CSC290/420 ML Systems for Efficient Al
Compound Structures / Memory

Sreepathi Pai
September 17, 2025

URCS



Structures and Unions
Arrays, Matrices, and Tensors
Sparse Data Structures

Performance and Efficiency Considerations



Structures and Unions



Record Types

struct point {
float x;
float y;

I8
struct point pt;
struct point pts[10];
struct point *polygon;
e struct holds multiple values
e Each field of struct has a name

e struct can be nested



Recursive structures

struct node {
int value;
struct node *left;
struct node *right;

13

e This is a recursive structure

e Possibly from a binary tree

e The “self-references” must be pointers



struct interactions with pointers

struct node {
int value;
struct node *left;
struct node *right;

I8

struct node *head;
Which of these accesses head’s right node?

e xhead.right
e (xhead) .right



The -> operator

struct node {
int value;
struct node *left;
struct node *right;

18

struct node *head;

Since field access (.) has higher precedence than deference, you
must use (*head).right.

e Alternative: head->right, which has same precedence as .



Structure Layout

#include <stdio.h>
struct node {
int value;
struct node *left;
struct node *right;

I8

int main(void) {
printf ("%d\n", sizeof(struct node));

Output (on a LP64, i.e. long and pointers are 64-bits, system)?

e 20
e 24
e 32



Structure Memory Layout

Tight packing:
value left right
[0123] [01234567] [01234567]
Packing with “holes” (also called padding)

value left right
[0123] [0123] [01234567] [01234567]

e Structure layout in memory is implementation defined
o Usually:

e Struct size is a multiple of largest field
e Each individual field is naturally aligned



union intvar {
char c;
short s;

int i;

long 1;

I8

e Like struct, union contains fields
e However, all fields in a union overlap in memory

e At most one contains valid data



Union Memory Layout

cl
s—|
i-—-|

[01234567]

e This union occupies 8 bytes of memory
e The size of its largest field
e But all fields overlap
e Writing to one changes the others as well

e Writing to one field, and reading that data through another
field is allowed

e But it is implementation-defined



Arrays, Matrices, and Tensors



Memory Allocation

e From a program'’s perspective, memory is obtained using an
allocator

e The memory is then reserved for the program and unavailable
for other programs
e Must be de-allocated once it is no longer needed
e Memory is allocated from the “heap”
e Manual memory management (C, C++, CUDA)
e Programmer must explicitly deallocate memory
e Garbage collection (Java, Python, etc.)

e Deallocation is automatic



C Runtime Allocator

The C standard library supports the following heap allocators, all
require including stdlib.h:

e malloc: allocate memory of a certain size
e calloc: allocate memory and zero it
e realloc: change size of memory (may move data)

e free: free memory allocated by the above functions

o All allocators return a pointer to the newly allocated region of
memory or NULL if they fail.



C memory allocation

#include <stdlib.h>
void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);

int *p;

// allocate 1000 ints, note size is size in bytes
p = (int *) malloc(1000 * sizeof (int));

/] -== OR === //

// or allocate 1000 ints initialized to zero
p = (int *) calloc(1000, sizeof(int));

// free allocated memory
free(p);



Allocating an array on the heap

int *alloc_and_init_array(int N) {
int *x;

x = (int *) malloc(N * sizeof (int))
// initialize it
for(int i = 0; i < N; i++) {

x[i] = i*i;

}

return x;

e Note we're returning the value of x

e |.e. the address in x, not the address of x
e Since the address is on the heap, it is independent of the
function call

e You can treat pointers to the heap as any other pointer



Common Bugs using Dynamic Memory

o Memory leaks
e When you lose the pointer to an allocated region of memory
e Can't be freed until program exits
e “harmless”, program just consumes more and more memory as
It runs

Reading uninitialized memory
e Memory from malloc should be initialized before reading it
Out-of-bound accesses

e Pointer points outside the allocated region

e Undefined behaviour!
Use-after-free

e Attempt to access memory region after free
e Essentially a dangling pointer pointing to the heap
e Dangerous!
Double-frees
e Trying to call free on the same pointer twice

e Undefined behaviour!



Arrays and Matrices

e Memory is 1-dimensional

e addresses are linear ranging from 0 to some N
e each address is a byte

e 1-D arrays are similar
e indices range from 1 to some n, where n is the number of
elements
e i.e. arrays have a type and each index references an element
e translation of index to address:
address = index * sizeof (element)

Most languages also support multidimensional arrays
o A[i][j]

These must be mapped to 1-D memory

e Multiple schemes exist



Implementing Multidimensional Arrays

e Scheme 1: All data is stored contiguously in a 1-D array
e Requires translation of a multidimensional index (i, /, k) into a
1-D index
e Scheme 2: All dimensions are 1-D arrays of pointers, except
the last which contains data
e Requires multiple pointer deferences A[i] [j] [k]: load A[i]
(a 1-D array), then look up j (another 1-D array), and look up
k-th element as data



Pointer-based Scheme

J

e Example of a 2-D array implemented as an 1-D array of

pointers to 1-D data arrays



Contiguous Storage

[012345] row-major
345 [031425]columnmajor
5

e For access A[row] [col]

e Row major: index = row x COLS + col

Column major: index = col *x ROWS + row

The address then multiplies the index by the size of the

element.

Extension to more than 2 dimensions?



Sparse Data Structures



Dense and Sparse Matrices

e A sparse matrix is one in which the number of non-zeroes
(NNZs) is significantly lower than the number of zeroes

Occur commonly in large linear systems used in computational
science

e Very common when storing graphs using adjacency matrix
notation

Most weight matrices in ML are dense, but increasing interest
in sparse matrices



Sparse Matrices

0 0010
012 100 0000
345 010 2 0101

678 001 @ @ 0000

e Dense matrix

Sparse matrix
Graph

Adjacency matrix representation of graph



Storing Sparse Matrices

Various sparse formats
e COO - coordinate format
e CSR - compressed sparse row

e CSC - compressed sparse column



COO storage

row[022]
col [213]

e Two arrays (row and col) track positions of non-zeroes

e An additional data array may be present to store the values in
the cells

e Here, all values are 1, so no data array needed



CSR storage

0010 0020 [2]

@ 0000_,0000_}[] col [213]
2 0101 0103 [13] row_start [01133]

@ ® o000 0000 []
e First, the positions of the 1s are noted

e can be seen as replacing 1s with their index
e Second, the zeroes are dropped

e yields variable length column arrays for each row

e Third, these column arrays are concatenated to form a 1-d
array col

e Fourth, a row_start array indicates the start and end of each
row
e start: row_start [row]
e end (exclusive): row_start [row+1]

A data array may also be present



e Indirect accesses

e Need to load multiple values to get data
e Similar to pointer-based schemes for multidimensional arrays

e Hard to vectorize
e hence other formats: ELLPACK (block sparse)

e Changing a zero to a non-zero requires rewriting the
structure!

e mostly used for read-only data



Performance and Efficiency Considerations



Considerations

Assume byte-addressable memory
e but data is transferred in multibyte blocks (say, 32 bytes)

Is space usage efficient?

Is data access efficient?

Can data access code be vectorized?



AoS vs SoA

struct pt {
float x;
float y;
I8

struct pt pts[10]; // array of structures

OR
struct pts {
float *x;
float *y;
3
struct pts p; // structure of arrays
p-x = malloc(...);
p.-y = malloc(...);



Row-major vs column-major

for(row=0; row < NROWS; row++)
for(col=0; col < NCOLS; col++)
out [row * NCOLS + col] = in[col * NROWS + row];



Sparse vs Dense

for(row = 0; row < NROWS; row++) {
for(j = row_start[row]; j < row_start[row+1]; j++) {
column = col[jl;

}



	Structures and Unions
	Arrays, Matrices, and Tensors
	Sparse Data Structures
	Performance and Efficiency Considerations

