
CSC2/458 Parallel and Distributed Systems

Automated Parallelization in Software

Sreepathi Pai

January 30, 2018

URCS



Outline

Out-of-order Superscalars and their Limitations

Static Instruction Scheduling



Outline

Out-of-order Superscalars and their Limitations

Static Instruction Scheduling



How will a processor parallelize this?

for(i = 0; i < A; i++) {
sum1 = sum1 + i;

}

for(j = 0; j < A; j++) {
sum2 = sum2 + j;

}



Dynamic Instruction Stream

i = 0
i < A (true)
sum1 = sum1 + 0
i++
i < A (true)
sum1 = sum1 + 1
i++
...
i < A (false)

j = 0
j < A (true)
sum2 = sum2 + 0
j++
j < A (true)
sum2 = sum2 + 1
j++
j < A (true)
...



An Intel Processor Pipeline

Source: Intel

https://software.intel.com/en-us/vtune-amplifier-help-tuning-applications-using-a-top-down-microarchitecture-analysis-method


Instruction Pipeline

• Instructions flow into “issue window”

• from dynamic instruction stream

• Dependences are calculated and resources allocated

• Independent instructions are dispatched to backend

out-of-order

• Instructions are retired in-order using a “reorder buffer”



Outline

Out-of-order Superscalars and their Limitations

Static Instruction Scheduling



VLIW Processors

• Very Long Instruction Word Processors

• Can execute multiple instructions at the same time

• So superscalar

• But leaves independence checking to the compiler

• Compiler packs instructions into ”long words”

• Example:

Slot 1 Slot 2

VLIW1: ins1 ins2

VLIW2: ins3 [empty]



VLIW example

Consider static code below:

for(i = 0; i < A; i++) {
sum1 = sum1 + i;

}

for(j = 0; j < A; j++) {
sum2 = sum2 + j;

}

For a 2-wide VLIW, one packing could be:

Slot 1 Slot 2

i = 0 j = 0

i < A j < A

sum1 = sum1 + i sum2 = sum2 + j

i++ j++



Program Semantics

• When processors commit in-order, they preserve appearance of
executing in program order

• Not always true when multiple processors are involved

• But when compilers emit code, they change order from what

is in program

• Which orders in the original program must be preserved?

• Which orders do not need to be preserved?



Our Ordering Principles

• Preserve Data Dependences

• Preserve Control Dependences

What about:

printf("hello");
printf("world");



Basic Block Scheduling

• Basic block is a single-entry, single-exit code block

• Instructions in basic block have the same control dependence

• All can execute together if they have no dependence

• Is there an advantage in reordering instructions within a basic

block?



Instruction Scheduling

Consider:

A = 1 // takes 1 cycle
B = A + 1 // takes 1 cycle
C = A * 3 // takes 2 cycles and 2 ALUs
D = A + 5 // takes 1 cycle

Assume you have 2 ALUs. How should you schedule these

instructions to lower total time?



Increasing the size of Basic Blocks

• Basic blocks are usually small

• Not many opportunities to schedule instructions

• How can we increase size of basic blocks?

• Remember out-of-order processors do speculation ...


	Out-of-order Superscalars and their Limitations
	Static Instruction Scheduling

