
CSC2/455 Software Analysis and

Improvement

Type Inference

Sreepathi Pai

Mar 19, 2025

URCS



Outline

Types

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Postscript



Outline

Types

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Postscript



Typing in Languages Made Simple

� Compiler knows the type of every expression

� Static typing

� Values “carry” their type at runtime

� Dynamic typing

� Programs with type errors do not compile (or throw
exceptions at runtime)

� Strongly typed

� Programs with type errors carry on merrily

� PHP (older versions only?)



Type Systems

� Poor (Limited expressivity)

� assembly, C

� Rich

� C++

� Ada

� Richest (High expressivity)

� ML/OCaml

� Haskell



Why have rich type systems?

� General purpose programming languages impose a set of
constraints

� int may not be stored into a char

� Applications and APIs impose a set of logical constraints

� Mass of an object can never be negative

� free(ptr) must not be called twice on the same ptr value

� Application programmers must check these constraints
manually

� Although encapsulation in OOP helps

� Can we get the compiler to check application-level constraints
for us?

� without knowing anything about the application?

� i.e. a general-purpose facility to impose logical

application-defined constraints



Rust

� Rust is a systems programming language from Mozilla

� Replacement for C/C++

� No garbage collector

� ”Bare-metal” programming ability

� Unlike C, Rust provides memory safety

� No NULL pointer deference errors

� No use-after-free

� No double-free

� etc.

� Rust uses its type system to impose these constraints

� Rust checks types statically, so programs with these errors fail

to compile.

� Rust’s mechanism is not purely type-based, it also uses

additional analyses



Compilers and Type Systems

Compilers perform the following type-related tasks:

� Type checking

� Does the program obey the typing rules of the language?

� Type inference

� What is the type of each expression, variable, function, etc.?



Outline

Types

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Postscript



Formalizing Programming Languages

� Syntax of a programming language

� Usually specified as Backus-Naur Form (BNF)

� Consists of statements, expressions, etc.

� Semantics of a programming language

� Multiple methods: denotational, operational, axiomatic

� We’ll see more of semantics in later parts of this course

� Type system

� Assigns types to (syntactic) terms

� Consists of type rules

� Types must ultimately make semantic sense (e.g. an int

always contains an integer)



Building Block: Type Environments

� Static Typing Environment (or Context)

� Map of variables to types

� Denoted by Γ

� An empty environment is represented as φ

� Usually if a term M has type α in Γ, we will write it as:

� Γ ` M : α (read as Γ entails that M has type α)

� e.g. x : int, y : int ` (x + y) : int

� likewise, x : float, y : float ` (x + y) : float

� Γ ` M : α is called a judgement



Building Block: Type Rules

Γ ` x : Int Γ ` y : Int
(Plus)

Γ ` (x + y) : Int

� The part above the line are the premises

� The part below the line is the conclusion

� If the premises are true, then the conclusion is also true

� Identical to inference rules in logic



Using Type Rules

� Type rules are “formal proof systems”

� Like formal logic

� Goal is to “derive” a type using only the type rules

� The derivation is the proof of a type



Example of type derivation: I

� Let n ∈ Z

Γ ` �
(Num)

Γ ` n : Int

� The � indicates that Γ is well-formed

� It is an axiom that φ ` �, we’ll call this rule Empty

� Axioms have no premises

� Then we can add a rule for +

Γ ` x : Int Γ ` y : Int
(Plus)

Γ ` (x + y) : Int



Example of type derivation: II

� Derivation for 1 + 2 is a Int

� First show that Γ ` 1 : Int

Empty
φ ` �

Num
φ ` 1 : Int

� Similarly, show that Γ ` 2 : Int

Empty
φ ` �

Num
φ ` 2 : Int



Completing the derivation ...

� Since we have φ ` 1 : Int and φ ` 2 : Int, we can now apply

Plus to complete our derivation:

φ ` 1 : Int φ ` 2 : Int
Plus

φ ` 1 + 2 : Int



Outline

Types

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Postscript



Syntax

α, β ::= types

κ κ ∈ Basic basic types

α→ β function types

M,N ::= terms

x variable

λx : α.M function

M N application



Judgements

� Γ ` �
� Γ is a well-formed environment

� Γ ` α
� α is a well-formed type in Γ

� Γ ` M : α

� M is a well-formed term of type α in Γ



Rules - I

� (Axiom) Empty environment is well-formed

(Env φ)
φ ` �

� Extend the environment by assigning a type α to a variable x

Γ ` α x 6∈ dom(Γ)
(Env x)

Γ, x : α ` �



Rules - II

� Derivation rule for basic types (i.e. type constants)

Γ ` � κ ∈ Basic
(Type Const)

Γ ` κ

� Derivation rule for function types

Γ ` α Γ ` β
(Type Arrow)

Γ ` α→ β



Rules - III

� Variable type (read as if x : α occurs somewhere in Γ)

Γ′, x : α, Γ′′ ` �
(Val x)

Γ′, x : α, Γ′′ ` x : α

� Function type

Γ, x : α ` M : β
(Val Fun)

Γ ` λx : α.M : α→ β

� Function Application Type

Γ ` M : α→ β Γ ` N : α
(Val App)

Γ ` M N : β



Parametric Types/Polymorphism

� Some languages support “generic” functions

� types are parametrized

� notably from the ML family

α, β ::= types

κ κ ∈ Basic basic types

χ type variable

α→ β function type

∀χ.α universally quantified type

� A type that fits the syntax above would be ∀χ.χ→ Int

� Indicates the type of a function that accepts any type and

returns Int



More than basic types

� Product types

� α× β
� Union (or sum) types

� α + β

� Records, Variants, References, etc.



Outline

Types

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Postscript



Inferring types

� Most languages assign types to values

� Some require programmers to specify the type for variables

� C, C++ (until recently)

� Some infer types of each variable automatically

� even for polymorphic types

� famous example: (Standard) ML



Steps for type inference

� Treat unknown types as type variables

� We will use Greek alphabets for type variables

� Note: distinct from program variables

� Write a set of equations involving type variables

� These equations are obtained from the typing rules

� Solve the set of equations



Example #1

a = 0.5
b = a + 1.0

� typevar(0.5) = κ1

� typevar(a) = α

� typevar(b) = β

� typevar(1.0) = κ2

� typevar(a + 1.0) = η



Example #1: Equations

typevar(0.5) = κ1 = Float

typevar(a) = α = κ1

typevar(b) = β = η

typevar(1.0) = κ2 = Float

typevar(a + 1.0) = η = +(α, κ2)

+(γ, γ) → γ

α = κ2



Example #2

Consider the ML example:

fun length(x) =
if null(x) then 0 else length(tl(x)) + 1;

� Clearly, length is a function of type α′ → β, where

typeof(x) = α′

� Is α′ a fixed type? Consider the two uses:

� length(["a", "b", "c"])

� length([1, 2, 3])



Example #2: Polymorphic Functions

� The type α′ can be written as list(α)

� So, length is a function of type ∀α list(α)→ β



Example #2: Equations and solving them

EXPR: TYPE UNIFY

length: β → γ

x : β

if: bool× αi × αi → αi

null : list(αn)→ bool

null(x) : bool list(αn) = β

0 : int αi = int

+ : int× int→ int

tl : list(αt)→ list(αt)

tl(x) : list(αt) list(αt) = list(αn)

length(tl(x)) : γ γ = int

1 : int

length(tl(x)) + 1 : int

if(...) : int

Note αn remains in the final type, so we add a ∀αn, making this a

polymorphic type. So length is ∀αlist(α)→ int



Unify?

Unification is a procedure to symbolically manipulate equations to

make them “equal”.

� No variables in equations, only constants

� 5 = 5, is unified

� 4 = 5, can’t be unified

� Variables in equations

� Find a substitution S that maps each type variable x in the

equations to a type expression, S [x → e]

� Let S(t) be the equation resulting from replacing all variables

y in t with S [y ]

� Then, S is a unifier for two equations t1 and t2, if

S(t1) = S(t2)



Outline

Types

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Postscript



Unification Example

Compute a unifier to unify the equations below:

((α1 → α2)× list(α3)) → list(α2)

((α3 → α4)× list(α3)) → α5



Unifier

x S(x)

α1 α1

α2 α2

α3 α1

α4 α2

α5 list(α2)

Applying S(x) to both the equations leads to the unified equation:

((α1 → α2)× list(α1))→ list(α2)



Type Graphs

→

× list

→ list

α2α1 α3

→

× α5

→ list

α3 α4

For the unification algorithm, we’ll first build type graphs for the

type equations we’ve seen:

� Internal nodes are constructors (→,×, list)
� Leaf nodes are type variables (α1, α2, α3, ...)

� Edges connect constructors to their arguments



Actual Type Graph

→

× list

→ list

α2α1 α3 α4

→

× α5

→ list

This is the actual type graph that is formed for both the type

equations. The shared edges between the graphs represent shared

type variables.



High-level Unification Algorithm

� Goal is to generate equivalence classes

� Two nodes are in the same equivalence class if they can be

unified

� Equivalence classes are identified by a representative node

� A node is trivially unifiable with itself

� Non-variable nodes must be of same type to be unifiable

� Basic algorithm is an asymmetric variant of the union–find

data-structure



Setup

→:1

×:2 list:8

→:3 list:6

α2:5α1:4 α3:7 α4:12

→:9

×:10 α5:14

→:11 list:13

� Each node is initially in its own equivalence class, indicated by

a number

� Ultimately, nodes that are equivalent will have the same

number



Unification Algorithm

def unify(node m, node n):
s = find(m)
t = find(n)

if (s == t): return True

if (s and t are the same basic type): return True

if (s(s1, s2) and t(t1, t2) are binary op-nodes with
the same operator):

union_asym(s, t) # speculative
return unify(s1, t1) and unify(s2, t2)

if (s or t is a variable):
union_asym(s, t)
return True

return False

Figure 6.32 in the Dragon Book.



Unification

→:1

×:2 list:8

→:3 list:6

α2:5α1:4 α3:7 α4:12

→:9

×:10 α5:14

→:11 list:13

→:1

×:2 list:8

→:3 list:6

α2:5α1:4 α3:4 α4:5

→:1

×:2 α5:8

→:3 list:6



Outline

Types

Type Rules

A Simple Type System for the Typed Lambda Calculus

Type Inference

Unification

Postscript



References

� A self-contained introduction to type systems

� Luca Cardelli, Type Systems, Handbook of Computer Science

and Engineering, 2nd Ed

� An updated version (available only through the library)

� Stephanie Weirich, Type Systems, Handbook of Computer

Science and Engineering, 3rd Ed

� Algorithm is from Chapter 6 of the Dragon Book

� Section 6.5

� Martelli and Montanari, 1982, An Efficient Unification

Algorithm

� Good introductory tutorials with Python code:

� Unification

� Type Inference

http://lucacardelli.name/Papers/TypeSystems.pdf
https://www-taylorfrancis-com.ezp.lib.rochester.edu/books/computing-handbook-jorge-diaz-herrera-teofilo-gonzalez-allen-tucker/e/10.1201/b16812
https://eli.thegreenplace.net/2018/unification/
https://eli.thegreenplace.net/2018/type-inference/

	Types
	Type Rules
	A Simple Type System for the Typed Lambda Calculus
	Type Inference
	Unification
	Postscript

