
CSC290/420 Machine Learning Systems for

Efficient AI

ML Programs as Computational Graphs

Sreepathi Pai

October 1, 2025

URCS

Outline

AI/ML Programs

ML Programs as Computational Graphs

Optimizing ML Computation Graphs

References

Outline

AI/ML Programs

ML Programs as Computational Graphs

Optimizing ML Computation Graphs

References

AI/ML

� Artificial Intelligence

� roots go back to the 50s

� Machine Learning

� likewise

� Neural Networks (NN)

� “Universal” functions

� that can “learn” (or more accurately, can be trained)

� Deep Learning (DL)

� Neural Networks with lots of layers

ML applications of Interest

� Deep Learning Task-specific Models

� Computer vision, speech-to-text, etc.

� Large Language Models (LLMs)

� various linguistic tasks

� e.g., ChatGPT, LLAMA, etc.

� Diffusion Models

� mostly image generation (?)

� e.g., Stable Diffusion

� These have:

� high amounts of compute

� high amounts of memory usage

� large amounts of data involved

� LLMs and Diffusion models called “foundation models”

Three tasks / modalities

� Training

� Models are trained on examples

� “Learning” phase

� Time-consuming, very expensive for LLMs

� Almost entirely restricted to large, well-resourced entities

� Done once

� Fine-tuning

� “Low-cost” retraining for specific tasks

� Done once per end-user application

� Inference

� “Lowest” cost

� Once per user request

Outline

AI/ML Programs

ML Programs as Computational Graphs

Optimizing ML Computation Graphs

References

ML Programs as Instructions

� ML programs are just programs

� ultimately instructions that execute on a CPU or GPU

� But they possess higher-level structure that is useful to
consider

� analogous to the difference betweeen physics, chemistry, and

biology

� Two important perspectives

� ML programs are computational graphs

� ML programs are loops

ML Programs

� A ML program will be viewed as a series of operations

� or “primitives”

� similar to computer instructions

� Unlike instructions, most operations consume and produce
large amounts of data

� vectors, matrices, etc. (also called tensors)

� ML programs usually have no conditional control flow

� All operations are executed

� ML programs usually do not have loops at the operation level

� The programs are direct acyclic graphs (DAGs)

An example

import torch
import torch.nn as nn
import torch.nn.init as init

class Net(nn.Module):
def __init__(self, upscale_factor):

super(Net, self).__init__()

self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

self._initialize_weights()

def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.pixel_shuffle(self.conv4(x))
return x

def _initialize_weights(self):
init.orthogonal_(self.conv1.weight, init.calculate_gain(’relu’))
init.orthogonal_(self.conv2.weight, init.calculate_gain(’relu’))
init.orthogonal_(self.conv3.weight, init.calculate_gain(’relu’))
init.orthogonal_(self.conv4.weight)

Source: https://github.com/pytorch/examples/blob/main/super_resolution/model.py

https://github.com/pytorch/examples/blob/main/super_resolution/model.py

Graph

x

conv1

relu

conv2

relu

conv3

relu

conv4

pixel_shuffle

Classifying ML Operators

A empirical classification of operators, based on original research:

� Tensor operators, element-level/elementwise

� operates on individual elements of tensors

� e.g. vector addition

� Tensor operators, tensor-level

� requires entire tensor to perform operation

� e.g. matrix multiplication

� Tensor operators, reductions

� produces smaller tensors

� Data Transformation operations

� Reshape, etc.

ML Computers

� Multicore CPUs

� most common for inference of older models

� GPUs (most common)

� graphics processing units

� most common for training and generative AI inference

� NVIDIA, AMD

� Multicore CPUs + AI accelerators

� Intel Gaudi

� Specialized Processors

� Google’s Tensor Processing Units

� Groq “LPU”

� Cerebras Wafer-scale

� ...

Running a ML program

� Eager Execution

� Each operation executes as soon as it is encountered

� e.g. early versions of PyTorch

� Graph Execution

� A graph of operations is first built

� Then, the graph is compiled and optimized

� The compiled graph is executed

� e.g. PyTorch 2.0 (torch.compile)

Eager Execution

� Each operation (“convolution”) maps to one or more
primitives

� here, usually just convolution

� A primitive implemention exists for each possible device
(CPU, GPU, etc.)

� e.g., as a collection of library functions, GPU kernels, etc.

� An operation decomposes into calls to these pre-existing

functions

� It is possible that primitives may be generated on the fly

Graph Execution

� Each operation maps to one of more primitives

� Non-trivial transformations may be applied to graphs

� Fusion: operations are combined (e.g., Convolution + Relu)

� More complex: recognize attention kernels and replace with

Attention operator

� Operations scheduling may change

� Reduce memory traffic

� Use multiple GPUs, etc.

� Primitives may generated and specialized per operation

� A different matrix multiplication for each different matrix size

ML Primitives

� Examples

� Convolution

� Matrix Multiplication

� Started out as handwritten functions for each device

� Provided by device vendors

� NVIDIA’s cuBLAS, Intel’s MKL, etc.

� Now are usually generated by specialized compilers

� Triton

� TVM

Compiling ML Computation Primitives

� Example: Matrix Multiplication

� Many different approaches:

� Tensor compilers: e.g., TVM, Tensor Comprehensions, etc.

� Tile compilers: e.g., Triton

� Source language for these tools is device independent

� Usually, some domain-specific language

� Progressively lowered to device-specific code

� Using, for example, the MLIR framework

ML Communication Primitives

� Once ML progams run on multiple GPUs or multiple

machines, some mechanism for communication is required

� Communication Primitives (not exhaustive)

� Gather

� Scatter

� AllGather

� Broadcast

� Reduce

� AllReduce

� Later in the course

Outline

AI/ML Programs

ML Programs as Computational Graphs

Optimizing ML Computation Graphs

References

Metrics

� Time/Latency

� wall clock time

� Throughput

� work per unit time

� Scalability

� work per unit resource

� Utilization

� busy time

� Energy

� quantity used for doing work

� Power

� energy per unit time

� “Loss” / Error

Multiprocessing (‘Data [Level] Parallelism’)

� The simplest and easiest form of parallelism

� For each input (e.g. images) which are naturally independent

� the inputs may be from different users, for example

� Run many copies of the model, one for each input

� Always possible, as long as there are independent inputs

Intra-operator parallelism

� Consider matrix multiply

� Each element of the output matrix can be computed
independently of the others

� Cij =
∑

k Aik ∗ Bkj

� This leads to a parallel implementation of matrix multiply

Intra-operator parallelism is exploited by building a parallel

implementation of an operator.

Inter-operator parallelism

� Independent operators can

execute at the same time, in

parallel

x

conv1

y

conv2

...

Partitioning (‘Model [Level] Parallelism’)

� When there are two many

operators to fit on one

device, the model is

partitioned

� Data is communicated

across devices

� Appears like a pipeline

GPU #0

GPU #1

x

conv1

relu

conv2

relu

conv3

relu

conv4

pixel_shuffle

Pipeline Parallelism

� Like partitioning, except

multiple inputs are processed

� Different partitions may be

processing different inputs

� Different colors indicate

different inputs being

processed

GPU #0

GPU #1

x

conv1

relu

conv2

relu

conv3

relu

conv4

pixel_shuffle

Tensor Parallelism

� Edges represent tensors flowing in and out of operators

� Can also split up a tensor across multiple GPUs/CPUs

Optimizing a single-node ML program

� Let’s assume the only operator in a ML program is a matrix

multiply

� How shall we execute it?

� Assume matrix size of MxM for all matrices

� Considerations:

� Is MxM large enough to utilize all compute units?

� Is MxM small enough to fit in one GPU’s memory?

� Are there multiple inputs, or a single input?

Options

� Single-threaded matrix multiply (MM), small M

� Multi-threaded MM, large enough M

� Multi-GPU MM, with matrix split up into parts that can fit in

one GPU

� Single-threaded MM, run as multiple processes, for many

small inputs

� ...

Outline

AI/ML Programs

ML Programs as Computational Graphs

Optimizing ML Computation Graphs

References

References

� Optimizing Production PyTorch Models Performance with

Graph Transformations

� Graph Optimizations in ONNX Runtime

� Google’s Machine Learning Glossary: https:

//developers.google.com/machine-learning/glossary

https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/
https://pytorch.org/blog/optimizing-production-pytorch-performance-with-graph-transformations/
https://onnxruntime.ai/docs/performance/model-optimizations/graph-optimizations.html
https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary

	AI/ML Programs
	ML Programs as Computational Graphs
	Optimizing ML Computation Graphs
	References

