CSC290/420 ML Systems for Efficient Al
Memory

Sreepathi Pai
September 22, 2025

URCS

Memory Technologies and Performance Metrics
Generic Memory Organization

Caches and the Memory Hierarchy

Memory Technologies and Performance Metrics

Volatility

e Computer systems contain two types of memories based on
volatility
e Whether the memory retains its contents on loss of power
e Non-volatile memory: “Storage”
e Hard disks, Flash Drives
e But see also: Optane
e Volatile memory: “Main memory"”

e DRAM, VRAM
e Caches
e Registers

WL

wl dH HE L
TT T
A= HE

BL

i

e Uses 6 transistors to store 1 bit of data
e Used to implement registers (on GPUs) and caches
e newer caches may be embedded DRAM

By Inductiveload - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=114648423

https://commons.wikimedia.org/w/index.php?curid=114648423

1
— L
T

Data stored using a single transistor and a capacitor

Charge in capacitor "leaks” over time

Needs to be refreshed periodically

Used for “main memory”
Video RAM (VRAM) is actually just DRAM

e technologically

By Encheart at English Wikipedia (Derivative SVG), Glogger at English Wikipedia (Original Image) -
File:Square_array_of_mosfet_cells_read.png, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=63506811

https://commons.wikimedia.org/w/index.php?curid=63506811

e DRAM dies stacked on top of each other

e Connected using thru-silicon vias
e Connected to compute using a very wide interface
e “Silicon Interposer”

By Blocks and Files https://blocksandfiles.com/2025/06/26/four-more-hbm-generations/

https://blocksandfiles.com/2025/06/26/four-more-hbm-generations/

Disaggregated Memory

e What if we build a box full of memory chips and connect it to
a computer through a special network?

e You get “disaggregated” memory

e Special network is usually “Compute Express Link" (CXL)

e Density
e How many bits per unit area / volume
e Higher is better
e Latency
e Time to access data: clock cycles or nanoseconds
o Lower is better
e Bandwidth

e Data transferred per unit time, bits/cycle, bits/ns, bytes/s, etc.
e Higher is better

Generic Memory Organization

Building Blocks

Memory Memory Memory Memory

Ei | — | — | —
H H H
Serial W
Controller Ei

e Memory (systems) can be abstracted as a aggregation of
serial memories

e Each memory can process only one request at a time
e Access to each memory is mediated through a queue
e May not physically exist for every memory
e Serial memories are called “banks”, (memory) “partitions”,

etc.

Performance Modeling

Memory Memory Memory Memory Memory Memory
Controller '3 Controller ;Ei

Most computer systems have multiple controllers
e Cache controllers, Memory controllers (DRAM/HBM)

e Memory is partitioned among the controllers

Controllers may be partitioned among CPU sockets/cores
e Non-uniform Memory Access (NUMA)

Queues have a queueing discipline: FCFS, FR-FCFS, etc.

e Most systems also prioritize reads over writes (why?)

The number of requests in queues and being serviced is

termed memory level parallelism (MLP)

The 'Partition Camping’ Problem

Memory Memory Memory Memory Memory Memory
— — — — —
Controller E‘ Controller El

e What happens if a program only accesses a single partition of
memory?

e Or a single controller?

e How should addresses be distributed across partitions to
prevent this?

Bank Conflicts in GPU Shared Memory

Banks: Threads:
P—

= o] o]
e
1 1] 1] 1 1
2 = 2 2 —F] 2 2]
3 e 3 3 3] 3 3
e
4 e 4 4 = 4 4 4]
=
5 G- 5 5] 5 5
—
6 - 6] 6 6]
7 7] 7 7] 7 7]
88—~ g 8 E 8 8]
e
9—pb= 9 9 9], 9 =
10 = 10] 10 o 10, 10 10)
11 11 11 11] 11 11,
12——H= 12| 12 12| 12 12|
13 b=13] 13 13| 13 13
14 14 14 . 14’ 14 14|
15 - 15] 15 15] 15 1s],
-
16—+ 16| 16! X X = 16] 16 16],
17— 17| 17 17] 17 17]
18 18| 18 .. 18 18 18]
19 B 19| 19 19| 19 19
20 = 20 20 =20 20 20
21— 21 7 21] 21 2],
22 22| 22 . 22| 22 22
23 > 23 23 23] 23 \23
24 > 24 24 = 24]
—
25 = 25| 25 23]
26——f»= 26| 26 ~ 26]
27 - 27] 27 27]
28 > 28] 28 ~ 28]
29 &= 29 29 /] 29
30 = 30]
31 31

Figure from https://docs.nvidia.com/cuda/cuda-c-programming-guide/#compute-capability-5-x by NVIDIA

MLP Code Example 1

for(row=0; row < NROWS; row++)
for(col=0; col < NCOLS; col++)
out [row * NCOLS + col] = in[col * NROWS + row];

MLP Code Example 2: Indirect Memory Access

Sparse graph using CSR representation with data on each edge
stored in a edgedata array.

for(row = 0; row < NROWS; row++) {
for(j row_start[row]; j < row_start[row+1]; j++) {
sum += edgedatalcol[j]]
}

MLP Code Example 3: Pointer chasing

Linked list search:
current = head;
while(current) {

if (current->value == search) return current;
current = current->next;

Caches and the Memory Hierarchy

(Roughly) a cache is a storage location that is faster to access
than the original location.

e Cache type: Cache location, Original location

e Browser: Disk, Website
e Google: Google, Website
e OS Disk Cache: RAM, Disk

Hardware Cache

A hardware cache (specifically a CPU cache) is a small amount of
fast (usually SRAM) memory in the CPU.

Q: Why not use this fast memory for building all of memory?

Using Hardware Caches

e The LSU asks the L1 cache
for data at a specific address

CPU
to LS/U

e if found, the L1 cache
returns the data
e Otherwise, the L1 cache
asks the L2 cache for the

e [o

e And so on, until RAM is
queried for the data |

L2 Cache (L2$)

e Actually on modern

systems, disk is the last RAM

level (later lectures)

e Caches are transparent to
the programmer

Cache Performance Benefits

e Cache hit: Cache contains the data you're looking for

e Cache miss: Cache must query the next level of memory

Tmemavg = Hi1 X Tpa + (1 — Hpp) X (Hiz X Tra 4+ (1 — Hi2) Tram)

e H;q is the L1 hit rate, H;» is L2 hit rate, etc.
e Number of memory accesses that hit / Number of memory
accesses
e Assume you have an average L1 hit rate of 100%

o T;1is 1 cyclest
e T5 is around 10 cycles
e Tgram is 100 cycles

e What is average time for a memory access?

!Latency Numbers Every Programmer Should Know

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Why Cache Memories work: Locality

e Most programs do not access memory randomly

e Their memory access patterns usually demonstrate locality (of
reference)
e Spatial locality: nearby memory locations will be accessed
together
e Temporal locality: a memory location will be accessed multiple
times

e Spatial locality: transfer data in blocks

e Temporal locality: keep data around waiting for it to be
reaccessed

Cache Addressing

e A cache is much smaller than the next level of memory
e Assume it can store C entries, while next level has N entries,
N>>C
e Mapping N entries to C can be done as follows:
e Direct-mapped: Each cache entry can store one of a set of
fixed addresses from N at one time
e Associative: Each cache entry can store any address in N
e Set-Associative: First-level direct-mapped, Second-level

Associative

Cache Misses: The 3C Model

e Compulsory Misses
e The miss that occurs when the data is first brought in
e Can't avoid this miss (?)
e Conflict Misses
e A miss that occurs in a direct-mapped cache, but would not
occur in a similarly-sized associative cache
e Capacity Miss
e A miss that occurs in an associative cache that would not
occur in a larger sized associative cache

Cache Replacement

e When a cache fills up, an existing entry must be replaced to
make room
e OPT policy
e Remove entry that will furthest in the future to be accessed
next
e LRU policy
e Remove entry that was least recently used in the past
e MRU policy
e Remove entry that was most recently used in the past
e Lots of other policies

Caches and Writes

When a program writes to a location, two policies can apply:

e Write-through: the write is sent back to the next level

e Write-back: the write is kept in cache to be written to the
next level at some opportune time

On some caches, writes to a location not previously read will result
in bringing that block to cache before the write is carried out.

Code that shows locality

clock_gettime (CLOCK_MONOTONIC_RAW, &start);

for(i = 0; i < N; i++) {
if(ali] > max) max = al[il;

}

clock_gettime (CLOCK_MONOTONIC_RAW, &end);

About 13ms on my laptop, with perf stat -e
cache-misses,cache-references showing:

Performance counter stats for ’./locality’ (10 runms):

622,559 cache-misses # 87.861 % of all c
708,570 cache-references

Code that may not show locality

clock_gettime (CLOCK_MONOTONIC_RAW, &start);
for(i = 0; i < N; i++) {
if(a[b[i]] > max) max = al[il;

}

clock_gettime (CLOCK_MONOTONIC_RAW, &end);

e In the above code, b[i] = i (i.e. identity)

e About 14ms on my laptop, with perf stat -e
cache-misses, cache-references showing:

Performance counter stats for ’./nolocalityl’ (10 runs):

1,222,210 cache-misses # 86.575 % of all ¢
1,411,733 cache-references

Code that does not show locality

clock_gettime (CLOCK_MONOTONIC_RAW, &start);
// bli]l is now a random permutation of numbers from O to N-1

for(i = 0; i < N; i++) {
if(alb[i]] > max) max = al[il;

clock_gettime (CLOCK_MONOTONIC_RAW, &end);

o In the above code, b is a random permutation of the numbers
0 to N-1

e About 65ms on my laptop, with perf stat -e
cache-misses,cache-references showing:

Performance counter stats for ’./nolocality2’ (10 runs):

10,857,423 cache-misses # 70.655 % of all ¢
15,366,835 cache-references

Locality in code

o Keep data you want to access together near each other
(spatial locality)

e e.g., use arrays
e use a custom memory allocator for pointer-based structures if
possible
e Reuse data as much as possible (temporal locality)

e techniques called “blocking” / “tiling”

Inverted Memory Hierarchies

e The size of each memory level usually decreases as we get
closer to the CPU
e Size of registers is smaller than L1 which is smaller than L2,
and so on.
e On most GPUs, this is not true
e Size of registers (64K * 4 bytes = 256KBytes) is much larger
than L1 (around 64-128K)
e On GPUs, data can probably be kept in registers
e Unfortunately, registers are not transparent to programmers

Scratchpad Memory

e On-chip memory, sometimes called scratchpad memory, is a
small amount of memory on chip.

e Very fast.
e Special load/store instructions

e Programmer must load data into scratchpad and store it back
to main memory (if needed)

e On NVIDIA GPUs, this is called “shared memory”

Beyond Load/Store: DMA

e Reading and writing memory is slow for a CPU
e Offload work to a direct memory access (DMA) controller
e Program start address, destination address, and length

e DMA engine will carry out copy asynchronously and let the
CPU know when its done

e CPU can work on other tasks

Next Class

e Cache coherence

e Virtual memory

	Memory Technologies and Performance Metrics
	Generic Memory Organization
	Caches and the Memory Hierarchy

