accuracy is reported in %, la-
tency in seconds.

Model ARC-Easy (%) Latency (s)
llama3.2-1B 53.24 0.1005
llama3.2-1B Quantized 52.9 0.339
llama3.2-1B Compressed 52.27 0.3191
llama3.2-3B 73.23 0.1987
llama3.2-3B Quantized 72.94 1.0164
llama3.2-3B Compressed 72.56 1.1381

Table 4: ARC-Easy results and latency for selected
llama3.2 configurations. Accuracy is reported in %, la-
tency in seconds.

These results provide insight into the trade-offs be-
tween compression and performance. Quantization and
compression can substantially reduce model size while
maintaining competitive accuracy on MMLU, ARC-
Challenge, and ARC-Easy tasks, although the impact on
latency and final accuracy depends on the model size and
the level of compression applied. In particular, compar-
ing the compressed models against their uncompressed

and simply quantized counterparts will guide us in un-
derstanding how compression interacts with quantization
for real-world deployment scenarios. It is also important
to note that accessing online language models using the
likes of ChatGPT takes hundereds of miliseconds which
when I used the developer tools to measure latency on sa-
fari for a request it incurred 697ms which is much higher
than the latency incurred through the decompression of
the on device models.

6 Conclusion
The work we presented is Tiny-QMoE, a full scale quanti-
zation and compression system designed for LLAMA 3.2
inference in memory constrained systems. We show that
models much larger than one would expect to be able
to run on these constrained systems can and with min-
imal performance and latency impact. We show a 23x
and 35x compression rate which we assume should con-
tinue to be greater for the compression of larger models.
We do so in a custom inference execution which decom-
pressed on a per-layer basis as to get the most out of the
compression. This should make all LLAMA 3.2 models
easily more widely available for all as well as at a lower
computational cost.

We strongly believe that this work can be furthered.
In the future, we will test compression on larger models
which was too memory constraining for the system we
used. We also hope to test on a larger array of devices as
the use of CPU compute would make the system widely
extensible into many computing platforms. On top of this
while we were unable to bring the model outside of the
terminal which we had hoped to do with Web-GPU, we
hope to do so in the future as to make this work more
public beyond the terminal. The code used for compres-
sion, quantization, inference, and evaluation can be found
here: Tiny QMoE GitHub Repository.

References
[1] Frantar, E., and Alistarh, D. (2023). QMoE: Prac-

tical Sub-1-Bit Compression of Trillion-Parameter
Models. arXiv preprint arXiv:2310.16795. Available
at: https://arxiv.org/abs/2310.16795.

[2] Touvron, H., Lavril, T., Izacard, G., Martinet, X.,
Lachaux, M. A., Lacroix, T., Rozière, B., Goyal, N.,
Hambro, E., Azhar, F., Rodriguez, A., Joulin, A.,
Grave, E., and Lample, G. (2023). LLaMA: Open
and Efficient Foundation Language Models. arXiv
preprint arXiv:2302.13971. Available at: https://
doi.org/10.48550/arXiv.2302.13971.

7

https://chatgpt.com/
https://github.com/Peter-Nie2003/Tiny_QMOE
https://arxiv.org/abs/2310.16795
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971

[3] Frantar, E., Ashkboos, S., Hoefler, T., and Al-
istarh, D. (2023). GPTQ: Accurate Post-Training
Quantization for Generative Pre-trained Transform-
ers. arXiv preprint arXiv:2210.17323. Available at:
https://doi.org/10.48550/arXiv.2210.17323.

[4] Hendrycks, D., Burns, C., Basart, S., Zou, A.,
Mazeika, M., Song, D., and Steinhardt, J. (2021).
Measuring Massive Multitask Language Understand-
ing. arXiv preprint arXiv:2009.03300. Available at:
https://doi.org/10.48550/arXiv.2009.03300.

[5] Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sab-
harwal, A., Schoenick, C., and Tafjord, O. (2018).
Think you have Solved Question Answering? Try
ARC, the AI2 Reasoning Challenge. arXiv preprint
arXiv:1803.05457. Available at: https://doi.org/
10.48550/arXiv.1803.05457.

1

1ChatGPT was used as a part of the writing process for this
paper and the coding process for our system

8

https://doi.org/10.48550/arXiv.2210.17323
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.1803.05457
https://doi.org/10.48550/arXiv.1803.05457

	Introduction
	Background
	Quantization
	Compression
	Inference
	Mixture of Experts (MoE)
	Sparsity
	Rejecting CUDA and Hardware Acceleration

	Scaling Back Quantization For Realistic Performance
	8-bit Quantization Compression
	Experiments
	Conclusion

