
CSC290/420 ML Systems for Efficient AI

Compute: SIMD and GPUs

Sreepathi Pai

September 3, 2025

URCS

Outline

SIMD Execution: Vector Processors

SIMD Execution: GPUs

Programming Vector Machines

Outline

SIMD Execution: Vector Processors

SIMD Execution: GPUs

Programming Vector Machines

Vector processing

A vector processor executes

vector instructions which operate

on on vector registers

� Traditionally associated with

super computing

� Still the backbone of (some)
modern supercomputers

� esp. Japanese
From the Cray-1 manual.

https://s3data.computerhistory.org/brochures/cray.cray1.1977.102638650.pdf

Vector registers

� Scalar register: RAX (x86-64)

� size: 64 bits

� (short) Vector register: YMM (AVX)

� size: 256 bits

� On the Cray-1 (1970s)

� size: 64 elements x 64-bits: 4096 bits

Vector Instructions

� Same operation applied to
all elements of the vector

� subject to predication and

masking [next slide]

� “Vertical” vector
instructions

� also called elementwise

� VC = VA + VB

� “Horizontal” vector
instructions

� operate within a single

vector

� can produce a scalar: A =

MAX(VA)

� can produce a vector: VC

= PERMUTE(VA, VB)

a b c d e

a+t b+u c+v d+w e+x

t u v w x

a b c d e

 c e b a a

2 4 1 0 0

Predication (or Masking)

for(i = 0; i < N; i++) {
if(a[i] > 1)

c[i] = a[i]
else

c[i] = 0
}

can be translated into a fictional

vector instruction set as

(assuming N is the same as the

vector size):
vp = va > v1

@vp vc = va
@!vp vc = v0

2 1 0 4 5

2 4 5

T F F T T

 2 0 0 4 5

1 1 1 1 1

Loads / Stores

� Loading data into vector registers

� Vector loads: start address + length

� Load contiguous memory locations

� Storing data into memory

� Vector stores: destination address + length

� Stores into contiguous memory locations

� Addresses are usually aligned

� More on this in data structures and memory

� More powerful: vector gathers and scatters

Gathers / Scatters

2 1 0 4 9

a b c d e f g h i j memory

gather vector

c b a d j result

� Indirect loads (Gathers)

� Indirect stores (Scatters)

� One vector register contains addresses to load to (or store to)

� The Gather and Scatter instructions load the data from these

locations

� Convenient, but can affect performance severely

Short Vectors

� SIMD programming on most CPUs

� Much shorter vector sizes

� Rarely above 512 bits, more commonly 256 bits

� Limited set of operations

� Examples: x86 MMX/SSE/.../AVX/AVX2/AVX512, PowerPC
AltiVec, ARM NEON

� x86-64 quirk: Only SSE supports IEEE 754

Programming Vector Processors

� Explicitly parallel

� Programmer writes code using vector instructions

� Sometimes called SIMD intrinsics

� CPU-specific

� Implicitly parallel

� Compiler (not hardware) extracts parallelism from “serial” code

� Autovectorization

Autovectorization

void vec_add(int *A, int *B, int *C, int N) {
for(int i = 0; i < N; i++) {
C[i] = A[i] + B[i];

}
}

gcc -O3 vecadd.c

...
vmovdqu (%rdi,%rax), %ymm1
vpaddd (%rsi,%rax), %ymm1, %ymm0
vmovdqu %ymm0, (%rdx,%rax)
...

Short vector code

__m256i avec0 = load(A + lda * (ii + 0) + l);
__m256i avec1 = load(A + lda * (ii + 1) + l);
__m256i avec2 = load(A + lda * (ii + 2) + l);
__m256i avec3 = load(A + lda * (ii + 3) + l);
for (int64_t j = 0; j < RN; ++j) {

__m128 db = _mm_set1_ps(unhalf(B[ldb * (jj + j) + l].d));
// Computation of product of delta values for four blocks and replicate it across 256 bit lane
__m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
// Computation of dot product and multiplication with appropriate delta value products
Cv[j][0] = madd(_mm256_shuffle_ps(dvec, dvec, 0),

updot(_mm256_sign_epi8(avec0, avec0),
_mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec0)),

Cv[j][0]);

from https:

//github.com/ggml-org/ggml/blob/83835ffaa0f2e68bc8530bd0a7584711789dc23b/src/ggml-cpu/ops.cpp

https://github.com/ggml-org/ggml/blob/83835ffaa0f2e68bc8530bd0a7584711789dc23b/src/ggml-cpu/ops.cpp
https://github.com/ggml-org/ggml/blob/83835ffaa0f2e68bc8530bd0a7584711789dc23b/src/ggml-cpu/ops.cpp

Outline

SIMD Execution: Vector Processors

SIMD Execution: GPUs

Programming Vector Machines

Graphics Processors (Originally)

� Built for graphics and 3D games

� Displaying 3D graphics is very compute intensive

� But also highly parallel

� Standardized “graphics” pipeline

� Originally dedicated hardware

� Around 2006, replaced with “unified” general-purpose cores

Kaufman et al (2009)

A modern GPU

� All vector instructions

� usually 32 element vectors

(1024 bits)

� Multiple cores

� Multiple issue but in-order

� Highly SMT

� 64-way

� When one thread is

waiting, another ready

thread starts executing

� Optimized to run thousands
of threads

� Note: each thread runs a

vector instruction
Kepler SMX, from the CUDA documentation.

A Kepler GPU (circa 2012)

CUDA Programming Model

� Scalar programming model

� but compiler does not autovectorize!

� Hardware executes all code in vector mode

� branches are handled by hardware

� all loads/stores are gather/scatter

� Lanes of vectors are exposed to programmers as [CUDA]
“threads”

� Unlike CPU threads, CUDA threads don’t have an independent

program counter

� But hardware makes them appear like CPU threads

Predication / Branch Divergence

� Like vector processors, GPUs also support predication

� But also support “warp divergence” mechanism

� A “warp” is CUDA terminology for a vector instruction

� In warp divergence, the warp splits into two parts

� One part executes the true branch (while other part is disabled)

� And then, another part executes the false branch

� Both parts “join up” at a pre-determined point

� Predication or warp divergence selected by the compiler on a

per-branch basis

Gathers / Scatters

� GPU loads are automatically gathers/scatters

� Best performance if contiguous data accessed

� ”Coalesced” access, similar to vector loads

� Worst performance if every lane accesses a different
address(*)

� *actually cache line

Vector Addition

__global__ void vector_addition(int *A, int *B, int *C, int N) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;

if(tid < N)
C[tid] = A[tid] + B[tid];

}

vector_addition<<<(N+255)/256, 256>>>(...);

Data Parallel Programming

� All data is processed by the same code

� i.e. every thread runs the same code

� Code decides which data to operate on based on some sort of
a “ID”

� lane ID

� thread ID

The CUDA Hierarchical Programming Model

� To handle different models of GPUs, CUDA does not use a

“flat” identifier space.

� Threads are divided into equal-sized 3-D Thread Blocks

� All threads of a thread block are guaranteed to be resident on

a core

� Different thread blocks may or may not be running at same

time

� Thread blocks form a 3-D Grid

� Total threads is number of thread blocks multiplied by

dimensions of thread block

� Other GPU programming models (OpenCL, WebGPU) are
similar

� but use different terminology

Considerations for using GPUs

� Built for throughput computing

� Not latency

� Do lots of work quickly

� Can’t do little work quickly (remember, in-order!)

� Need lots of work

� 2048 CUDA lanes per core * 80 cores, for example

� Need to transfer data to and fro from CPU

� Overhead may be significant and destroy gains from compute

Programming CPUs using GPU programming models?

� The CUDA programming model programs vector machines
without using vectors

� and without relying on compiler wizardry

� Intel Implicit SPMD Compiler (ISPC) is a similar model, but
for CPUs

� Not just Intel CPUs

� Slang, is a new-ish shader language

� Supports both CPUs and GPUs

https://ispc.github.io/
https://shader-slang.org/

Outline

SIMD Execution: Vector Processors

SIMD Execution: GPUs

Programming Vector Machines

It’s the FLOPS!

Achieving peak compute performance on any modern computer

requires the use of vector instructions.

Considerations

� Design so code can run on both GPUs and CPUs

� start with a GPU-first design

� Domain-Specific Languages

� avoid using low-level GPU/CPU-specific programming

languages

� use high-level domain-specific languages (e.g., Triton)

� easier and more productive to get performance

� Don’t dismiss auto-vectorization for ML

� IREE

https://iree.dev/

	SIMD Execution: Vector Processors
	SIMD Execution: GPUs
	Programming Vector Machines

