
CSC290/420 ML Systems for Efficient AI

Virtual Memory

Sreepathi Pai

September 23, 2025

URCS



Outline

Cache Coherence

Memory Virtualization

x86-64 Implementation of Virtual Memory



Outline

Cache Coherence

Memory Virtualization

x86-64 Implementation of Virtual Memory



Multiple Processors and Cores

� You can run concurrent code on a system with 1 processor

� Thanks to time sharing

� But most computers have multiple cores today

� Each core is an independent computational unit

� Systems can also have multiple processors

� Each processor contains multiple cores

� Rare in consumer-grade systems



Mapping Processes and Threads to Cores

� The OS scheduler maps processes and threads to cores

� It is possible to “pin” threads/processes to certain cores

� Avoids scheduling overhead

� Can improve performance in some situations

� On Linux, the sched setaffinity function allows you to set
thread affinities

� Can also use the pthread setaffinity np function



Cache Coherence

� Recall that caches contain
copies of data variables

� This is fine when only one

process/thread is

accessing the data

� What happens when
different threads access
shared data?

� Core 1 has shared variable

sum in its cache

� Will Core 2 try to get sum

from memory?

sum: 1

sum: 0

Memory

L1$ L1$
Core0 Core1



Cache Coherence

� Cache coherence is a hardware mechanism to locate copies of
a piece of data and use the “latest” version

� Usually, the last written version

� Core 2 will send a request for sum

� Core 1 will reply to that request

� RAM may also reply, but Core 1 has more recent version and

will be used by Core 2

� Coherence protocols also prevent multiple cores from writing

to the same piece of data



The MESI Cache Coherence Protocol

� Every cache block (or cache line) is in one of four states:

� Modified (M), this line contains updates

� Exclusive (E), this line is owned by this core and is identical to

RAM

� Shared (S), multiple identical copies of this line exist

� Invalid (I), this line does not contain any data

� Real processors use slight variants of the MESI protocol

� MOESI, etc.



How the MESI protocol works

� Only lines in Exclusive state can be written to by a core

� achieved by invalidating all other copies of the line in other

caches

� then reading the latest copy from RAM

� a line read from RAM is loaded into ”Exclusive” state

� A line that is written moves to Modified state

� when the line is written to RAM, it moves to Shared state

� usually when another core wants to read the line

� All copies of a line in Shared state match RAM contents



Cache Line Bouncing

// global shared variable
uint32_t counter = 0;

// called by different threads
void inc_counter() {

// this is an atomic read-modify-write, not a plain write
counters++;

}

� What happens when thread 0 calls inc counter?

� What happens when thread 1 calls inc counter?

� What happens when thread 2 calls inc counter?



False Sharing

uint32_t counters[NTHREADS]; // each thread gets its own counter

void inc_counter() {
// atomic RMW
counters[mythreadid]++;

}

� What is the size of counters?

� How many cache lines does it occupy if each cache line is 32

bytes?

� What happens when thread 0 writes to location counters[0]

and thread 1 writes to location counters[1]?



Cache Coherence Domain

� Data is kept coherent within a cache coherence domain

� Traditionally, only the CPU’s caches

� Then, extended to other devices

� Now many machines support cache coherence across CPUs
and GPUs

� Notably, the newer Macs.



Outline

Cache Coherence

Memory Virtualization

x86-64 Implementation of Virtual Memory



Virtualization

� Virtualization decouples physical resources from logical
resources

� Physical CPUs vs Virtual CPUs

� Physical Memory vs Virtual Memory

� Physical Computers vs Virtual Computers

� The operating system and CPU cooperate to perform

virtualization

� CPU virtualization

� Time sharing

� Memory virtualization

� Today

� Whole computer virtualization

� Not in this class, but basis of cloud computing



The High-Level Problem

How do you make every program

believe it has access to the full

RAM?

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0 

Memory
invisible to
user code

Read/write data 

Read-only code and data

Loaded from the 
hello

printf function 

Program
start



Time Sharing

Program A

Program B

Memory

� Program A starts executing with full access to memory

� Timer interrupt

� All memory for Program A is copied to “swap area”

� swap area could be hard disk, for example

� All memory for Program B is loaded from “swap area”

� Program B starts executing

� Repeat



The Problem with Time Sharing

� My laptop has 8GB of RAM

� Worst case save and restore data size

� My HDD writes about 500MB/s

� 16s to save full contents of memory

� 16s to load full contents of memory

� 32s to switch between programs



Space Sharing

Program A Program B Empty

Memory

� Divide memory into portions

� Each program gets some portion of memory



The Problems with Space Sharing: #1

Program A Program B Empty

Memory

� How do we size each portion?

� Fixed-size allocations waste space

� Known as the “trapped-capacity” problem



Problem #2: Contiguous address space requirements

Program A Program B Program A

Memory

� Can’t change size of allocations as programs are running

� Atleast not easily

� Need contiguous address spaces

� Think of an array that is bigger than each portion, but smaller

than two portions combined



Problem #3: Can’t move allocations

Program B Program A

Memory

� Can’t move allocations

� Pointers in programs would need to be updated



Adding a Translation Layer

� Programs need to see one contiguous address space

� We will call this the virtual address space

� We will translate from this virtual address space to actual

physical address space

� Programs use virtual addresses, only the OS sees physical

addresses



Virtual and Physical Addresses

� A virtual address and a physical address are “physically”
indistinguishable

� Both are 64-bit

� However, virtual addresses span the whole 64-bit range

� Physical addresses only span the actual amount of physical

memory present

� All addresses used in programs are virtual

� Except in very special cases when values of virtual addresses

and its translated physical address are the same

� Usually, when doing I/O with devices that don’t understand

virtual addresses

� (Devices like this are increasingly uncommon)



Translation Granularity

� We could translate any virtual address to any physical address

� I.e. at byte level granularity

� But, it is more efficient to translate larger regions of memory

� Memory is divided into non-overlapping contiguous regions
called pages

� Most common page size is 4096 bytes (or 4KB)

� But modern systems support large (or huge) pages (2MB or

more)

� The new M1 Macs have a 16384 byte page size



The Memory Management Unit

translate

page offset

page offsetpage frame

virtual address

physical address

0111263

� A load or store instruction uses virtual addresses

� The memory management unit (MMU) translates this virtual
address to a physical address

� Nearly everything “downstream” of the MMU sees physical

addresses



Who maintains the translations?

� Although the CPU performs the translations, they are actually

set up by the OS

� Page translations can change

� Virtual address remains the same

� Physical address changes

� This allows:

� Allocation sizes to shrink and grow at page size granularity

� Physical addresses can be non-contiguous



Swapping Pages Out

� The OS can mark virtual addresses as “not present”

� The pages corresponding to these virtual addresses are not

“mapped in”

� Their contents may be on disk

� No physical addresses are assigned to these virtual addresses

� Accessing these “swapped out” pages causes a page fault

� CPU “suspends” processing of load/store instruction that

caused fault

� MMU notifies OS



Swapping Pages Back In

� When the OS receives a page fault notification, it can:

� identify a page in physical memory

� create a new mapping from the faulting virtual address to this

page

� load the contents of the newly mapped page from disk (if it

was swapped out)

� tell MMU that a new mapping has been set up

� CPU can then resume processing of load/store instruction



Summary

� Virtual memory uses a virtual address space

� One, contiguous, linear address space

� Addresses are in the virtual address space are translated to

physical addresses at page granularity

� Translations are setup by OS

� CPU MMU performs the translation on every load/store

� Virtual addresses can be marked as not present

� Allows system to support allocating more physical memory

than actually present!

� CPU notifies OS whenever these addresses are accessed

� Programs do not notice these translations (except as loss in

performance)



Outline

Cache Coherence

Memory Virtualization

x86-64 Implementation of Virtual Memory



x86-64 VM Implementation

� Pages are 4KB (4096 bytes) in size

� How many bits?

� Also supports 2MB and 1GB pages, but we will not discuss

these

� Uses a structure called a page table to maintain translations

� Note, current implementations only use 48-bit to 52-bit virtual

addresses

� How many entries in page table?



x86-64 Page Table Design

� 12 bits for offset within page (4096 bytes)

� 36 bits remaining (if using 48-bit virtual addresses)

� 16 bits not used in current x86-64 implementations

� Page table will contain 236 entries

� Each program will require 8 × 236 bytes for its page table

� How much is this?



Space requirements for the page table

512GB

� Ideally, we only need to store as many translations as there are
physical pages

� e.g., if 8GB physical RAM, then 2097152 pages, so 16MB for

page table entries

� Called an inverted page table design

� Not used by x86-64



Hierarchical Page Tables

� Instead of a single page table, multi-level page tables are used

� On the x86-64, each level contains 512 entries

� How many bits required to index into each level?

� How many levels (given we have 36 bits)?

� Each entry is 64-bits wide

� Total size of each level?

� NOTE: x86-64 supports 52-bits in physical addresses



Translation: Goal

39 38

4-KByteOffsetDirectory Ptr

Linear Address

Table

011122021

Directory

30 29

PML4

47

12

Physical Addr

4-KByte Page

Offset



Translation: First level

CR3

39 38
ble

40

4-KByteOffsetDirectory Ptr

Linear Address

Table

011122021

Directory

30 29

PML4

47

9

PML4E

12

Physical Addr

4-KByte Page

Offset



Translation: Second level

PDPTE

CR3

39 38

Pointer Table

9

40

4-KByteOffsetDirectory Ptr

Linear Address

Table

011122021

Directory

30 29

Page-Directory-

PML4

47

9

PML4E

40

12

Physical Addr

4-KByte Page

Offset



Translation: Third level

PDPTE

CR3

39 38

Pointer Table

9
9

40

4-KByteOffset

PDE with PS=0

Directory Ptr

Linear Address

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

12

Physical Addr

4-KByte Page

Offset



Translation: Fourth level

PTE

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

9

40

4-KByteOffset

PDE with PS=0

Directory Ptr

Linear Address

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

40

12

Physical Addr

4-KByte Page

Offset



Space requirements for multi-level page tables

� Each level contains 512 8-byte entries containing physical
addresses

� 4096 bytes

� A minimal program could get away with 4096*4 bytes for the
page tables

� No need for 512GB or even 16MB

� Note some of these levels can be “paged out”

� I.e. each entry in these tables contains a present bit



Translation Overheads

� Translating one memory address requires reading 4 other
addresses!

� This is called a “page table walk”, performed by the MMU

� Can we avoid reading the page table on every read access?



The Translation Look-aside Buffer (TLB)

� The TLB is a small cache used by the MMU

� Usually fewer than 10 entries, fully associative

� Correction: on Intel’s Golden Cove, this is 96 entries, 4-way set

associative.

� It caches the contents of final translation

� Must be invalidated whenever the translation changes (the

invlpg instruction)

� MMU checks TLB if it contains translation

� If it does, no page table walk is performed

https://cdrdv2-public.intel.com/821613/355308-Software-Optimization-Manual-048-Changes-Doc-2.pdf
https://cdrdv2-public.intel.com/821613/355308-Software-Optimization-Manual-048-Changes-Doc-2.pdf


TLB Misses

� Very large data structures can cause excessive TLB misses

� At least one very fast Matrix Multiply routine was specifically
optimized to minimize TLB misses

� GotoBLAS



Thrashing

� The Working Set is the set of pages a program uses

� If the Working Set size is greater than physical memory, some

pages will be swapped out

� On a page fault, the page will be brought in from disk,

displacing an existing page

� In certain cases, the pages that were swapped out might be

referenced immediately

� The program gets stuck just swapping pages in and out

� ”Thrashing” [its working set]



How Caches Change with Virtual Memory

� Should you use virtual addresses to index the cache?

� Should you do this at all levels?

� Caches contain a tag (a part of the full address)

� since multiple addresses can be mapped to the same cache set

� Which address should the tag be constructed from?

� Virtual or physical?



Acknowledgements

� Acknowledgements

� Figure of memory layout from the Computer Systems: A

Programmer’s Perspective

� Figures of page tables and page table entries from Intel

Software Developers Manual, Vol 3, System Programming

Guide


	Cache Coherence
	Memory Virtualization
	x86-64 Implementation of Virtual Memory

