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AI/ML: The acronyms

� Artificial Intelligence

� roots go back to the 50s

� Machine Learning

� likewise

� Neural Networks (NN)

� “Universal” functions

� that can “learn” (or more accurately, can be trained)

� Deep Learning (DL)

� Neural Networks with lots of layers



ML applications of Interest

� Large Language Models (LLMs)

� various linguistic tasks

� e.g., ChatGPT, LLAMA, etc.

� Diffusion Models

� mostly image generation (?)

� e.g., Stable Diffusion

� These have:

� high amounts of compute

� high amounts of memory usage

� large amounts of data involved

� Sometimes called “foundation models”



Three tasks

� Training

� Models are trained on examples

� “Learning” phase

� Time-consuming, very expensive for LLMs

� Almost entirely restricted to large, well-resourced entities

� Done once

� Fine-tuning

� “Low-cost” retraining for specific tasks

� Done once per application

� Inference

� “Lowest” cost

� Once per user request
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ML Programs

� A ML program will be viewed as a series of operations

� or ”primitives”

� similar to computer instructions

� Unlike instructions, most operations consume and produce
large amounts of data

� vectors, matrices, etc. (also called tensors)

� ML programs usually have no conditional control flow

� All operations are executed

� ML programs usually do not have loops at the operation level

� The programs are direct acyclic graphs (DAGs)



An example

import torch
import torch.nn as nn
import torch.nn.init as init

class Net(nn.Module):
def __init__(self, upscale_factor):

super(Net, self).__init__()

self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

self._initialize_weights()

def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.pixel_shuffle(self.conv4(x))
return x

def _initialize_weights(self):
init.orthogonal_(self.conv1.weight, init.calculate_gain(’relu’))
init.orthogonal_(self.conv2.weight, init.calculate_gain(’relu’))
init.orthogonal_(self.conv3.weight, init.calculate_gain(’relu’))
init.orthogonal_(self.conv4.weight)

Source: https://github.com/pytorch/examples/blob/main/super_resolution/model.py

https://github.com/pytorch/examples/blob/main/super_resolution/model.py
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ML Computers

� Multicore CPUs

� most common for inference of older models

� GPUs (most common)

� graphics processing units

� most common for training and generative AI inference

� NVIDIA, AMD

� Multicore CPUs + AI accelerators

� Intel Gaudi

� Specialized Processors

� Google’s Tensor Processing Units

� Groq “LPU”

� Cerebras Wafer-scale

� ...



Running a ML program

� Eager Execution

� Each operation executes as soon as it is encountered

� Graph Execution

� A graph of operations is first built

� Then, the graph is compiled and optimized

� The compiled graph is executed



Eager Execution

� Each operation maps to one or more primitives

� A primitive implemention exists for each possible device
(CPU, GPU, etc.)

� e.g., as a collection of library functions, GPU kernels, etc.

� An operation decomposes into calls to these pre-existing

functions

� It is possible that primitives may be generated on the fly



Graph Execution

� Each operation maps to one of more primitives

� Non-trivial transformations may be applied to graphs

� Fusion: operations are combined (e.g., Convolution + Relu)

� Operations scheduling may change

� Reduce memory traffic

� Use multiple GPUs, etc.

� Primitives may generated and specialized per operation

� A different matrix multiplication for each different matrix size



ML Primitives

� Examples

� Convolution

� Matrix Multiplication

� Started out as handwritten functions for each device

� Provided by device vendors

� NVIDIA’s cuBLAS, Intel’s MKL, etc.

� Now are usually generated by specialized compilers



Compiling ML Computation Primitives

� Example: Matrix Multiplication

� Many different approaches:

� Tensor compilers: e.g., TVM, Tensor Comprehensions, etc.

� Tile compilers: e.g., Triton

� Source language for these tools is device independent

� Usually, some domain-specific language

� Progressively lowered to device-specific code

� Using, for example, the MLIR framework



ML Communication Primitives

� Once ML progams run on multiple GPUs or multiple

machines, some mechanism for communication is required

� Communication Primitives (not exhaustive)

� Gather

� Scatter

� AllGather

� Broadcast

� Reduce

� AllReduce



Goals

� Understand performance of these ML programs

� Improve performance
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People

� Instructor: Dr. Sreepathi Pai

� E-mail: sree@cs.rochester.edu

� Office: Wegmans Hall 3409

� Office Hours: Monday 15:00 to 16:00 (or by appointment)



Places

� Class: Hylan 303

� M,W 0900–1015

� Course Website

� https://cs.rochester.edu/~sree/courses/

csc-290-571/fall-2024/

� Blackboard

� Announcements, Discussions

https://cs.rochester.edu/~sree/courses/csc-290-571/fall-2024/
https://cs.rochester.edu/~sree/courses/csc-290-571/fall-2024/


Grading

� Homeworks: 15%

� Paper Discussion: 25%

� Mid-term: 10%

� Project: 50%

� Graduate students should expect to read a lot more, and work

on harder problems.

There is no fixed grading curve. See course website for grade scale.

See course website for late submissions policy.



Project Outcomes

� Each project must contribute a novel piece of knowledge

� Could be a system

� Could be a new perspective

� Must be “solid” contribution

� Can be individual or team

� Team results need to reflect size of team

� Highly structured process

� At least 3 ideas and/or proofs of concept by mid October

� More details as we go along

� Intended to seed future research projects and papers



Academic Honesty

� Unless explicitly allowed, you may not show your code to

other students

� You may discuss, brainstorm, etc. with your fellow students

but all submitted work must be your own

� All help received must be acknowledged in writing when

submitting your assignments and homeworks
� All external code you use must be clearly marked as such in

your submission
� Use a comment and provide URL if appropriate

� If in doubt, ask the instructor

� It is a violation of course honesty to make your assignments

on GitHub (or similar sites) public
� Use of AI tools for Homeworks and Paper Discussions is

prohibited.
� All use of AI tools for other purposes must be discussed and

approved by the instructor

All violations of academic honesty will be dealt with strictly as per

UR’s Academic Honesty Policy.

https://www.rochester.edu/college/honesty/


Course Goals

� Read and understand computer systems literature

� Develop skills to propose and carry out research projects

� Learn presentation and writing for research skills



How is a seminar course different?

� Mostly reading papers

� Your instructor is probably reading the papers for the first
time

� Same as you

� Has a lot more experience than you though

� Aim to turn into expert on the literature
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