
CSC290/420 ML Systems for Efficient AI

Compound Structures / Memory

Sreepathi Pai

September 17, 2025

URCS

Outline

Structures and Unions

Arrays, Matrices, and Tensors

Sparse Data Structures

Performance and Efficiency Considerations

Outline

Structures and Unions

Arrays, Matrices, and Tensors

Sparse Data Structures

Performance and Efficiency Considerations

Record Types

struct point {
float x;
float y;

};

struct point pt;
struct point pts[10];
struct point *polygon;

� struct holds multiple values

� Each field of struct has a name

� struct can be nested

Recursive structures

struct node {
int value;
struct node *left;
struct node *right;

};

� This is a recursive structure

� Possibly from a binary tree

� The “self-references” must be pointers

struct interactions with pointers

struct node {
int value;
struct node *left;
struct node *right;

};

struct node *head;

Which of these accesses head’s right node?

� *head.right

� (*head).right

The -> operator

struct node {
int value;
struct node *left;
struct node *right;

};

struct node *head;

Since field access (.) has higher precedence than deference, you

must use (*head).right.

� Alternative: head->right, which has same precedence as .

Structure Layout

#include <stdio.h>

struct node {
int value;
struct node *left;
struct node *right;

};

int main(void) {
printf("%d\n", sizeof(struct node));

}

Output (on a LP64, i.e. long and pointers are 64-bits, system)?

� 20

� 24

� 32

Structure Memory Layout

Tight packing:

value left right
[0123][01234567][01234567]

Packing with “holes” (also called padding)

value left right
[0123][0123][01234567][01234567]

� Structure layout in memory is implementation defined

� Usually:

� Struct size is a multiple of largest field

� Each individual field is naturally aligned

Unions

union intvar {
char c;
short s;
int i;
long l;

};

� Like struct, union contains fields

� However, all fields in a union overlap in memory

� At most one contains valid data

Union Memory Layout

c|
s-|
i---|
l-------|
[01234567]

� This union occupies 8 bytes of memory

� The size of its largest field

� But all fields overlap

� Writing to one changes the others as well

� Writing to one field, and reading that data through another
field is allowed

� But it is implementation-defined

Outline

Structures and Unions

Arrays, Matrices, and Tensors

Sparse Data Structures

Performance and Efficiency Considerations

Memory Allocation

� From a program’s perspective, memory is obtained using an
allocator

� The memory is then reserved for the program and unavailable

for other programs

� Must be de-allocated once it is no longer needed

� Memory is allocated from the “heap”

� Manual memory management (C, C++, CUDA)

� Programmer must explicitly deallocate memory

� Garbage collection (Java, Python, etc.)

� Deallocation is automatic

C Runtime Allocator

The C standard library supports the following heap allocators, all

require including stdlib.h:

� malloc: allocate memory of a certain size

� calloc: allocate memory and zero it

� realloc: change size of memory (may move data)

� free: free memory allocated by the above functions

� All allocators return a pointer to the newly allocated region of

memory or NULL if they fail.

C memory allocation

#include <stdlib.h>

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);

int *p;

// allocate 1000 ints, note size is size in bytes
p = (int *) malloc(1000 * sizeof(int));

// --- OR --- //

// or allocate 1000 ints initialized to zero
p = (int *) calloc(1000, sizeof(int));

// free allocated memory
free(p);

Allocating an array on the heap

int *alloc_and_init_array(int N) {
int *x;

x = (int *) malloc(N * sizeof(int))

// initialize it
for(int i = 0; i < N; i++) {

x[i] = i*i;
}

return x;
}

� Note we’re returning the value of x

� I.e. the address in x, not the address of x

� Since the address is on the heap, it is independent of the

function call

� You can treat pointers to the heap as any other pointer

Common Bugs using Dynamic Memory

� Memory leaks

� When you lose the pointer to an allocated region of memory

� Can’t be freed until program exits

� “harmless”, program just consumes more and more memory as

it runs

� Reading uninitialized memory

� Memory from malloc should be initialized before reading it

� Out-of-bound accesses

� Pointer points outside the allocated region

� Undefined behaviour!

� Use-after-free

� Attempt to access memory region after free

� Essentially a dangling pointer pointing to the heap

� Dangerous!

� Double-frees

� Trying to call free on the same pointer twice

� Undefined behaviour!

Arrays and Matrices

� Memory is 1-dimensional

� addresses are linear ranging from 0 to some N

� each address is a byte

� 1-D arrays are similar

� indices range from 1 to some n, where n is the number of

elements

� i.e. arrays have a type and each index references an element

� translation of index to address:

address = index ∗ sizeof (element)

� Most languages also support multidimensional arrays

� A[i][j]

� These must be mapped to 1-D memory

� Multiple schemes exist

Implementing Multidimensional Arrays

� Scheme 1: All data is stored contiguously in a 1-D array

� Requires translation of a multidimensional index (i , j , k) into a

1-D index

� Scheme 2: All dimensions are 1-D arrays of pointers, except
the last which contains data

� Requires multiple pointer deferences A[i][j][k]: load A[i]

(a 1-D array), then look up j (another 1-D array), and look up

k-th element as data

Pointer-based Scheme

ab.. 09.. 13..

ab..:

09..:

13..:

0 5 i

0 J
� Example of a 2-D array implemented as an 1-D array of

pointers to 1-D data arrays

Contiguous Storage

0 1 2
3 4 5[] [0 1 2 3 4 5]

[0 3 1 4 2 5]

row-major

column-major
 0 5

� For access A[row][col]

� Row major: index = row ∗ COLS + col

� Column major: index = col ∗ ROWS + row

� The address then multiplies the index by the size of the

element.

� Extension to more than 2 dimensions?

Outline

Structures and Unions

Arrays, Matrices, and Tensors

Sparse Data Structures

Performance and Efficiency Considerations

Dense and Sparse Matrices

� A sparse matrix is one in which the number of non-zeroes

(NNZs) is significantly lower than the number of zeroes

� Occur commonly in large linear systems used in computational

science

� Very common when storing graphs using adjacency matrix

notation

� Most weight matrices in ML are dense, but increasing interest

in sparse matrices

Sparse Matrices

0 1 2
3 4 5
6 7 8

1 0 0
0 1 0
0 0 1

0 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0
2

1 3
� Dense matrix

� Sparse matrix

� Graph

� Adjacency matrix representation of graph

Storing Sparse Matrices

� Various sparse formats

� COO - coordinate format

� CSR - compressed sparse row

� CSC - compressed sparse column

COO storage

0 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0
2

1 3

[0 2 2]
[2 1 3]

row
col

� Two arrays (row and col) track positions of non-zeroes

� An additional data array may be present to store the values in
the cells

� Here, all values are 1, so no data array needed

CSR storage

0 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0
2

1 3

[2 1 3]
[0 1 1 3 3]

col
row_start

0 0 2 0
0 0 0 0
0 1 0 3
0 0 0 0

[2]
[]
[1 3]
[]

➡ ➡

� First, the positions of the 1s are noted

� can be seen as replacing 1s with their index

� Second, the zeroes are dropped

� yields variable length column arrays for each row

� Third, these column arrays are concatenated to form a 1-d

array col

� Fourth, a row start array indicates the start and end of each
row

� start: row start[row]

� end (exclusive): row start[row+1]

� A data array may also be present

CSR issues

� Indirect accesses

� Need to load multiple values to get data

� Similar to pointer-based schemes for multidimensional arrays

� Hard to vectorize

� hence other formats: ELLPACK (block sparse)

� Changing a zero to a non-zero requires rewriting the
structure!

� mostly used for read-only data

Outline

Structures and Unions

Arrays, Matrices, and Tensors

Sparse Data Structures

Performance and Efficiency Considerations

Considerations

� Assume byte-addressable memory

� but data is transferred in multibyte blocks (say, 32 bytes)

� Is space usage efficient?

� Is data access efficient?

� Can data access code be vectorized?

AoS vs SoA

struct pt {
float x;
float y;

};

struct pt pts[10]; // array of structures

OR

struct pts {
float *x;
float *y;

};

struct pts p; // structure of arrays

p.x = malloc(...);
p.y = malloc(...);

Row-major vs column-major

for(row=0; row < NROWS; row++)
for(col=0; col < NCOLS; col++)

out[row * NCOLS + col] = in[col * NROWS + row];

Sparse vs Dense

for(row = 0; row < NROWS; row++) {
for(j = row_start[row]; j < row_start[row+1]; j++) {

column = col[j];
}

}

	Structures and Unions
	Arrays, Matrices, and Tensors
	Sparse Data Structures
	Performance and Efficiency Considerations

