CSC290/420 Machine Learning Systems for
Efficient Al
ML Programs as Computational Graphs

Sreepathi Pai
October 1, 2025

URCS

Al/ML Programs
ML Programs as Computational Graphs
Optimizing ML Computation Graphs

References

Al/ML Programs

Al/ML

Artificial Intelligence

e roots go back to the 50s

Machine Learning
o likewise
Neural Networks (NN)

e “Universal” functions

e that can “learn” (or more accurately, can be trained)
Deep Learning (DL)

e Neural Networks with lots of layers

ML applications of Interest

Deep Learning Task-specific Models

e Computer vision, speech-to-text, etc.

Large Language Models (LLMs)

e various linguistic tasks
e e.g., ChatGPT, LLAMA, etc.

Diffusion Models

e mostly image generation (?)

e e.g., Stable Diffusion

These have:

e high amounts of compute
e high amounts of memory usage
e large amounts of data involved

LLMs and Diffusion models called “foundation models”

Three tasks / modalities

e Training
e Models are trained on examples
e “Learning” phase
e Time-consuming, very expensive for LLMs
e Almost entirely restricted to large, well-resourced entities
e Done once
e Fine-tuning
e “Low-cost” retraining for specific tasks
e Done once per end-user application
e Inference

e “Lowest” cost
e Once per user request

ML Programs as Computational Graphs

ML Programs as Instructions

e ML programs are just programs
e ultimately instructions that execute on a CPU or GPU
e But they possess higher-level structure that is useful to
consider
e analogous to the difference betweeen physics, chemistry, and
biology
e Two important perspectives
e ML programs are computational graphs
e ML programs are loops

ML Programs

A ML program will be viewed as a series of operations
e or “primitives”
e similar to computer instructions

Unlike instructions, most operations consume and produce
large amounts of data

e vectors, matrices, etc. (also called tensors)

ML programs usually have no conditional control flow

e All operations are executed

ML programs usually do not have loops at the operation level
e The programs are direct acyclic graphs (DAGs)

An example

import torch
import torch.nn as nn
import torch.nn.init as init

class Net(nn.Module):
def __init__(self, upscale_factor):
super (Net, self).__init__Q)

self.relu = nn.ReLU()

self.convl = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1,
self .pixel_shuffle = nn.PixelShuffle(upscale_factor)

self._initialize_weights()

def forward(self, x):
x = self.relu(self.convi(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.pixel_shuffle(self.conv4(x))
return x

def initialize weights(self):

https://github.com/pytorch/examples/blob/main/super_resolution/model.py

Classifying ML Operators

A empirical classification of operators, based on original research:

e Tensor operators, element-level /elementwise

e operates on individual elements of tensors
e e.g. vector addition

e Tensor operators, tensor-level

e requires entire tensor to perform operation
e e.g. matrix multiplication

e Tensor operators, reductions
e produces smaller tensors
e Data Transformation operations

e Reshape, etc.

ML Computers

Multicore CPUs

e most common for inference of older models

GPUs (most common)
e graphics processing units
e most common for training and generative Al inference
e NVIDIA, AMD

Multicore CPUs + Al accelerators
o Intel Gaudi

Specialized Processors

e Google's Tensor Processing Units
e Groq “LPU”
e Cerebras Wafer-scale

Running a ML program

e Eager Execution

e Each operation executes as soon as it is encountered
e e.g. early versions of PyTorch

e Graph Execution

A graph of operations is first built

Then, the graph is compiled and optimized

The compiled graph is executed

e.g. PyTorch 2.0 (torch.compile)

Eager Execution

Each operation (“convolution”) maps to one or more
primitives
e here, usually just convolution

A primitive implemention exists for each possible device
(CPU, GPU, etc.)

e e.g., as a collection of library functions, GPU kernels, etc.

e An operation decomposes into calls to these pre-existing

functions

It is possible that primitives may be generated on the fly

Graph Execution

Each operation maps to one of more primitives

Non-trivial transformations may be applied to graphs
e Fusion: operations are combined (e.g., Convolution + Relu)
e More complex: recognize attention kernels and replace with
Attention operator

Operations scheduling may change

e Reduce memory traffic
e Use multiple GPUs, etc.

Primitives may generated and specialized per operation

o A different matrix multiplication for each different matrix size

e Examples
e Convolution
e Matrix Multiplication
e Started out as handwritten functions for each device
e Provided by device vendors
e NVIDIA's cuBLAS, Intel's MKL, etc.
e Now are usually generated by specialized compilers

e Triton
e TVM

Compiling ML Computation Primitives

e Example: Matrix Multiplication

e Many different approaches:
e Tensor compilers: e.g., TVM, Tensor Comprehensions, etc.
e Tile compilers: e.g., Triton

e Source language for these tools is device independent
e Usually, some domain-specific language

e Progressively lowered to device-specific code

e Using, for example, the MLIR framework

ML Communication Primitives

e Once ML progams run on multiple GPUs or multiple
machines, some mechanism for communication is required
e Communication Primitives (not exhaustive)
e Gather
e Scatter
o AllGather
e Broadcast

e Reduce
e AllReduce

e Later in the course

Optimizing ML Computation Graphs

e Time/Latency

e wall clock time
e Throughput

e work per unit time
e Scalability

e work per unit resource
e Utilization

e busy time
e Energy

e quantity used for doing work
e Power

e energy per unit time

e “Loss” / Error

Multiprocessing (‘Data [Level] Parallelism’)

The simplest and easiest form of parallelism

For each input (e.g. images) which are naturally independent

e the inputs may be from different users, for example

e Run many copies of the model, one for each input

Always possible, as long as there are independent inputs

Intra-operator parallelism

e Consider matrix multiply

e Each element of the output matrix can be computed
independently of the others

[] C,J = Zk A,‘k * Bkj
e This leads to a parallel implementation of matrix multiply

Intra-operator parallelism is exploited by building a parallel
implementation of an operator.

Inter-operator parallelism

e Independent operators can
execute at the same time, in @ @

parallel

Partitioning (‘Model [Level] Parallelism’)

©

GPU #0

e When there are two many
operators to fit on one
device, the model is

partitioned

e Data is communicated
across devices

e Appears like a pipeline

pixel_shuffle

Pipeline Parallelism

e Like partitioning, except
multiple inputs are processed

e Different partitions may be
processing different inputs

e Different colors indicate

different inputs being
processed

Tensor Parallelism

e Edges represent tensors flowing in and out of operators

e Can also split up a tensor across multiple GPUs/CPUs

Optimizing a single-node ML program

e Let's assume the only operator in a ML program is a matrix
multiply
e How shall we execute it?
e Assume matrix size of MxM for all matrices
e Considerations:

e |s MxM large enough to utilize all compute units?
e |s MxM small enough to fit in one GPU's memory?
e Are there multiple inputs, or a single input?

e Single-threaded matrix multiply (MM), small M
e Multi-threaded MM, large enough M

e Multi-GPU MM, with matrix split up into parts that can fit in
one GPU

e Single-threaded MM, run as multiple processes, for many
small inputs

References

References

e Optimizing Production PyTorch Models Performance with
Graph Transformations

e Graph Optimizations in ONNX Runtime

e Google's Machine Learning Glossary: https:
//developers.google.com/machine-learning/glossary

https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/
https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/
https://onnxruntime.ai/docs/performance/model-optimizations/graph-optimizations.html
https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary

	AI/ML Programs
	ML Programs as Computational Graphs
	Optimizing ML Computation Graphs
	References

