
CSC2/455 Software Analysis and

Improvement

Proving Programs Correct

Sreepathi Pai

April 22, 2020 [released April 23]

URCS

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

What is a correct program?

• A program that meets its specification is a correct program

• What is the correct specification for a program?

• The scope of this question is beyond this course

• Not entirely technical

• Our goal is only to study methods that check if a program
meets its provided specification

• Technical only

Our simple program

void fn(int k) {
int x = k;
int c = 0;

while(x > 0) {
c = c + 1;
x = x - 1;

}

assert(x == 0);
assert(c == k);

}

Will those assertions always be true? [i.e. are they always valid?]

CBMC: Try #1

$ cbmc --function fn --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
Parsing simple1.c
Converting
Type-checking simple1
Generating GOTO Program
Adding CPROVER library (x86_64)
Removal of function pointers and virtual functions
Generic Property Instrumentation
Running with 8 object bits, 56 offset bits (default)
Starting Bounded Model Checking
Unwinding loop fn.0 iteration 1 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 2 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 3 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 4 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 5 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 6 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 7 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 8 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 9 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 10 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 11 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 12 file simple1.c line 14 function fn thread 0
...

Whoops, infinite loop!

CBMC: Try #2

$ cbmc --function fn --unwind 10 --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
...

Starting Bounded Model Checking
Unwinding loop fn.0 iteration 1 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 2 file simple1.c line 14 function fn thread 0
...

Unwinding loop fn.0 iteration 8 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 9 file simple1.c line 14 function fn thread 0
Not unwinding loop fn.0 iteration 10 file simple1.c line 14 function fn thread 0

...

** Results:
[fn.assertion.1] assertion x == 0: FAILURE
[fn.assertion.2] assertion c == k: FAILURE

...

k: -2147483648 (10000000 00000000 00000000 00000000)
x=-2147483648 (10000000 00000000 00000000 00000000)
c=0 (00000000 00000000 00000000 00000000)

Violated property: assertion x == 0
x == 0

Violated property: assertion c == k
c == k

• if k is negative (note: output is reformatted to fit)

• x will not be zero

• c will not be equal k

Specifying k must always be greater than zero

• We check our specifications, and notice that fn should only

work on non-negative k

void fn(int k) {
__CPROVER_assume(k >= 0);
...

CBMC: Try #3

$ cbmc --unwinding-assertions --function fn --unwind 10 --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
...

Unwinding loop fn.0 iteration 9 file simple1.c line 14 function fn thread 0
Not unwinding loop fn.0 iteration 10 file simple1.c line 14 function fn thread 0
...

** Results:
[fn.assertion.1] assertion x == 0: SUCCESS
[fn.assertion.2] assertion c == k: SUCCESS
[fn.unwind.0] unwinding assertion loop 0: FAILURE

Trace for fn.unwind.0:

INPUT k: 12 (00000000 00000000 00000000 00001100)
c=10 (00000000 00000000 00000000 00001010)
x=2 (00000000 00000000 00000000 00000010)

Violated property:
unwinding assertion loop 0

• CBMC can’t show loop terminates for a (fixed) finite number
of unwindings

• Here unwind=10 and CBMC says more unwindings would be

needed for k = 12

• Conclusions may be unsound

Try out all possible unwindings

• For C, k is still an integer.

• Finite number of values

• Could try out all possible unwindings by fixing an upper bound

• Might be feasible for simple

• But add more loops, and time/space increases significantly

• Strategy not even feasible for languages like Python

• Python has infinite precision integers

• Can we try something else?

KLEE

void fn(int k) {
int x = k;
int c = 0;

while(x > 0) {
c = c + 1;
x = x - 1;

}

assert(x == 0);
assert(c == k);

}

int main(void) {
int k;

klee_make_symbolic(&k, sizeof(k), "k");
klee_assume(k >= 0);
fn(k);

}

KLEE, contd.

clang -I ~/ext/klee-2.1/include/ -emit-llvm -c -g -O0 -Xclang -disable-O0-optnone simple1.c
~/ext/klee-2.1/build/bin/klee simple1.bc
KLEE: output directory is "src/klee-out-0"
KLEE: Using Z3 solver backend
^CKLEE: ctrl-c detected, requesting interpreter to halt.
KLEE: halting execution, dumping remaining states

KLEE: done: total instructions = 5174
KLEE: done: completed paths = 273
KLEE: done: generated tests = 273

• Symbolic execution using KLEE doesn’t seem to work either

• I interrupted after a minute or so.

• Without klee assume, KLEE also detects the assertion failure

of x == 0

What about abstract interpretation?

x := k;
c := 0;
while(x > 0) {

x := (x - 1);
c := (c + 1)

}

• Input:

• M] = {k 7→ [0,+∞), x 7→ >, c 7→ >}
• Output:

• {’k’: (0, +inf), ’x’: (0, 0), ’c’: (0, +inf)}
• M] = {k 7→ [0,+∞), x 7→ [0, 0], c 7→ [0,+∞)}

Does M] allow us to prove our assertions?

M] = {k 7→ [0,+∞), x 7→ [0, 0], c 7→ [0,+∞)}

• Logically P : (k ≥ 0) ∧ (x = 0) ∧ (c ≥ 0)

• We want to prove a0 : x = 0

• We want to prove a1 : c = k

• For a0

• If P is valid, then so is a subset of P, in particular P0 : (x = 0)

• (This is because a ∧ b ∧ c =⇒ a is valid)

• P0 =⇒ a0 is valid (also written as P0 |= a0)

• This won’t work for a1

• P1 : (k ≥ 0) ∧ (c ≥ 0) [any subset can be chosen]

• P1 6|= (c = k)

• Not strong enough. Counterexample: k = 6, c = 5

• Recall intervals domain is not relational, so can’t relate c to k

simple.c, logically deriving P0

void fn(int k) {
int x = k;
int c = 0;

while(x > 0) {
c = c + 1;
x = x - 1;

}

assert(x == 0);
assert(c == k);

}

• Clearly, P0 captures the state of the program at the end of the

loop well enough to allow us to prove x = 0

• Can we derive P0 (logically)?

• First glance, only from loop condition, all we can say is that

x ≤ 0 if loop executes and exits.

• Not strong enough to prove x = 0

Loops ...

• Loops may execute zero, a finite number, or an infinite
number of iterations

• Bounded Model Checkers: Can’t handle loops soundly without

a fixed upper bound

• Symbolic checkers: same

• Abstract interpretation: Approximation may prevent us from

verifying some properties

• But if we can find a P that captures the state of the program
at the end of a loop

• executing zero, finite or infinite number of iterations

• P may be strong enough to prove properties we’re interested in

• without having to model the loop iteration by iteration

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

Loop Invariants

• A loop invariant is a condition over the program state that
holds:

• Before the loop

• At the beginning of each iteration

• At the end of each iteration

A loop invariant in simple.c

assert(x >= 0);

while(x > 0) {
assert(x >= 0);

c = c + 1;
x = x - 1;

assert(x >= 0);
}

• x ≥ 0 holds before the loop (since x = k, and k ≥ 0)

• x ≥ 0 holds at beginning of iteration, since x > 0 (from loop

condition)

• x ≥ 0 holds at end of iteration

• x is reduced by 1 each iteration

• x > 0 =⇒ x ≥ 1 =⇒ x − 1 ≥ 0

Using the loop invariant to prove x == 0

• At end of loop

• x ≤ 0 (from loop condition, if loop exits, then ¬(x > 0) holds)

• x ≥ 0 (from loop invariant)

• x ≤ 0 ∧ x ≥ 0 =⇒ x = 0

• What about c == k?

Trying out some candidate loop invariants for c == k

• Will c ≤ k work?

assert(c <= k);

while(x > 0) {
assert(c <= k);

c = c + 1;
x = x - 1;

assert(c <= k);
}

• Definitely holds before loop (k ≥ 0, and c = 0)

• But harder to show that c won’t exceed k during loop

• We know it is true, but hard to prove!

• We only know x > 0 at the beginning of each iteration

• Hard to show that c + 1 <= k from that premise (even

assuming c <= k)

• In fact c <= k allows c = k which would mean c + 1 > k!

Change the loop condition?

assert(c <= k);
while(c < k) {

assert(c <= k);

c = c + 1;
x = x - 1;

assert(c <= k);
}

• Definitely holds before loop (k ≥ 0, and c = 0)

• Holds on entry to loop as well c < k =⇒ c <= k

• Holds after each iteration as well:

• c + 1 ≤ k + 1, (from invariant)

• c < k (from loop condition)

• c + 1 ≤ k

Using the loop invariant to prove c == k

• At end of loop

• c ≥ k (from loop condition, if loop exits, then ¬(c < k) holds)

• c ≤ k (from loop invariant)

• c ≤ k ∧ c ≥ k =⇒ c = k

• What about x == 0?

• Back to square one?

• How about combining the loop conditions and the invariants?

Combining the loop invariants and loop conditions

assert(x >= 0 && c <= k);
while(x > 0 && c < k) {
assert(x >= 0 && c <= k);

c = c + 1;
x = x - 1;

assert(x >= 0 && c <= k);
}

• This doesn’t seem to work

• Not strong enough to imply either assertion after combination

with loop exit condition!

• If you work it out, you may be tempted to change the loop

condition...

Let’s look at some concrete program executions

• k = 5

entry : k: 5, x: 5, c: 0
end: k: 5, x: 4, c: 1

entry: k: 5, x: 4, c: 1
end: k: 5, x: 3, c: 2

entry: k: 5, x: 3, c: 2
end: k: 5, x: 2, c: 3

entry: k: 5, x: 2, c: 3
end: k: 5, x: 1, c: 4

entry: k: 5, x: 1, c: 4
end: k: 5, x: 0, c: 5

exit: k: 5, x: 0, c: 5

• Do you see a relation between x, c, and k?

• Do you see a pattern that is unchanging (i.e. invariant)?

Invariant candidate #4: x + c == k

assert(x + c == k);
while(x > 0) { /* note original loop condition */
assert(x + c == k);

c = c + 1;
x = x - 1;

assert(x + c == k);
}

• Clearly holds before entering loop and on first iteration

• x = k ∧ c = 0 =⇒ x + c = k

• Assume holds at some iteration

• x + c = k

• Then, it still holds at end of iteration (and next iteration)

• x − 1 + c + 1 = k

• (Inductive argument)

Proving a0 and a1

• P : ¬(x > 0) ∧ (x + c = k)

• For a0: (x ≤ 0) ∧ (x + c = k) =⇒ x = 0

• For a1: (x ≤ 0) ∧ (x + c = k) =⇒ c = k

• Can’t prove these using P as derived, since P admits x < 0.

• We want x = 0 for the proof to go through

• Without x = 0, setting x = −1 is a counterexample for both

P =⇒ a0 and P =⇒ a1

• But we can derive that x ≥ 0

• We are given that k ≥ 0

• {k ≥ 0} x := k {x ≥ 0} (assignment axiom)

• We can therefore strengthen P by adding x ≥ 0

• Allowed since P ∧ true is still true

• This allows both the proofs to go through!

• (x ≤ 0) ∧ (x + c = k) ∧ (x ≥ 0) =⇒ x = 0

Summary

• A loop invariant captures the effects of a loop on the program
state

• Without having to “run” or approximate states

• Just have to prove the invariant satisfies the definition

• A useful loop invariant allows us to prove properties

• May require additional facts given or derived from other parts

of the program

• How to find loop invariants?

• Use the Feynman “Algorithm” [not serious]

• No general technique to find loop invariants!

https://wiki.c2.com/?FeynmanAlgorithm

Partial Correctness

• Big elephant in the room

• Our proofs only hold if the loops terminate!

• Do the loops in the programs so far terminate?

• Easy to show that they do

• All have a strictly decreasing variable

• Loop terminates when that variable reaches zero

• But, revisit the loop condition x > 0 && c < k

• with loop invariant x ≥ 0 ∧ c ≤ k

• the negation of the loop condition prevents us from proving a0
and a1

• Might be tempted to use x > 0 || c < k after figuring that

out

Example

void fn(int k) {
int x = k;
int c = 0;

assert(x >= 0 && c <= k);

while(x > 0 || c < k) {
assert(x >= 0 && c <= k);
c = c + 1;
x = x - 1;
assert(x >= 0 && c <= k);

}

assert(x == 0);
assert(c == k);

}

• Assume the loop invariant is still valid

• How do you prove the loop terminates?

• Need to show that x becomes zero at the same time as c

becomes k

Total Correctness

Total correctness = Partial Correctness + Termination

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

Interactive Theorem Provers

• Sometimes called Proof
Assistants

• Isabelle

• Coq

• Lean

• Allow you to write proofs

• Assist you in solving them

• Proof writing is

undecidable in general

• Verify your proofs are

correct!

• Actually make writing proofs
fun

• Though still very tedious?

https://isabelle.in.tum.de/
https://coq.inria.fr/
https://leanprover.github.io/

Dafny

• A free programming language that only compiles programs
that can be verified

• Generates C#, JS or Go

• Termed “auto-active program verifier”

• Can verify your programs as you type them

• Can be used as a batch style compiler

• But best used with an Editor

• VS Code and Emacs supported

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/

Obtaining Dafny

• Available for free for Windows, Linux and macOS

• Even in Debian/Ubuntu repository

• (though old version)

• I’m using the version from the Github repo

https://github.com/dafny-lang/dafny/

Simple program in Dafny

Adding requires

Postcondition might not hold

Add x ≥ 0 invariant

Add c ≤ k invariant

Add c ≤ k invariant, contd

Combining invariants

Combining invariants - Part #2

Final Invariant

Non-terminating loop

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

Further Resources

• We focused entirely on loop invariants today

• Their utility and ability to model entire loop executions

• Their use in proving properties

• Introduced you to Dafny

• The Dafny Project at Microsoft Research

• Try it in your browser: dafny at rise4fun (work through the

Dafny tutorial)

• More reading (including 4-part video lectures)

• Next week: Hoare Logic

• Source of the assignment axiom, and other rules for deriving

program facts

• Strongly recommend reading Background Reading on Hoare

Logic, by Mike Gordon

https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://rise4fun.com/dafny/Hello
https://rise4fun.com/Dafny/tutorial/Guide
https://github.com/Microsoft/dafny
https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf
https://www.cl.cam.ac.uk/archive/mjcg/HL/Notes/Notes.pdf

Homework

• Let popcount(x) be the number of bits set to 1 in x

• Show that popcount(x)− popcount(x & (x − 1)) = 1

• (where & is bitwise and)

• Example:

• 5 is 0b101, 4 is 0b100, 5 & 4 = 0b100 = 4

	Proofs of Program Correctness
	Loop Invariants
	Theorem Proving
	Postscript

