CSC2/458 Parallel and Distributed Systems
Automated Parallelization in Software

Sreepathi Pai
January 30, 2018

URCS

Out-of-order Superscalars and their Limitations

Static Instruction Scheduling

Out-of-order Superscalars and their Limitations

How will a processor parallelize this?

for(i = 0; i < A; i++) {
suml = suml + i;

Dynamic Instruction Stream

i=0

i < A (true)
suml = suml + O
i++

i < A (true)
suml = suml + 1
i++

A -

i < A (false)
j=20

j < A (true)
sum2 = sum2 + O
j++

j < A (true)
sum2 = sum2 + 1
j++

j < A (true)

An Intel Processor Pipeline

Front-End

@ | 32K L1 Instruction Cache B[Pre-decode »[Instr Queue
Decoders
|

Branch Predictor |

[1.5KuOP Cache |
Load Store Reorder
Buffers Buffers [| Buffers Allocat name/Retire

In-order

Source: Intel

out-of-order
Scheduler]
[Port0 | [Port1 | [Port5 | [Port2 | [Port3 | [Port4 |
ALU | ALU | ALU [oad Toad
V-Mul V-Add | JMP StAddr StAddr
V-Shuffld V-Shuffld 256- FP Shuf
Fdiv 256- FP Add | | 256- FP Bool
256- FP MUL 256- FP Blend J
256- FP Blend I] Memory Control
‘ 48 bytes/eycle
Line il
256K L2 Cache (Unified) Buffers

32K L1 Data Cache

Back-End

https://software.intel.com/en-us/vtune-amplifier-help-tuning-applications-using-a-top-down-microarchitecture-analysis-method

Instruction Pipeline

Instructions flow into “issue window"

e from dynamic instruction stream

Dependences are calculated and resources allocated

Independent instructions are dispatched to backend
out-of-order

Instructions are retired in-order using a “reorder buffer”

Static Instruction Scheduling

VLIW Processors

e Very Long Instruction Word Processors
e Can execute multiple instructions at the same time
e So superscalar
e But leaves independence checking to the compiler
e Compiler packs instructions into "long words”
e Example:
Slot 1 | Slot 2

VLIWL: | insl ins2
VLIW2: | ins3 | [empty]

VLIW example

Consider static code below:

for(i = 0; i < A; i++) {
suml = suml + i;

}

for(j = 0; j < A; j++) {
sum2 = sum2 + j;

}

For a 2-wide VLIW, one packing could be:

Slot 1 Slot 2
i=0 j=0
i <A j <A

suml = suml + i | sum2 = sum2 + j

i++ j++

Program Semantics

When processors commit in-order, they preserve appearance of
executing in program order

e Not always true when multiple processors are involved

But when compilers emit code, they change order from what
is in program

Which orders in the original program must be preserved?

Which orders do not need to be preserved?

Our Ordering Principles

e Preserve Data Dependences

e Preserve Control Dependences

What about:

printf("hello");
printf ("world") ;

Basic Block Scheduling

e Basic block is a single-entry, single-exit code block
e Instructions in basic block have the same control dependence
e All can execute together if they have no dependence

e Is there an advantage in reordering instructions within a basic
block?

Instruction Scheduling

Consider:
A=1 // takes 1 cycle
B=A+1 // takes 1 cycle
C=A%3 // takes 2 cycles and 2 ALUs
D=A+5 // takes 1 cycle

Assume you have 2 ALUs. How should you schedule these
instructions to lower total time?

Increasing the size of Basic Blocks

e Basic blocks are usually small
e Not many opportunities to schedule instructions
e How can we increase size of basic blocks?

e Remember out-of-order processors do speculation ...

	Out-of-order Superscalars and their Limitations
	Static Instruction Scheduling

