
CSC2/458 Parallel and Distributed Systems

Automatic Parallelization in Hardware

Sreepathi Pai

January 25, 2018

URCS

Outline

Pipelining

Superscalar and Out-of-order Execution

Speculation

Outline

Pipelining

Superscalar and Out-of-order Execution

Speculation

Primes

for(int i = 2; i * i <= num; i++) {
if(num % i == 0) {

is_prime = 0;
divisor = i;
break;

}
}

Primes – Assembly

movl $2, -8(%rbp)
jmp .L3

.L6:
movl -4(%rbp), %eax
cltd
idivl -8(%rbp)
movl %edx, %eax
testl %eax, %eax
jne .L4
movl $0, -16(%rbp)
movl -8(%rbp), %eax
movl %eax, -12(%rbp)
jmp .L5

.L4:
addl $1, -8(%rbp)

.L3:
movl -8(%rbp), %eax
imull -8(%rbp), %eax
cmpl -4(%rbp), %eax
jle .L6

.L5:
cmpl $0, -16(%rbp)
je .L7

gcc -S

Primes – Machine code

4006b0: c7 45 f8 02 00 00 00 movl $0x2,-0x8(%rbp)
4006b7: eb 20 jmp 4006d9
4006b9: 8b 45 fc mov -0x4(%rbp),%eax
4006bc: 99 cltd
4006bd: f7 7d f8 idivl -0x8(%rbp)
4006c0: 89 d0 mov %edx,%eax
4006c2: 85 c0 test %eax,%eax
4006c4: 75 0f jne 4006d5
4006c6: c7 45 f0 00 00 00 00 movl $0x0,-0x10(%rbp)
4006cd: 8b 45 f8 mov -0x8(%rbp),%eax
4006d0: 89 45 f4 mov %eax,-0xc(%rbp)
4006d3: eb 10 jmp 4006e5
4006d5: 83 45 f8 01 addl $0x1,-0x8(%rbp)
4006d9: 8b 45 f8 mov -0x8(%rbp),%eax
4006dc: 0f af 45 f8 imul -0x8(%rbp),%eax
4006e0: 3b 45 fc cmp -0x4(%rbp),%eax
4006e3: 7e d4 jle 4006b9
4006e5: 83 7d f0 00 cmpl $0x0,-0x10(%rbp)
4006e9: 74 16 je 400701

objdump -d

Primes – What the machine sees

4006b0:

c7 45 f8 02 00 00 00 eb 20 8b 45 fc
99 f7 7d f8 89 d0 85 c0 75 0f c7 45
f0 00 00 00 00 8b 45 f8 89 45 f4 eb
10 83 45 f8 01 8b 45 f8 0f af 45 f8
3b 45 fc 7e d4 83 7d f0 00 74 16

Executing an instruction

• Fetch instruction at Program Counter

• Decode fetched instruction

• Execute decoded instruction

• Dispatch to functional units

• Functional units include ALU, Floating Point, etc.

• Memory access for data loads/stores

• Writeback results of execution to registers

Assuming each task above takes 1 cycle, how many cycles will a

non-memory instruction take?

Instruction Execution Pipeline

See “animation” on board.

Pipelining Performance

• What is latency of executing a single instruction?

• What is the latency of executing all instructions?

• What is the throughput of instruction execution once first

instruction has finished executing?

Data “Hazards”

1: movl -4(%rbp), %eax
2: cltd
3: idivl -8(%rbp)
4: movl %edx, %eax

• Instructions 1 and 3 are ”variable” latency

• May take more than once cycle to execute

• Instruction 2 takes one cycle and writes results to EAX, EDX

• How to pipeline instructions 2 and 4?

Solving Data “Hazards”

• Bubble

• Don’t issue the instruction

• Bypassing

• Forward results to previous stages in pipeline

Design Issues

• When is pipelining useful?

• What characteristics should the pipeline stages have?

• How would you implement pipelines in software?

Outline

Pipelining

Superscalar and Out-of-order Execution

Speculation

Superscalar Execution

• Superscalar: ability to fetch, decode, execute and writeback

more than one instruction at the same time

• Conceptually simple

• More pipelines

• More ALUs

• Central question: Which instructions should be executed
together?

• Which instructions allow parallel execution?

Dependences

A dependence exists between two instructions if they both access

the same register or memory location, and if one of the accesses is

a write.

Types of Dependences

• True dependence (or Read after Write)

R1 = R2 + R3
R4 = R1 + 1

• Anti-dependence (or Write after Read)

R1 = R2 + R3
R3 = R4 * R5

• Output-dependence (or Write after Write)

R1 = R2 + R3
R1 = R4 * R5

Here Rx indicates a register.

Algorithm to find and execute multiple instructions

• Fetch multiple instructions

• Decode multiple instructions

• Find instructions that are not dependent on earlier
instructions

• Earlier in program order

• Execute them

• Write back results

Finding Independent Instructions

Instruction Reads Writes

movl $2, -8(%rbp) %rbp MEM

jmp .L3 - %eip

.L6: movl -4(%rbp), %eax %rbp, MEM %eax

cltd %eax %eax, %edx

idivl -8(%rbp) %rbp, MEM, %eax, %edx %eax, %edx

movl %edx, %eax %edx %eax

testl %eax, %eax %eax %eflags

jne .L4 - %eip?

movl $0, -16(%rbp) %rbp MEM

Issues with superscalar execution

• Are there independent instructions?

• Data dependence

• How to handle branches?

• I.e. how to fetch “beyond” a branch?

• Control dependence

• How to handle machine limitations?

• E.g. 8 independent ADD instructions, but only 4 ALUs

• “Structural Hazard”

Software Implementations

How to implement out-of-order execution of tasks in software?

Dependence Graphs

• Node represents a task

• Edge represents dependence

• Here, task B and C

depend on task A

• Algorithm to execute

• STEP 1: Find

independent tasks (tasks

with no incoming edges)

• STEP 2: Execute these

independent tasks

• STEP 3: Remove edges

from executed tasks, and

repeat from STEP 1 until

no tasks remain

Task A

Task B Task C

Task D

Task E

Task F

Outline

Pipelining

Superscalar and Out-of-order Execution

Speculation

Basic Blocks

• Unit of code

• Single entry and single exit

.L6:
movl -4(%rbp), %eax
cltd
idivl -8(%rbp)
movl %edx, %eax
testl %eax, %eax
jne .L4

Parallelizing Basic Blocks

• All instructions in basic block can be executed in parallel

• if independent

• Only data dependences between instructions in the same basic

block

• How big are most basic blocks?

• Alternatively, how often do branch instructions occur?

Predicting Branches

• Different types of branch instructions

• Unconditional

• Conditional

• Returns

• Can we predict PC of instruction after branch?

• Can immediately start executing instructions without waiting

for branch

What happens if we’re wrong?

• All instructions dependent on predicted branch are speculative

• When branch is resolved:

• if predication was correct: commit/writeback speculative

instructions

• if incorrect: throw away all speculative instructions

Speculation in software?

How do we do speculation in software?

How will a processor parallelize this?

for(i = 0; i < A; i++) {
sum1 = sum1 + i;

}

for(i = 0; i < B; i++) {
sum2 = sum2 + i;

}

For more on processor parallelization, take Advanced Computer Architecture.

	Pipelining
	Superscalar and Out-of-order Execution
	Speculation

