
CSC290/420 ML Systems for Efficient AI

Compute: CPUs

Sreepathi Pai

August 27, 2025

URCS



Outline

CPU

Modern Times: Pipelined Execution

Slipping the Surly Bonds of In-order Execution

The Search for Independent Instructions

Alternative Designs



Outline

CPU

Modern Times: Pipelined Execution

Slipping the Surly Bonds of In-order Execution

The Search for Independent Instructions

Alternative Designs



A von Neumann CPU

RAMCPU
010110110101110110100...

ALU MEM ...

� CPU, central processing unit

� Memory, usually RAM, random access memory

� can also be ROM, read only memory

� Programs, stored initially in memory

John Von Neumann, The First Draft Report on the EDVAC, available at

https://history-computer.com/Library/edvac.pdf

https://history-computer.com/Library/edvac.pdf


CPU Operation

� Instructions are stored in memory

� The CPU FETCHes them from memory

� It then DECODEs the instruction

� The CPU then EXECUTEs it in a functional unit

� Results are WRITTEN BACK (i.e. roughly, made visible)

� Each of these steps is co-ordinated by a clock

� and occurs over one or more “cycles”

� Clock, global coordinating mechanism



Instruction Basics

� An instruction is a simple command to a processor

ADD dst, src1, src2

� Here ADD is the operation code, or mnemonic

� Instructs the processor which operation to perform

� dst stores the result of the ADD

� src1, src2 are the source (input) operands to ADD

� On most CPUs, dst, src1, src2 can be:

� registers (most common)

� immediate values (i.e., constants) e.g. ADD dst, src1, 3

� memory addresses



Registers

� Fastest form of memory inside a processor

� Sequential logic, if you’ve taken digital logic design

� Usually named, unlike RAM which has addresses

� e.g., EAX, RBX, R10, etc.

� Few in number

� Most modern CPUs have tens of registers

� Each register can store 32 to 64 bits of data

� On certain CPUs, operands for instructions must reside in
registers

� only memory instructions can access RAM

� Special registers: program counter (PC)

� contains address of instruction being executed



Types of Instructions

� Integer Arithmetic instructions

� IADD, ISUB, IMUL, ...

� Floating-point Arithmetic instructions

� “floating point” is an approximation of real numbers (future

lecture)

� FMUL, FADD, ...

� Comparison instructions

� GT, LT, GTE, ...

� Logical and bitwise instructions

� AND, OR, ...

� Memory instructions

� LD, ST

� Control flow instructions

� JMP, JC (conditional)

� Lots of other categories

� System-specific instructions, etc.

The instructions are examples and do not correspond to an actual CPU.



Instruction Set Architecture

� The programmer’s interface to processor is known as the
“instruction set architecture”

� e.g., x86, x86-64, ARMv7, RISC-V

� Obsolete categorization: CISC vs RISC

� Complex Instruction Set Computer (e.g., x86)

� Reduced Instruction Set Computer (e.g., MIPS)

� The same ISAs can be implemented by different
“micro-architectures”

� Microarchitecture is the internal design of a processor

� e.g., x86 has been implemented by AMD, Intel, and some

other companies



Functional Units

� ALU: Arithmetic and Logic Unit

� MEM: Memory unit

� Other units exist

� “MMA”: matrix multiply accelerator

� Tensor “core”



Serial Execution

add
add

add
add

FETCH
DECODE

EXECUTE
WB

Time

sub



Outline

CPU

Modern Times: Pipelined Execution

Slipping the Surly Bonds of In-order Execution

The Search for Independent Instructions

Alternative Designs



Illustrating Pipelined Execution

add
add

add
add

FETCH
DECODE

EXECUTE
WB

Time

sub
sub

sub
sub



Pipelined Execution

� Pipelined execution splits work into stages

� Here work is “fetch, decode, execute, and write back results
for an instruction”

� But could also be “build a car”, as in assembly line production

� Or steps of an repeatedly applied algorithm



Dependences and Stalls

ADD R3, R1, R2
SUB R4, R3, 1

� Here, the SUB instruction depends on the results of ADD

instruction

� SUB will read R3 in EX while ADD will write R3 in WB

� This is a data hazard, when two instructions attempt to

read/write the same register

� The solution is to stall the execution of SUB until ADD

completes

add
add

add
add

FETCH
DECODE

EXECUTE
WB

Time

sub
sub

sub
sub

X



Handling Different Latencies

DIV R5, R1, R2
DIV R6, R3, R4

� Each division will take multiple cycles

� nature of the division algorithm

� Second DIV cannot start until first DIV finishes

� known as a structural hazard

� Different microarchitectural choices:

� Stall till first DIV finishes

� Provide multiple ALUs

� Pipeline the ALU so it can accept an instruction every cycle



Branches

addr0: CMP R1, R2, R3
JL addr1
SUB R3, R3, 1
JMP addr0

addr1: MUL R4, R2, R3

� After JL has been fetched and decoded, which instruction
should be fetched next?

� SUB or MUL?

� Can’t know that until CMP finishes executing

� Known as a control hazard

� Stall FETCH until CMP finishes and JL executes



Keeping the Pipeline Full

add
add

add
add

FETCH
DECODE

EXECUTE
WB

Time

sub
sub

sub
sub

mul
mul

mul
mul

div
div

div
div

add
add

add

add

fill

drain

steady

� Note classic pipelines have five stages

� Additional MEM stage after EX performs memory operations

� Steady state throughput is 1 instruction per cycle (IPC)

� What can lower this IPC?



Outline

CPU

Modern Times: Pipelined Execution

Slipping the Surly Bonds of In-order Execution

The Search for Independent Instructions

Alternative Designs



Superscalar Execution

� Superscalar execution executes multiple instructions at the

same time

� Increase resources so as to:

� Fetch multiple instructions

� Decode multiple instructions

� Execute multiple instructions

� Write back multiple results

� Needs additional hardware resources

� Moore’s Law bounty



Independent Non-Branch Instructions

� Fetching and Decoding multiple instructions requires
additional hardware

� variable length instructions can complicate multiple fetch

� also can’t fetch across conditional branches

� Executing multiple instructions

� data dependences must be respected

� Writing back multiple results

� creates new forms of dependences!



Anti-dependence

ADD R1, R2, R3
MUL R2, R4, R5

� ADD and MUL are independent instructions

� But, MUL writes to R2 and ADD reads from R2

� not a problem if executed in order, but simultaneously?



Output dependence

ADD R1, R2, R3
SUB R1, R4, R5

� Observe that ADD and SUB are independent instructions

� But, both write to the same output register!



Register Renaming

� For both anti-dependence (write-after-read) and output

dependence

� ISA registers are logical register, that are mapped to physical

registers on-the-fly by the processor



Instruction Windows + Dataflow Execution = Out-of-order Ex-

ecution

add r3, r1, r2
sub r5, r3, 1
add r4, r1, 3
mul r6, r3, r4
shr r7, r5, 2

add

sub mul

add

shr



Instruction Windows + Dataflow Execution = Out-of-order Ex-

ecution

add r3, r1, r2
sub r5, r3, 1
add r4, r1, 3
mul r6, r3, r4
shr r7, r5, 2

add

sub mul

add

shr



Instruction Windows + Dataflow Execution = Out-of-order Ex-

ecution

add r3, r1, r2
sub r5, r3, 1
add r4, r1, 3
mul r6, r3, r4
shr r7, r5, 2

add

sub mul

add

shr



Instruction Windows + Dataflow Execution = Out-of-order Ex-

ecution

add r3, r1, r2
sub r5, r3, 1
add r4, r1, 3
mul r6, r3, r4
shr r7, r5, 2

add

sub mul

add

shr



Speculative Execution

� Instruction windows are limited by conditional branches

� Can’t fetch and execute until a conditional branch is resolved

� But:

� can predict which way a branch will go

� begin executing speculatively

� check speculation when branch ultimately resolves

� if prediction correct, profit!

� otherwise, throw away all speculated instructions

� flush pipeline and refetch from correct location



How far can this go?

� Most modern processors fetch 8 to 16 instructions at a time

� Hundreds of instructions in flight every cycle in steady state

� Why not build ever larger instruction windows?



Outline

CPU

Modern Times: Pipelined Execution

Slipping the Surly Bonds of In-order Execution

The Search for Independent Instructions

Alternative Designs



Simultaneous Multithreading

� Instructions from two running programs are inherently
independent

� Browser and Text editor for example

� Different threads of execution

� Change FETCH to fetch instructions from different threads at

the same time

� Operating system (OS) identifies these threads to processor

� Key idea: Separate front ends for each thread, but common,

shared backend

� Known as Simultaneous Multi-threading (SMT), or by its

trade name Hyperthreading

� Not always beneficial



Chip Multiprocessors (CMPs)

� Now mostly known as multicores

� Replicate processor core across a chip (i.e. multiple processor

cores)

� All processor cores share the same memory

� But can run independent programs on each core

� Alternatively, programmers can rewrite their programs to
expose multiple “threads” of execution

� using OS and language facilities



Intel Alder Lake P-core

Rotem, Efraim, Adi Yoaz, Lihu Rappoport, et al. “Intel Alder Lake CPU Architectures.” IEEE Micro 42, no. 3

(2022): 13–19. https://doi.org/10.1109/MM.2022.3164338

https://doi.org/10.1109/MM.2022.3164338


Upper limits on the performance of programs

� If the processor has a max IPC of IPCmax

� across all cores

� And your program has W instructions to execute

� Then, the least amount of time (in cycles) is W /IPCmax

� Multiply this by the frequency of the processor (in Hz) to get

seconds

� Alternatively, measure the achieved IPC of your program and
compare it to IPCmax

� Subtlety: measure useful IPC



Keeping the Beast Fed

To fully utilize a modern CPU, therefore:

� Have enough independent work (i.e. instructions)

� Must keep pipeline full (with or without SMT)

� avoid stalls

� avoid mis-speculation (wasted work)

� All cores occupied with threads



Outline

CPU

Modern Times: Pipelined Execution

Slipping the Surly Bonds of In-order Execution

The Search for Independent Instructions

Alternative Designs



Flynn’s Taxonomy

Flynn proposed in 1966, a taxonomy of processor architectures

� A simple in-order pipeline is Single Instruction Single Data

� SISD

� A multicore is Multiple Instruction Multiple Data

� MIMD

� Multiple Instruction Single Data

� ?

� Single Instruction Multiple Data

� vector machines

� short vector instructions

� GPUs


	CPU
	Modern Times: Pipelined Execution
	Slipping the Surly Bonds of In-order Execution
	The Search for Independent Instructions
	Alternative Designs

