
Comco: A MLIR-Based Intermediate Representation for CUDA Kernel Fusion

Matthew Nappo
University of Rochester

CSC 290
mnappo@u.rochester.edu

Abstract

Kernel fusion is an optimization technique for GPU ker-
nels aimed at reducing the overhead of host-to-device and
device-to-host data transfers. These expensive data trans-
fers often prove to be a significant bottleneck in many GPU
and machine learning workloads. By fusing kernels, more
work can be done on the device before data is copied
out, mitigating this transfer overhead. Traditionally, kernel
fusion involves manually identifying frequently sequenced
kernels and combining them into a single fused kernel. The
Comco compiler1, however, seeks to automate this pro-
cess by generating custom fused kernels directly from user
source code. The Comco IR is a custom dialect within the
Multi-Level Intermediate Representation [11] framework
that captures common machine learning operations such as
matrix multiplication and AllReduce and automatically ap-
plies kernel fusion when applicable.

1. Introduction

The size of machine learning (ML) models has been
steadily increasing, leading to higher computational de-
mands during training and inference. To address this, the
development of domain-specific languages (DSLs) tailored
for machine learning has gained much popularity. These
DSLs are designed to streamline the development of ma-
chine learning routines used for model preprocessing, train-
ing, optimization, and inference. Languages like PyTorch
[8, 12] and JAX [2] have gained wide adoption due to their
ability to express complex kernels in a high-level syntax
while also efficiently compiling to native GPU code.

Designing an effective DSL for ML requires a careful
balance between expressibility and performance. Comco
addresses one aspect of this tradeoff by providing an in-
termediate representation based on MLIR. The Comco IR
enables kernel fusion, although it is not limited to this par-
ticular optimization.

1Source code is available at https://github.com/mattnappo/comco.

Currently, Comco IR exposes a relatively small set of op-
erations to the user. However, the underlying kernel fusion
engine is generalizable to future operations and extensions
to the IR.

This work makes the following contributions:

1. Introduces the Comco IR, a MLIR dialect capable
of representing common machine learning routines.
Comco provides operations for matrix multiplication
and AllReduce across a GPU.

2. Provides a set of transformations on user-supplied
Comco IR code to fuse operations into a single CUDA
kernel.

3. Implements the Comco compiler to incrementally
lower Comco IR code into an optimizable form before
using MLIR’s final GPU lowering [5].

2. Background
2.1. MLIR

Multi-Level Intermediate Representation (MLIR) [11] is
an extensible intermediate representation technology within
the LLVM [10] ecosystem designed to represent arbitrary
dataflow graphs and enable a wide range of optimizations.
One of the key features of MLIR is its support for dialects,
which are custom sets of operations, types, and transfor-
mations that extend the core MLIR language. Dialects al-
low users to define domain-specific abstractions, and they
come with associated optimizations and lowering passes
that transform the custom operations and types into opera-
tions in the core MLIR dialects. This allows for integration
with LLVM-based backends, where the resulting IR can be
lowered to LLVM IR for further optimization and code gen-
eration via mature compilers like Clang.

Another notable feature of MLIR is its pattern rewrite
system [7], which provides a powerful mechanism for
DAG-to-DAG transformation. This rewrite system is the
primary feature used to implement Comco’s kernel fusion
engine.

https://github.com/mattnappo/comco


2.2. Kernel Fusion

Kernel fusion [13] is a common optimization technique
that combines two or more independent compute kernels
into a single fused kernel that performs the same overall
computation in a more efficient manner. The primary ben-
efit of kernel fusion is the elimination of redundant data
transfers between the host and the device memory. When
two kernels are executed sequentially, the output of the first
kernel is typically written to device or host memory and
then read by the second kernel, requiring costly unneces-
sary data copies. By fusing these kernels, this intermediate
data transfer is completely avoided, significantly improving
performance.

Fusion is particularly beneficial in scenarios where there
is a clear data dependency between kernels, such as when
the output of the first kernel serves as the input for the sec-
ond. In this case, kernel fusion allows both computations to
occur entirely on the device, eliminating the need to copy
data out of and back into the device memory, which is fre-
quently a major bottleneck.

However, kernel fusion in the general case requires care-
ful analysis. For example, dependencies of the second ker-
nel may not be statically available, or even determinable, at
the time the first kernel is launched. This can lead to in-
correct fusion if not handled properly. Additionally, certain
fusion opportunities may require reshaping in-memory rep-
resentations of input data. It is also not always trivial to
determine exactly which operations should be included in
the fused kernel. CocoNet [9], for example, determines that
fusion is not always more performant.

2.3. Related Work

CocoNet is a DSL and machine learning compiler that
overlaps computation with communication, performs kernel
fusion and operator reordering, and distributes workloads
across multi-GPU clusters. CocoNet [9] provides hand-
altered NCCL [6] and cuBLAS [1] routines that interweave
communication with computation. CocoNet’s compiler re-
alizes when these kernels are applicable, and emits a fused
CUDA kernel with the optimizations.

However, CocoNet’s code generator is rudimentary, rely-
ing entirely on string concatenation and lacking any formal
intermediate representation. This limitation inspired the de-
velopment of Comco: to achieve similar optimizations as
CocoNet, but with the advantage of using MLIR for more
efficient code generation and optimization.

3. The Comco IR
The Comco IR is presently quite primitive, support-

ing a limited set of essential operations. These include
kernel definition, matrix multiplication, AllReduce across
a grid, tensor allocation, and tensor load/stores. Comco

also provides wrappers around the core MLIR operations
linalg::MatmulOp and gpu::AllReduce. How-
ever, these wrappers lower directly to their corresponding
operations in the core MLIR dialects. Both variants are
valid representations within the Comco IR.

Comco also offers legal operations for commonly used
neural network functions, such as Softmax, ReLU, Dropout,
and Update. However, the framework does not yet perform
automatic fusion for these operators, though this is the first
area to explore in future work.

module {
comco.func @comco_func() {

%A = tensor.empty() : tensor<32
x32xf32>

%B = tensor.empty() : tensor<32
x32xf32>

%C = tensor.empty() : tensor<32
x32xf32>

%0 = arith.constant 3.14 : f32

%out = linalg.matmul
ins(%A, %B: tensor<32x32xf32>,

tensor<32x32xf32>)
outs(%C: tensor<32x32xf32>) ->

tensor<32x32xf32>

%s = gpu.all_reduce add %0 uniform {}
: (f32) -> (f32)

comco.return
}

}

Figure 1. An example program in Comco IR which allocates ten-
sors, performs a matrix multiplication, and an AllReduce.

4. Comco DAG-to-DAG Transformations
This section details the main transformations used to im-

plement the Comco IR and kernel fusion engine within the
Comco compiler.

4.1. Lowering Comco Functions

The comco.func and comco.return operations
define a compute kernel which will ultimately be trans-
lated to the GPU. All user Comco code must be sup-
plied within this region. These operators are first low-
ered directly to their corresponding core dialect operations:
func::FuncOp and func::ReturnOp. The code in a
comco.func will act as the main control thread running
on the host. It is responsible for managing CUDA stream 0
and coordinating the launches of kernels. Additionally, this



pass ensures that the gpu.container module attribute
is present on the parent module, a necessary precondition
for subsequent GPU lowerings.

4.2. Memory Management

While tensors provide a high-level abstraction useful
during various analyses, they do not correspond to physi-
cal memory locations and are not suitable for lower-level
stages of Comco IR. Thus, a memory management lower-
ing is necessary early on in the pipeline. By using a combi-
nation of MLIR’s One-Shot Bufferization [3] pass and cus-
tom GPU-specific memref annotations, Comco is able to
efficiently map from tensors to memrefs. Memory layout
is still an active area of MLIR development. These APIs
and lowerings are highly unstable and often depend on the
specific device architecture. The GPU dialect in MLIR pro-
vides abstractions over the three GPU address spaces: pri-
vate, workgroup, and global. Comco generally places ten-
sors in workgroup memory when possible.

4.3. Kernel Inlining & Op Movement

After comco.func lowering, the Comco compiler be-
gins its analysis of the compute-intensive operators within
the routine. This transformation searches for MatMul
and AllReduce operations and places them inside a
gpu::GPULaunchOp. The block and grid dimensions of
the kernel launch are naively determined based on the di-
mensions of the input tensors: every rank-2 tensor element
will get its own thread. This is not scalable and will need to
be improved in future versions of Comco.

After the inlining phase, these kernels will be out-
lined using mlir::GpuKernelOutliningPass pro-
vided by MLIR which places them into their own
gpu::GPUFuncOp. This lowering is more of an organi-
zational transformation, but it does require that memrefs
from the parent scope are explicitly passed into the
gpu::LaunchFuncOp. This rewrite pattern also handles
this transformation.

The transformations up to this point form a control group
since fusion has not occured; each operation is scheduled in
its own kernel. IR code at this level of transformation will
be lowered to the LLVM dialect of MLIR, then to LLVM
IR, then to native GPU code.

4.4. Kernel Fusion

This transformation analyzes the input-output dependen-
cies between the matrix multiplication and AllReduce oper-
ations in the original Comco IR. If the output of one op-
eration serves as the input to the next, or if the operations
are independent, they are fused into a single kernel. The
rewrite pattern driver scans the IR for such relationships,
and when a match is found, it merges the operations into a

func.func @main() {
%A = tensor.empty() : tensor<32x32xf32>
%B = tensor.empty() : tensor<32x32xf32>
%C = tensor.empty() : tensor<32x32xf32>
%1 = index.constant 1
gpu.launch

blocks (%gx, %gy, %gz)
in (%ggx = %1, %ggy = %1, %ggz = %1)
threads (%tx, %ty, %tz)
in (%ttx = %1, %tty = %1, %ttz = %1)

{
%out = linalg.matmul

ins(%A, %B: tensor<32x32xf32>,
tensor<32x32xf32>)

outs(%C: tensor<32x32xf32>) ->
tensor<32x32xf32>

gpu.terminator
}
gpu.launch

blocks (%gx, %gy, %gz)
in (%ggx = %1, %ggy = %1, %ggz = %1)
threads (%tx, %ty, %tz)
in (%ttx = %1, %tty = %1, %ttz = %1)

{
%c = arith.constant 3.14 : f32
%s = gpu.all_reduce add %c uniform {}

: (f32) -> (f32)
gpu.terminator

}
func.return

}

Figure 2. An example of the kernel inlining transformation applied
to the Comco IR code in Figure 1.

shared kernel while ensuring that the original program order
is preserved.

After fusion, the compiler re-analyzes the IR of the host
routine to ensure that the correct fused kernel is launched.
This may require updating kernel arguments as well as ad-
justing block and grid dimensions to properly invoke the
fused kernel’s new structure.

5. Compute Operator Lowering
Now Comco must lower the linalg::MatmulOp

and gpu::GPUAllReduce operations. There are many
approaches to this transformation. One approach is to
lower these operations to LLVM function calls that invoke
dynamically-linked shared libraries such as NCCL [6] and
cuBLAS [1]. This was the original approach taken by
Comco via the EmitC [4] dialect of MLIR. One limitation
of this method was ensuring ABI compatibility between the
LLVM-generated code and the expectations of the external
libraries. As a result, this approach was abandoned, though



module attributes {gpu.container_module} {
gpu.module @comco_func_kernel {
gpu.func @comco_func_kernel(%arg0:

memref<32x32xf32>, %arg1: memref<32
x32xf32>, %arg2: memref<32x32xf32>)
kernel attributes {known_block_size =
array<i32: 4, 1, 1>, known_grid_size
= array<i32: 4, 1, 1>} {

// excluded: GPU launch dimension
extraction

linalg.matmul ins(%arg0, %arg1 : memref
<32x32xf32>, memref<32x32xf32>)
outs(%arg2 : memref<32x32xf32>)

%cst = arith.constant 3.140000e+00 :
f32

%0 = gpu.all_reduce add %cst uniform {
} : (f32) -> f32
gpu.return

}
}
func.func @main() {
%alloc = memref.alloc() {alignment = 64

: i64, memory_space = #gpu.
address_space<global>} : memref<32
x32xf32>

%alloc_0 = memref.alloc() {alignment =
64 : i64, memory_space = #gpu.
address_space<global>} : memref<32
x32xf32>

%alloc_1 = memref.alloc() {alignment =
64 : i64, memory_space = #gpu.
address_space<global>} : memref<32
x32xf32>

%c1 = arith.constant 1 : index
%c4 = arith.constant 4 : index
gpu.launch_func @comco_func_kernel::

@comco_func_kernel blocks in (%c4, %
c1, %c1) threads in (%c4, %c1, %c1)
args(%alloc : memref<32x32xf32>, %
alloc_0 : memref<32x32xf32>, %alloc_1
: memref<32x32xf32>)

%c1_2 = arith.constant 1 : index
%c4_3 = arith.constant 4 : index
return

}
}

Figure 3. An example of the kernel fusion transformation applied
to the Comco IR code in Figure 3.

it is still viable at least in principle.
Instead, Comco lowers matrix multiplications

to a naive kernel in the affine MLIR dialect,
and lowers AllReduce operations using MLIR’s
GpuAllReduceRewriter. While this is not the most
performant approach, it does provide correct semantics.

6. Final Code Generation
At this stage of the Comco lowering pipeline, all high-

level operations have been rewritten. The IR is in a suitable
state to undergo the GPULowerToNVVM pipeline provided
by MLIR [5]. This serializes all device code into the cubin
format and translates all MLIR to LLVM IR. The resul-
tant LLVM IR can be compiled by a tool such as Clang, or
can be JIT-compiled by linking the CUDA runtime libraries
with MLIR’s mlir-cpu-runner utility.

7. Future Work & Limitations
Directions of future work include:

• Supporting a wider range of operations to increase the
expressibility of Comco.

• Generating more sophisticated kernels for the compute
and network-intensive operations.

• Providing optimizations that automatically overlap
computation with communication.

• Implementing an autotuner which generates multiple
kernels with varying block/grid dimensions, fusion or-
ders, and operation lowerings.

• Supporting multi-GPU collective communications to
enable Comco to run efficiently within a distributed
system.

8. Conclusion
This work introduces Comco, a MLIR-based interme-

diate representation and compiler that automatically fuses
matrix multiplication and AllReduce-intensive kernels.

References
[1] cuBLAS: CUDA Basic Linear Algebra Subroutine library.

https://docs.nvidia.com/cuda/cublas/. 2, 3
[2] JAX: High performance array computing. https://jax.

readthedocs.io/en/latest/index.html. 1
[3] MLIR Bufferization. https://mlir.llvm.org/

docs/Bufferization/. 3
[4] MLIR ’emitc’ Dialect. https://mlir.llvm.org/

docs/Dialects/EmitC/. 3
[5] MLIR ’gpu’ Dialect. https://mlir.llvm.org/

docs/Dialects/GPU/. 1, 4
[6] NCCL: NVIDIA Collective Communications Library.

https://developer.nvidia.com/nccl. 2, 3
[7] Pattern Rewriting: Generic DAG-to-DAG Rewrit-

ing. https : / / mlir . llvm . org / docs /
PatternRewriter/. 1

[8] Jason Ansel, Edward Yang, Horace He, and et al.
Gimelshein. Pytorch 2: Faster machine learning through

https://docs.nvidia.com/cuda/cublas/
https://jax.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest/index.html
https://mlir.llvm.org/docs/Bufferization/
https://mlir.llvm.org/docs/Bufferization/
https://mlir.llvm.org/docs/Dialects/EmitC/
https://mlir.llvm.org/docs/Dialects/EmitC/
https://mlir.llvm.org/docs/Dialects/GPU/
https://mlir.llvm.org/docs/Dialects/GPU/
https://developer.nvidia.com/nccl
https://mlir.llvm.org/docs/PatternRewriter/
https://mlir.llvm.org/docs/PatternRewriter/


dynamic python bytecode transformation and graph com-
pilation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS ’24,
page 929–947, New York, NY, USA, 2024. Association for
Computing Machinery. 1

[9] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hos-
sein Nodehi Sabet, Saeed Maleki, Youshan Miao, Madan-
lal Musuvathi, Todd Mytkowicz, and Olli Saarikivi. Co-
conet: Co-optimizing computation and communication for
distributed machine learning. CoRR, abs/2105.05720, 2021.
2

[10] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transformation.
pages 75– 86, 04 2004. 1

[11] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday
Bondhugula, River Riddle, Albert Cohen, Tatiana Shpeis-
man, Andy Davis, Nicolas Vasilache, and Oleksandr Zi-
nenko. MLIR: A compiler infrastructure for the end of
moore’s law. CoRR, abs/2002.11054, 2020. 1

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
and et al. Pytorch: An imperative style, high-performance
deep learning library. CoRR, abs/1912.01703, 2019. 1

[13] Guibin Wang, YiSong Lin, and Wei Yi. Kernel fusion: An ef-
fective method for better power efficiency on multithreaded
gpu. In 2010 IEEE/ACM Int’l Conference on Green Com-
puting and Communications & Int’l Conference on Cyber,
Physical and Social Computing, pages 344–350, 2010. 2


	. Introduction
	. Background
	. MLIR
	. Kernel Fusion
	. Related Work

	. The Comco IR
	. Comco DAG-to-DAG Transformations
	. Lowering Comco Functions
	. Memory Management
	. Kernel Inlining & Op Movement
	. Kernel Fusion

	. Compute Operator Lowering
	. Final Code Generation
	. Future Work & Limitations
	. Conclusion

