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Record Types

struct point {
float x;
float y;

};

struct point pt;
struct point pts[10];
struct point *polygon;

� struct holds multiple values

� Each field of struct has a name

� struct can be nested



Recursive structures

struct node {
int value;
struct node *left;
struct node *right;

};

� This is a recursive structure

� Possibly from a binary tree

� The “self-references” must be pointers



struct interactions with pointers

struct node {
int value;
struct node *left;
struct node *right;

};

struct node *head;

Which of these accesses head’s right node?

� *head.right

� (*head).right



The -> operator

struct node {
int value;
struct node *left;
struct node *right;

};

struct node *head;

Since field access (.) has higher precedence than deference, you

must use (*head).right.

� Alternative: head->right, which has same precedence as .



Structure Layout

#include <stdio.h>

struct node {
int value;
struct node *left;
struct node *right;

};

int main(void) {
printf("%d\n", sizeof(struct node));

}

Output (on a LP64, i.e. long and pointers are 64-bits, system)?

� 20

� 24

� 32



Structure Memory Layout

Tight packing:

value left right
[0123][01234567][01234567]

Packing with “holes” (also called padding)

value left right
[0123][0123][01234567][01234567]

� Structure layout in memory is implementation defined

� Usually:

� Struct size is a multiple of largest field

� Each individual field is naturally aligned



Unions

union intvar {
char c;
short s;
int i;
long l;

};

� Like struct, union contains fields

� However, all fields in a union overlap in memory

� At most one contains valid data



Union Memory Layout

c|
s-|
i---|
l-------|
[01234567]

� This union occupies 8 bytes of memory

� The size of its largest field

� But all fields overlap

� Writing to one changes the others as well

� Writing to one field, and reading that data through another
field is allowed

� But it is implementation-defined
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Memory Allocation

� From a program’s perspective, memory is obtained using an
allocator

� The memory is then reserved for the program and unavailable

for other programs

� Must be de-allocated once it is no longer needed

� Memory is allocated from the “heap”

� Manual memory management (C, C++, CUDA)

� Programmer must explicitly deallocate memory

� Garbage collection (Java, Python, etc.)

� Deallocation is automatic



C Runtime Allocator

The C standard library supports the following heap allocators, all

require including stdlib.h:

� malloc: allocate memory of a certain size

� calloc: allocate memory and zero it

� realloc: change size of memory (may move data)

� free: free memory allocated by the above functions

� All allocators return a pointer to the newly allocated region of

memory or NULL if they fail.



C memory allocation

#include <stdlib.h>

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t nmemb, size_t size);

int *p;

// allocate 1000 ints, note size is size in bytes
p = (int *) malloc(1000 * sizeof(int));

// --- OR --- //

// or allocate 1000 ints initialized to zero
p = (int *) calloc(1000, sizeof(int));

// free allocated memory
free(p);



Allocating an array on the heap

int *alloc_and_init_array(int N) {
int *x;

x = (int *) malloc(N * sizeof(int))

// initialize it
for(int i = 0; i < N; i++) {

x[i] = i*i;
}

return x;
}

� Note we’re returning the value of x

� I.e. the address in x, not the address of x

� Since the address is on the heap, it is independent of the

function call

� You can treat pointers to the heap as any other pointer



Common Bugs using Dynamic Memory

� Memory leaks

� When you lose the pointer to an allocated region of memory

� Can’t be freed until program exits

� “harmless”, program just consumes more and more memory as

it runs

� Reading uninitialized memory

� Memory from malloc should be initialized before reading it

� Out-of-bound accesses

� Pointer points outside the allocated region

� Undefined behaviour!

� Use-after-free

� Attempt to access memory region after free

� Essentially a dangling pointer pointing to the heap

� Dangerous!

� Double-frees

� Trying to call free on the same pointer twice

� Undefined behaviour!



Arrays and Matrices

� Memory is 1-dimensional

� addresses are linear ranging from 0 to some N

� each address is a byte

� 1-D arrays are similar

� indices range from 1 to some n, where n is the number of

elements

� i.e. arrays have a type and each index references an element

� translation of index to address:

address = index ∗ sizeof (element)

� Most languages also support multidimensional arrays

� A[i][j]

� These must be mapped to 1-D memory

� Multiple schemes exist



Implementing Multidimensional Arrays

� Scheme 1: All data is stored contiguously in a 1-D array

� Requires translation of a multidimensional index (i , j , k) into a

1-D index

� Scheme 2: All dimensions are 1-D arrays of pointers, except
the last which contains data

� Requires multiple pointer deferences A[i][j][k]: load A[i]

(a 1-D array), then look up j (another 1-D array), and look up

k-th element as data



Pointer-based Scheme

ab.. 09.. 13..

ab..:

09..:

13..:

0 5 i

0 J
� Example of a 2-D array implemented as an 1-D array of

pointers to 1-D data arrays



Contiguous Storage

0 1 2
3 4 5[ ] [ 0 1 2 3 4 5 ]

[ 0 3 1 4 2 5 ]

row-major

column-major
  0 5

� For access A[row][col]

� Row major: index = row ∗ COLS + col

� Column major: index = col ∗ ROWS + row

� The address then multiplies the index by the size of the

element.

� Extension to more than 2 dimensions?
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Dense and Sparse Matrices

� A sparse matrix is one in which the number of non-zeroes

(NNZs) is significantly lower than the number of zeroes

� Occur commonly in large linear systems used in computational

science

� Very common when storing graphs using adjacency matrix

notation

� Most weight matrices in ML are dense, but increasing interest

in sparse matrices



Sparse Matrices

0 1 2
3 4 5
6 7 8

1 0 0
0 1 0
0 0 1

0 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0
2

1 3
� Dense matrix

� Sparse matrix

� Graph

� Adjacency matrix representation of graph



Storing Sparse Matrices

� Various sparse formats

� COO - coordinate format

� CSR - compressed sparse row

� CSC - compressed sparse column



COO storage

0 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0
2

1 3

[ 0 2 2 ]
[ 2 1 3 ]

row
col

� Two arrays (row and col) track positions of non-zeroes

� An additional data array may be present to store the values in
the cells

� Here, all values are 1, so no data array needed



CSR storage

0 0 1 0
0 0 0 0
0 1 0 1
0 0 0 0

0
2

1 3

[ 2 1 3 ]
[ 0 1 1 3 3 ]

col
row_start

0 0 2 0
0 0 0 0
0 1 0 3
0 0 0 0

[ 2 ]
[ ]
[1 3]
[ ]

➡ ➡

� First, the positions of the 1s are noted

� can be seen as replacing 1s with their index

� Second, the zeroes are dropped

� yields variable length column arrays for each row

� Third, these column arrays are concatenated to form a 1-d

array col

� Fourth, a row start array indicates the start and end of each
row

� start: row start[row]

� end (exclusive): row start[row+1]

� A data array may also be present



CSR issues

� Indirect accesses

� Need to load multiple values to get data

� Similar to pointer-based schemes for multidimensional arrays

� Hard to vectorize

� hence other formats: ELLPACK (block sparse)

� Changing a zero to a non-zero requires rewriting the
structure!

� mostly used for read-only data
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Considerations

� Assume byte-addressable memory

� but data is transferred in multibyte blocks (say, 32 bytes)

� Is space usage efficient?

� Is data access efficient?

� Can data access code be vectorized?



AoS vs SoA

struct pt {
float x;
float y;

};

struct pt pts[10]; // array of structures

OR

struct pts {
float *x;
float *y;

};

struct pts p; // structure of arrays

p.x = malloc(...);
p.y = malloc(...);



Row-major vs column-major

for(row=0; row < NROWS; row++)
for(col=0; col < NCOLS; col++)

out[row * NCOLS + col] = in[col * NROWS + row];



Sparse vs Dense

for(row = 0; row < NROWS; row++) {
for(j = row_start[row]; j < row_start[row+1]; j++) {

column = col[j];
}

}
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