
Translating ML Functions to ISPC
Machine Learning Systems

Adam Brohl

December 2024

1 Introduction

With machine learning models rapidly increasing in size; reaching billions of parameters, both the
hardware that runs model training and inferencing and the software require thorough optimization
to run in a reasonable amount of time. This project, in particular, takes a look at model inferencing
on CPUs that utilize short vector intrinsics. Many open source projects, such as llama.cpp [1] tend
to use short vector intrinsics to increase performance. This, however, comes at a cost as different
processor architectures have different implementations of short vector intrinsics. For example, Intel
processors can support AVX2 [2], AVX2 [3], or even another implementation altogether, and ARM
processors can support NEON [4], or SVE [5]. To address this issue, this project looks at the cost of
replacing short vector intrinsics code in projects like llama.cpp with ISPC [6], which is a language
created by Intel that uses a Single Program, Multiple Data (SPMD) methodology of constructing
“serial-looking” programs that can target a wide variety of short vector implementations and de-
termining if it is a worthwhile substitution by looking at the lines of code of both implementations,
supported short vector implementations, and performance.

2 Short Vector Intrinsics

Short vector intrinsics are a parallel programming model which allows for a programmer to create
short vectors of integers, floats, or boolean, and apply operations to each element in the short
vector using only a single instruction, hence the term Single Instruction, Multiple Data (SIMD).
These short vectors are represented by large registers that typically use somewhere between 128
and 512 bits. There are several short vector implementations; part from the few mentioned earlier,
Intel processors alone may support MMX [7], AMX [8], AVX10 [9], and even more. Each of these
implementations support different short vector sizes, and have their own operations for working
with them. This means, however, that an application utilizing short vector intrinsics wishing to
target multiple architectures will need to have code written for each short vector implementation,
and distinguish at runtime what to use.

3 Auto Vectorization

An attempt to approach this problem is the use of Auto-Vectorization [10]. Auto-Vectorization
allows a compiler to automatically convert serial code into its vectorized counterpart at compile
time by looking at unrolled loops, and finding a short vector intrinsic to replace the unrolled
statements. While this solution avoids the work of writing multiple variations for different short
vector implementations, it results in delicate code, as it relies entirely on the compiler’s ability to

1



auto-vectorize, meaning that the version of the compiler, and the way the code is written, change
if the code can even be vectorized or not.

4 ISPC

Another approach to this problem, and the one this project looks at in particular, is to use ISPC
[6] (Intel SPMD Program Compiler) to write code that uses special programming constructs to
write code that resembles a serial program but utilizes short vectors without the fragility of Auto-
Vectorization. ISPC resembles C code, and was built with interoperability to allow easy integration
of it to C and C++ projects. At compilation time, ISPC has several flags which indicate which
short vector implementation to target. By default, ISPC will compile to AVX2 (if possible).

When writing ISPC code, the language introduces two new types of variables that allow a pro-
grammer to write a vectorized program without actually specifying the size of the short vector.
These two new types are Varying and Uniform. Uniform types behave like traditional program-
ming variables, in which they are meant to represent a type that does not indicate a short vector.
Conversely a Varying type, is a scalar value, for example a 32-bit integer, which ISPC will convert
into the actual short vector at compile time. In a way, it is similar to mapping a function to a list
of values. The parameter in the function to be mapped is the Varying type, and the list of values
is the Uniform type.

5 Llama.cpp & GGML

Llama.cpp [1] is a library which allows for high performance model inferencing an less expensive
machines, like everyday CPUs. This library is written in C/C++, and uses a library named GGML
(Georgi Gerganov Machine Learning) [11] for optimized operations on tensors, which are frequently
used in machine learning. For standard model inferencing, the functions of the highest execution
time according to perf are listed in the table below.

Function Name Execution Time (%)
ggml vec dot q3 K q8 K 84.23
ggml vec dot q2 K q8 K 6.30
ggml vec dot f16 1.59
ggml compute forward mul mat 1.20
ggml vec dot q6 K q8 K 0.73
ggml fp32 to fp16 row 0.10

6 Translation Results

Property Value
CPU AMD Ryzen 7 5700U @ 4.372GHz
Model dolphin-2.2.1-mistral-7b.Q2 K
Model Size 2.87 GiB
Model Parameters 7.24 B
Threads 8
Repetitions 25

2



In order to benchmark performance, the llama-bench tool can be used to automatically calculate
the tokens / second of token generation and token processing. For prompt processing, the model
was given a completely randomized prompt of 512 tokens, and for text generation, the model was
asked to generate a 128-token response (from a randomized prompt).

6.1 ggml vec dot q3 K q8 K

This function, percentage wise, takes up most of the execution time of the benchmarking program.
IT is therefore an ideal candidate for transling into ISPC and evaluating. This function takes in two
arrays, and computes a quantized dot product. When measuring performance, its translation was
used in place of the original implementation which utilized short vector intrinsics from the AVX2
instrution set. The ISPC code was also compiled to target the AVX2 instruction set. The values
in the table show the 95% confidence interval.

pp512 (t/s) tg128 (t/s)
Original [15.850, 16.830] [9.377, 9.503]
ggml vec dot q3 K q8 K [4.963, 5.057] [4.316, 4.324]

As can be seen by the results, the ISPC translation of the original function shows a large decrease
in the amount of tokens / second, or a decrease in the function’s performance for both the prompt
processing and token generation benchmark. As will be explained in more detail later on, the
performance loss in this translation largely stems from the original function’s dependence on short
vector sizes.

6.2 ggml vec dot f16

This function takes in an array of two 16-bit floats represented by unsigned integers, the length of
these two arrays, and a pointer to save the result (a 64-bit float) which represents the dot product
og the two input arrays. This translation is remarkably simple:

typedef uint16 ggml_fp16_t;

typedef double ggml_float;

export uniform ggml_float ggml_vec_dot_f16_ispc(uniform int n,

uniform ggml_fp16_t x[],

uniform ggml_fp16_t y[]

) {

uniform ggml_float sumf = 0.0;

foreach (i = 0 ... n) {

sumf += reduce_add((ggml_float) ((float) float16bits(x[i])

* (float) float16bits(y[i])));

}

return sumf;

}

As opposed to the original implementation, which included a compile time and runtime check
to detect as well as an overflow loop for when the remaining number of elements to process was less

3



than the short vector size, this implementation requires none of those things, making it easier to
maintain.

When measuring performance, this function was used in place of the original implementation
which utilized the vfmaq_f32 intrinsic and tested against the original with the llama-bench tool.
The ISPC code was compiled to target the AVX2 instruction set. The values in the table show the
95% confidence interval.

pp512 (t/s) tg128 (t/s)
Original [15.850, 16.830] [9.377, 9.503]
ggml vec dot f16 [13.544, 13.976] [8.763, 8.817]

As can be seen by the results, the ISPC translation of the original function shows a decrease
in the amount of tokens / second, or a decrease in the function’s performance, in both of the
benchmarks.

6.3 ggml fp32 to fp16 row

This function does not take up much of the execution time and is almost trivial, but it still demon-
strates the advantage of an ISPC translation. This function simply takes in an input and output
array, of 32-bit and 16-bit floats respectively, and converts them all using the AVX2 short vector
implementation.

typedef uint16 ggml_fp16_t;

export void ggml_fp32_to_fp16_row_ispc(uniform const float x[],

uniform ggml_fp16_t y[],

uniform int64 n) {

foreach (i = 0 ... n) {

y[i] = intbits((float16) x[i]);

}

}

Like the previously translated function, this one also avoids the need to add compile time or
runtime checks to detect support for AVX2 instructions. There is also no need to write an overflow
loop, as IPSC will also automatically handle that case.

Like the previous function, when measuring performance, this ISPC translation was used in place
of the original and tested against the original with the llama-bench tool. Both the original and
the ISPC translation utilize AVX2 instructions. The values in the table show the 95% confidence
interval.

pp512 (t/s) tg128 (t/s)
Original [15.850, 16.830] [9.377, 9.503]
ggml fp32 to fp16 row [16.605, 16.675] [10.691, 10.949]

As can be seen by the results, the relative performance between the two implementations are
inconclusive for the prompt processing benchmark, and show a slight decrease in performance for
the text generation benchmark in the ISPC translation.

4



pp512 (t/s) tg128 (t/s)
Original [15.850, 16.830] [9.377, 9.503]
ggml vec dot q3 K q8 K [4.963, 5.057] [4.316, 4.324]
ggml vec dot f16 [13.544, 13.976] [8.763, 8.817]
ggml fp32 to fp16 row [16.605, 16.675] [10.691, 10.949]
All Translations [4.827, 4.913] [4.246, 4.254]

6.4 Combined Benchmark

The following table shows the performance of each individual translation separately and together.
Results are displayed as 95% confidence intervals.

The data shows that not taking into the ggml_vec_dot_q3_K_q8_K
translation into consideration, there is little effect on the overall performance of the benchmarking
application. ggml_vec_dot_q3_K_q8_K, as will be explained earlier on, is not able to be translated
in a way which fully utilizes the ISPC programming constructs because of the nature of its original
implementation. Mainly, the ggml_vec_dot_q3_K_q8_K function requires the short vectors to be
of a specific size, and does not modify each element of the short vector independently. Thus, a less
efficient translation was written in ISPC.

7 Conclusion

In the results of the translated functions, ISPC came close to the performance of the original
implementation, but at times performed less than the original. In the Llama.cpp code repository,
much of the SIMD code was specifically written to ensure the compiler would generate the most
optimal target possible. For example, in the ggml_vec_dot_q3_K_q8_K function, a majority of the
code was unrolled to both make auto-vectorization more likely in the serial sections of code, and
to provide better scheduling than the compiler. As was noted in the source code, writing it in a
different style would result in a 2-4x performance loss for the function.

Another item of note was the inability to fully express the original ggml_vec_dot_q3_K_q8_K
algorithm in ISPC due to its dependence on specific short vector sizes and heavy use of type
punning. For example, a portion of the code had a 256-bit short vector of 32-bit integers, then
applied the _mm256_cvtepi8_epi16 intrinsic, which performs a sign extension on 8-bit integers to
16-bit integers. As ISPC uses a single varying value to represent an entire short vector, this is
not possible to express with varying values in ISPC. As a result, the only way to use short vectors
is to use the ISPC types which convey the short vector size at compile time in the source code
which is essentially equivalent to the original implementation but in a different language. There
are other drawbacks as well, such as not being able to use any of the builtin ISPC functions such
as reduce_add(). As a result, these functions need to be implemented manually, turning a task
which originally used a single instruction to as many instructions as a serial implementation.

5



References

[1] G. Gerganov, “GitHub - ggerganov/llama.cpp: LLM inference in C/C++ — github.com.”
https://github.com/ggerganov/llama.cpp, 2023. [Accessed 01-10-2024].

[2] Intel, “Intel&xAE; Advanced Vector Extensions 2 (Intel&xAE; AVX2) -
009 - ID:655258 — 12th Generation Intel&xAE; Core&x2122; Processors —
edc.intel.com.” https://edc.intel.com/content/www/tw/zh/design/ipla/software-development-
platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-
datasheet-volume-1-of-2/009/intel-advanced-vector-extensions-2-intel-avx2/. [Accessed
26-09-2024].

[3] Intel, “Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Overview — in-
tel.com.” https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-
overview.html. [Accessed 26-09-2024].

[4] ARM, “Neon — developer.arm.com.” https://developer.arm.com/Architectures/Neon. [Ac-
cessed 26-09-2024].

[5] ARM, “SVE — developer.arm.com.” https://developer.arm.com/Architectures/Scalable [Ac-
cessed 26-09-2024].

[6] M. Pharr and W. R. Mark, “ispc: A spmd compiler for high-performance cpu programming,”
in 2012 Innovative Parallel Computing (InPar), pp. 1–13, IEEE, 2012.

[7] “Details about MMX™ Technology Intrinsics — intel.com.”
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-
reference/2021-8/details-about-mmx-technology-intrinsics.html. [Accessed 02-12-2024].

[8] “Intel® Advanced Matrix Extensions Overview — intel.com.”
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/advanced-
matrix-extensions/overview.html. [Accessed 02-12-2024].

[9] “Intel® Advanced Vector Extensions 10.2 (Intel® AVX10.2) Architecture Specification — in-
tel.com.” https://www.intel.com/content/www/us/en/content-details/836199/intel-advanced-
vector-extensions-10-2-intel-avx10-2-architecture-specification.html?wapkw=avx10. [Accessed
02-12-2024].

[10] D. Nuzman, I. Rosen, and A. Zaks, “Auto-vectorization of interleaved data for simd,” ACM
SIGPLAN Notices, vol. 41, no. 6, pp. 132–143, 2006.

[11] “GitHub - ggerganov/ggml: Tensor library for machine learning — github.com.”
https://github.com/ggerganov/ggml. [Accessed 02-12-2024].

6


