
CSC2/458 Parallel and Distributed Systems

Mutual Exclusion and Leader Elections

Sreepathi Pai

March 29, 2018

URCS



Outline

Mutual Exclusion Using Voting

Misra’s Token Recovery Algorithm

Election Algorithms



Outline

Mutual Exclusion Using Voting

Misra’s Token Recovery Algorithm

Election Algorithms



From the previous lecture

• Does a process need to wait for all replicas to reply before
checking majority?

• No [it would NOT (thanks, Mohsen!) solve the problem raised

by Andrew, but would lead to lower utilization]

• How many processes need to fail?

• f >= m − N/2, where

• m = N/2 + 1

• Does this mean mutual exclusion can be violated?

• Yes (with very low probability, see Lin et al. 2014)

https://link.springer.com/chapter/10.1007/978-3-540-30183-7_2


Different Types of Failures (Thomas)

• How does fail recovery compare with fail stop?

• Fail stop: Process operates correctly, fails in a detectable way

and remains failed

• Fail recovery: Process fails and “restarts”



Outline

Mutual Exclusion Using Voting

Misra’s Token Recovery Algorithm

Election Algorithms



Recall Token-based Mutual Exclusion

• A token circulates in an (unidirectional) ring

• Process i sends token to Process i + 1 (modulo N)

• A process holding the token can perform actions on shared
resources

• i.e. it is in the critical section

• A tokens can be lost

• released by process i but not received by process j



Loss of token

• Two problems

• Detecting loss

• Regenerating a single token



One possible solution

• Detect loss of token using timeouts

• Perform leader election

• Leader generates new token

• This solution in a few slides



Misra’s algorithm for detecting token loss and regeneration

• Use two tokens X and Y

• X is also the mutual exclusion token (but not Y )

• X and Y detect the loss of each other

• Assume in order receipt



Key Insight

“A token at a process pi can guarantee the other token is lost if

since this token’s last visit to pi , neither this token nor pi have

seen the other token.”

- Misra, 1983, Detecting Termination of Distributed Computations

Using Markers, PODC

• What does it mean for:

• a process to have seen a token?

• for a token to have seen the other token?

https://dl.acm.org/citation.cfm?id=806729
https://dl.acm.org/citation.cfm?id=806729


The Algorithm: Setup

• Associate nX and nY , two integers with X and Y

• Initialize nX and nY to +1 and -1 respectively

• Each token carries its value with it (i.e nX or nY )

• Each process pi contains a mi initialized to zero

• remembers the last token seen and its value



The Algorithm: Working

When tokens encounter each other:

nX = nX + 1
nY = nY - 1

When pi encounters Y (analogous code to encountering X not

shown):

if m_i == nY: /* token X is lost */
/* regenerate token X */
nY -= 1
nX = -nY

else:
m_i = nY

end if



Do we need infinite precision?

• nX can become arbitrarily large

• nY can become arbitrarily small

• Can we avoid this?

• What is the invariant we need to maintain?

• When are counters updated?

• How many such events can happen between two visits to pi?



Other notes

Misra proposed this algorithm for termination detection. We will

revisit it.

But can you see how it may apply?

• All processes are in either IDLE or ACTIVE

• Receiving a message marks process as ACTIVE

• Processes can only quit when all of them are IDLE and there

are no messages in flight



Outline

Mutual Exclusion Using Voting

Misra’s Token Recovery Algorithm

Election Algorithms



Electing Leaders

• Initiating an election

• Anytime

• Detecting a winner and making sure everybody agrees on the
same winner

• Using process IDs to break ties for example



Ring-based Elections: Selective Extension

• (Logical) Unidirectional ring topology

• Two message types, both contain a process ID:

• ELECTION

• ELECTED



Algorithm: Part I

A process can initiate an election anytime. Process pi does this by

sending a ELECTION(pi ) to its neighbour and “marking itself” as

participating in an election.

On receiving message ELECTION(X), a process pj :

if X > p_j:
participating = T
send(ELECTION(X))

elif X < p_j:
participating = T
send(ELECTION(p_j))

elif X == p_j:
send(ELECTED(p_j))



Algorithm: Part II

When receiving ELECTED(Y):

participating = F
coordinator = Y

if Y != p_j:
send(ELECTED(Y))



Textbook has slight modifications

• Sends lists instead of one number

• Skips dead nodes

1 2 3 4

5670

[3]

[3,4]

[3,4,5]

[3,4,5,6]

[3,4,5,6,0]

[3,4,5,6,0,1] [3,4,5,6,0,1,2]

[6]

[6,0]

[6,0,1] [6,0,1,2] [6,0,1,2,3]

[6,0,1,2,3,4]

[6,0,1,2,3,4,5]



The Bully Algorithm

The coordinator with the highest process ID always wins.

• Three types of messages:

• ELECTION (initiation)

• OK (resolution)

• COORDINATOR (verdict)



Bully Algorithm in Action: Initiation

Election

Electio
n

E
le

ctio
n

1

2

4

0

5

6

3

7



Bully Algorithm in Action: Resolution

OK

OK

1

2

4

0

5

6

3

7



Bully Algorithm in Action: Further Elections

E
le

c
ti
o
n

E
le
ct
io
n

Election

1

2

4

0

5

6

3

7



Bully Algorithm in Action: Resolution

OK

1

2

4

0

5

6

3

7



Bully Algorithm in Action: Final Verdict

Coordinator

1

2

4

0

5

6

3

7



Algorithm

Any process pi can initiate an election at any time:

• Send ELECTION message to all processes pk such that k > i

• Wait for OK replies

• If no replies (within a timeout), process pi has won and

announces win using COORDINATOR

On receiving an ELECTION message:

• Send OK to sender

• Sender cannot become a coordinator

• Initiate election if any higher processes known to exist

• if not, process is new coordinator, send COORDINATOR



What happens when 7 comes back online?

Coordinator

1

2

4

0

5

6

3

7



Interesting Extensions

• Wireless networks

• Small, dynamic, no fixed topology

• P2P networks

• Large, dynamic, may need multiple coordinators

• See textbook for details

• Will revisit some of these topics on a P2P lecture



Acknowledgements

All figures from van Steen and Tanenbaum, 3rd Edition.


	Mutual Exclusion Using Voting
	Misra's Token Recovery Algorithm
	Election Algorithms

