CSC290/420 ML Systems for Efficient Al
Compute: SIMD and GPUs

Sreepathi Pai
September 3, 2025

URCS

SIMD Execution: Vector Processors
SIMD Execution: GPUs

Programming Vector Machines

SIMD Execution: Vector Processors

Vector processing

A vector processor executes ‘

vector instructions which operate

on on vector registers L n\

CONTROLLE

e Traditionally associated with

super computing

e Still the backbone of (some)
modern supercomputers

e esp. Japanese

From the Cray-1 manual.

https://s3data.computerhistory.org/brochures/cray.cray1.1977.102638650.pdf

Vector registers

e Scalar register: RAX (x86-64)
o size: 64 bits
e (short) Vector register: YMM (AVX)
o size: 256 bits
e On the Cray-1 (1970s)
e size: 64 elements x 64-bits: 4096 bits

Vector Instructions

e Same operation applied to
all elements of the vector
e subject to predication and
masking [next slide]
e “Vertical” vector
instructions

e also called elementwise
e VC=VA + VB

e “Horizontal” vector

instructions

e operate within a single

vector

e can produce a scalar: A = c | e b|a| a
MAX(VA)

e can produce a vector: VC
= PERMUTE(VA, VB)

Predication (or Masking)

for(i = 0; i < N; i++) {
if(ali] > 1)

cl[i] = a[i]
else
clil = 0

}

can be translated into a fictional

vector instruction set as

. . 2 4 |5
(assuming N is the same as the
vector size): Sla falal s
vp = va > vl
Qvp vc = va
Q@!'vp vc = v0

Loads / Stores

Loading data into vector registers

e Vector loads: start address + length
e Load contiguous memory locations

Storing data into memory

e Vector stores: destination address + length
e Stores into contiguous memory locations

Addresses are usually aligned

e More on this in data structures and memory

e More powerful: vector gathers and scatters

Gathers / Scatters

R2IOIAB sather vector

[BIbTeTd e FTSTRITT memory

[CIBIRTENR result

Indirect loads (Gathers)

Indirect stores (Scatters)

One vector register contains addresses to load to (or store to)

The Gather and Scatter instructions load the data from these

locations

Convenient, but can affect performance severely

Short Vectors

SIMD programming on most CPUs

Much shorter vector sizes

e Rarely above 512 bits, more commonly 256 bits

Limited set of operations

Examples: x86 MMX/SSE/.../AVX/AVX2/AVX512, PowerPC
AltiVec, ARM NEON

e x86-64 quirk: Only SSE supports IEEE 754

Programming Vector Processors

e Explicitly parallel
e Programmer writes code using vector instructions
e Sometimes called SIMD intrinsics
e CPU-specific
o Implicitly parallel
e Compiler (not hardware) extracts parallelism from “serial” code
e Autovectorization

Autovectorization

void vec_add(int *A, int *B, int *C, int N) {
for(int i = 0; i < N; i++) {
C[i] = A[i] + B[il;

}
gcc -03 vecadd.c
vmovdqu (%rdi,%rax), %ymml

vpaddd (%rsi,’%rax), %ymml, %ymmO
vmovdqu %ymmO, (%rdx,%rax)

Short vector code

__m256i avecO = load(A + 1da * (ii + 0) + 1);
__m256i avecl = load(A + 1lda * (ii + 1) + 1);
__m256i avec2 = load(A + 1lda * (ii + 2) + 1);
__m256i avec3 = load(A + 1da * (ii + 3) + 1);

for (int64_t j = 0; j < RN; ++j) {

__m128 db = _mm_setl_ps(unhalf(B[1ldb * (jj + j) + 1]1.d));

// Computation of product of delta values for four blocks and r

__m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));

dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);

// Computation of dot product and multiplication with approprisz

Cv[j1[0] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
updot (_mm256_sign_epi8(avecO, avecO),

_mm256_sign_epi8(load(B + 1ldb * (jj + j)

Ccv[jl[ol);

from https:
//github.com/ggml-org/ggml/blob/83835ffaa0f2e68bc8530bd0a7584711789dc23b/src/ggml-cpu/ops.cpp

https://github.com/ggml-org/ggml/blob/83835ffaa0f2e68bc8530bd0a7584711789dc23b/src/ggml-cpu/ops.cpp
https://github.com/ggml-org/ggml/blob/83835ffaa0f2e68bc8530bd0a7584711789dc23b/src/ggml-cpu/ops.cpp

SIMD Execution: GPUs

Graphics Processors (Originally)

Triangles in
screen space

Ay .\ Ll \ El \ E
\ ’ \ / \ 7 /
N/ \ 7 \ 7/ N/

</
‘ Vertex

Fragments Image

3D mesh with colors Output

Fragments

</) </
[| Raster Fragment
| | Operati i

Texture

P
i ! filtering
=

e Built for graphics and 3D games

e Displaying 3D graphics is very compute intensive
e But also highly parallel

e Standardized “graphics”’ pipeline

e Originally dedicated hardware
e Around 2006, replaced with “unified” general-purpose cores

Kaufman et al (2009)

A modern GPU

All vector instructions

e usually 32 element vectors

SMX

. -~ nstuctionCache
(1024 bits) el —
e Multiple cores TS e
e Multiple issue but in-order 5 = 5 =
. oo o I 5 o o I = e o o N s e e
e Highly SMT
e 64-way
° When one thread |S me--uncm:m- v Py :n:a«(am-moecmm- ot
- m.m-mmm- « o i | o
waiting, another ready g
thread starts executing
e Optimized to run thousands

of threads

e Note: each thread runs a

vector instruction
Kepler SMX, from the CUDA documentation.

A Kepler GPU (circa 2012)

PCI Express 3.0 Host Interface

2 2
o [}
| =i
o Q
< <
o 0
g g
H i
5 S
g T

110U0D Kowaw
Isiionuos Kowew

CUDA Programming Model

e Scalar programming model
e but compiler does not autovectorize!
e Hardware executes all code in vector mode

e branches are handled by hardware
e all loads/stores are gather/scatter
e Lanes of vectors are exposed to programmers as [CUDA]
“threads”

e Unlike CPU threads, CUDA threads don’t have an independent
program counter
e But hardware makes them appear like CPU threads

Predication / Branch Divergence

Like vector processors, GPUs also support predication

But also support “warp divergence” mechanism

e A “warp” is CUDA terminology for a vector instruction

In warp divergence, the warp splits into two parts
e One part executes the true branch (while other part is disabled)
e And then, another part executes the false branch
e Both parts “join up” at a pre-determined point

Predication or warp divergence selected by the compiler on a
per-branch basis

Gathers / Scatters

e GPU loads are automatically gathers/scatters
e Best performance if contiguous data accessed
e "Coalesced” access, similar to vector loads

e Worst performance if every lane accesses a different
address(*)

e *actually cache line

Vector Addition

__global__ void vector_addition(int *A, int *B, int *C, int N) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;

if (tid < N)
C[tid] = A[tid] + B[tid];
}

vector_addition<<<(N+255) /256, 256>>>(...);

Data Parallel Programming

e All data is processed by the same code
e i.e. every thread runs the same code
e Code decides which data to operate on based on some sort of
a “ID"
e lane ID
e thread ID

The CUDA Hierarchical Programming Model

e To handle different models of GPUs, CUDA does not use a
“flat” identifier space.
e Threads are divided into equal-sized 3-D Thread Blocks

e All threads of a thread block are guaranteed to be resident on
a core

e Different thread blocks may or may not be running at same
time

e Thread blocks form a 3-D Grid

e Total threads is number of thread blocks multiplied by
dimensions of thread block

e Other GPU programming models (OpenCL, WebGPU) are
similar

e but use different terminology

Considerations for using GPUs

e Built for throughput computing

e Not latency
e Do lots of work quickly
e Can't do little work quickly (remember, in-order!)

e Need lots of work
e 2048 CUDA lanes per core * 80 cores, for example
o Need to transfer data to and fro from CPU

e Overhead may be significant and destroy gains from compute

Programming CPUs using GPU programming models?

e The CUDA programming model programs vector machines
without using vectors

e and without relying on compiler wizardry

e Intel Implicit SPMD Compiler (ISPC) is a similar model, but
for CPUs

e Not just Intel CPUs

e Slang, is a new-ish shader language
e Supports both CPUs and GPUs

https://ispc.github.io/
https://shader-slang.org/

Programming Vector Machines

It’s the FLOPS!

Achieving peak compute performance on any modern computer
requires the use of vector instructions.

Considerations

e Design so code can run on both GPUs and CPUs
e start with a GPU-first design
e Domain-Specific Languages
e avoid using low-level GPU/CPU-specific programming
languages
e use high-level domain-specific languages (e.g., Triton)
e easier and more productive to get performance
e Don't dismiss auto-vectorization for ML
e IREE

https://iree.dev/

	SIMD Execution: Vector Processors
	SIMD Execution: GPUs
	Programming Vector Machines

