
CSC290/571 Topics in Systems: Machines

Learning Systems

Making systems fast and scalable: A

compendium

Sreepathi Pai

Aug 27, 2024

URCS



Outline

Metrics and Models

Reducing Work and Cost

Increasing Parallelism

Scalability



Outline

Metrics and Models

Reducing Work and Cost

Increasing Parallelism

Scalability



Metrics

� Time/Latency

� wall clock time

� Throughput

� work per unit time

� Scalability

� work per unit resource

� Utilization

� busy time

� Energy

� quantity used for doing work

� Power

� energy per unit time

� “Loss” / Error



Models

� A model for a metric depicts a relationship between “input”
variables and the (output) metric

� usually mathematical

� Allows reasoning beyond just measuring the metric

� Helps explain the measured value of a metric

� and, hopefully, devise strategies to control it

� Pay attention to discrepancies between a model and a metric

� Model is wrong: may prompt upgrading the model

� Data is wrong

� Data is faked



A Performance Model

T =
W × t

P

� T - total execution time

� W - total work

� t - average time per work (cost)

� P - average parallelism



Outline

Metrics and Models

Reducing Work and Cost

Increasing Parallelism

Scalability



What is work?

� Algorithmic Work

� Asymptotic complexity

� Constant factors

� Instructions

� Operators



General strategies

� Avoid work

� Reuse work

� Amortize work

� Size work for hardware capabilities

� i.e., utilize hardware well

� Transform work

� Compute to Memory (memoization)

� Memory to Compute (recomputation)



Classifying Work

� Compute

� Work performed by the processing unit

� Arithmetic operations, logic operations, etc.

� Memory

� Work that interacts with memory

� Load/store instructions

� Communication (I/O)

� Work that interacts with peripherals and/or other machines



Examples of reducing compute work

� Use a simpler algorithm

� Eliminate redundant operations

� Combine operations

� e.g., most processing units can combine multiply and add into

a single operation



Examples of reducing memory work

� Reduce data sizes

� use smaller data types, for example

� Reduce range/precision of data

� quantization

� Compress data

� Avoid large temporaries



Examples of reducing communication work

� Avoid communication

� Send data every k steps instead of every step

� Avoid synchronization

� Use asynchronous algorithms



Cost

� Compute costs

� Avoid computation

� Replace computations with cheaper equivalents (e.g., shifts

instead of multiplications when possible)

� Memory costs

� Numbers every programmer should know

� Improve cache behaviour



Outline

Metrics and Models

Reducing Work and Cost

Increasing Parallelism

Scalability



Data Dependence

� Two operations are data dependent if one reads as its input

the output of the other

� They are independent otherwise

A = C * D
E = A * G
F = B * C

� Independent operations can execute in parallel, provided

resources are available



Control Dependence

� A control dependence requires an operation to wait until a

branch is resolved

X = C * D
if(A) {

Y = E * F
}

� In this case, the operation Y = E * F must wait until the

value of A is known



Structural Dependence/Hazard

� Two operations are independent, but must wait for each other

because they use the same resource

� Assume in the following code, the machine contains only one

multiplier

X = A * B
Y = C * D

� Only operation can execute at a time



Ampere resources



Example #1

x

conv1

relu

conv2

relu

conv3

relu

conv4

pixel_shuffle



Multiprocessing (‘Data Level Parallelism’)

� The simplest and easiest form of parallelism

� For each input (e.g. images) which are naturally independent

� the inputs may be from different users, for example

� Run many copies of the model, one for each input

� Always possible, as long as there are independent inputs



Intra-operator parallelism

� Consider matrix multiply

� Each element of the output matrix can be computed
independently of the others

� Cij =
∑

k Aik ∗ Bkj

� This leads to a parallel implementation of matrix multiply

Intra-operator parallelism is exploited by building a parallel

implementation of an operator.



Inter-operator parallelism

� Independent operators can

execute at the same time, in

parallel

x

conv1

y

conv2

...



Partitioning (‘Model Level Parallelism’)

� When there are two many

operators to fit on one

device, the model is

partitioned

� Data is communicated

across devices

� Appears like a pipeline

GPU #0

GPU #1

x

conv1

relu

conv2

relu

conv3

relu

conv4

pixel_shuffle



Pipeline Parallelism

� Like partitioning, except

multiple inputs are processed

� Different partitions may be

processing different inputs

� Different colors indicate

different inputs being

processed

GPU #0

GPU #1

x

conv1

relu

conv2

relu

conv3

relu

conv4

pixel_shuffle



Breaking Data Dependences

� Dependences can be broken in many ways

� Ignore them

� Operate on stale data

� Speculate on data values

� This usually recovers recovery mechanisms



Outline

Metrics and Models

Reducing Work and Cost

Increasing Parallelism

Scalability



What is scalability?

� A service has to respond to increases in “load”, for example:

� the number of customers, or

� the number of inputs, or

� the size of inputs

� Usually this increase is handled by increasing the resources

available to a service

� A service is scalable if increases in load can be handled:

� through proportional linear or sublinear increases in resources



Strong Scaling: Amdahl’s Law

Speedup =
T1

TP
=

1
α
P + (1− α)

where:

� α is the fraction of the program that can parallelized

� P is the number of processors (or parallel units).

� T1 is the time taken on 1 processor (single-processor runtime)

� TP is the time on P processors



Serial Bottleneck

As P →∞, we have:

Speedup∞ =
1

(1− α)

� A program that has a serial portion of 20% (i.e. α = 0.8), has

a maximum speedup of 5.



Where do the serial portions come from?

� Essentially, due to queueing (or serialization)

� I/O: loading data from a file before handing it off to threads

� Synchronization: locks implicitly introduce serialization

� Resource contention: e.g., all data requests go to the same

machine



Weak Scaling: Gustafson’s Law

Let TN be time for N processors, with s the execution time for the

serial portion and p the time for parallel execution. Assume the

times are normalized so s + p = 1.

Serial execution time T1 = s + Np (assuming linear slowdown).

Speedup(N) = s + Np



Implications of Gustafson’s Law

� Amdahl’s law keeps the problem size constant

� Keeps increasing machine size

� Gustafson’s law increases problem size

� And also increases machine size

� Informally, a bigger machine can solve a bigger problem in the
same amount of time

� I.e., if you want to use more parallelism, increase the problem

size

� E.g, by batching

� Key assumption: serial portion takes the same time regardless

of number of processors


	Metrics and Models
	Reducing Work and Cost
	Increasing Parallelism
	Scalability

