CSC2/455 Software Analysis and Improvement
Proving Programs Correct

Sreepathi Pai
April 22, 2020 [released April 23]
URCS
Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript
Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript
What is a correct program?

- A program that meets its specification is a correct program.
- What is the correct specification for a program?
 - The scope of this question is beyond this course.
 - Not entirely technical.
- Our goal is only to study methods that check if a program meets its provided specification.
 - Technical only.
Our simple program

```c
void fn(int k) {
    int x = k;
    int c = 0;

    while(x > 0) {
        c = c + 1;
        x = x - 1;
    }

    assert(x == 0);
    assert(c == k);
}
```

Will those assertions always be true? [i.e. are they always valid?]
$ cbmc --function fn --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
Parsing simple1.c
Converting
Type-checking simple1
Generating GOTO Program
Adding CPROVER library (x86_64)
Removal of function pointers and virtual functions
Generic Property Instrumentation
Running with 8 object bits, 56 offset bits (default)
Starting Bounded Model Checking
Unwinding loop fn.0 iteration 1 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 2 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 3 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 4 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 5 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 6 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 7 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 8 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 9 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 10 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 11 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 12 file simple1.c line 14 function fn thread 0
...

Whoops, infinite loop!
$ cbmc --function fn --unwind 10 --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux

Starting Bounded Model Checking
Unwinding loop fn.0 iteration 1 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 2 file simple1.c line 14 function fn thread 0
... Not unwinding loop fn.0 iteration 10 file simple1.c line 14 function fn thread 0

** Results:
[fn.assertion.1] assertion x == 0: FAILURE
[fn.assertion.2] assertion c == k: FAILURE

k: -2147483648 (10000000 00000000 00000000 00000000)
x=-2147483648 (10000000 00000000 00000000 00000000)
c=0 (00000000 00000000 00000000 00000000)

Violated property: assertion x == 0
x == 0

Violated property: assertion c == k
 c == k

• if k is negative (note: output is reformatted to fit)
 • x will not be zero
 • c will not be equal k
We check our specifications, and notice that `fn` should only work on non-negative `k`

```c
void fn(int k) {
    __CPROVER_assume(k >= 0);
    ...
```
$ cbmc --unwinding-assertions --function fn --unwind 10 --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
...
Unwinding loop fn.0 iteration 9 file simple1.c line 14 function fn thread 0
Not unwinding loop fn.0 iteration 10 file simple1.c line 14 function fn thread 0
...
** Results:
[fn.assertion.1] assertion x == 0: SUCCESS
[fn.assertion.2] assertion c == k: SUCCESS
[fn.unwind.0] unwinding assertion loop 0: FAILURE

Trace for fn.unwind.0:

 INPUT k: 12 (00000000 00000000 00000000 00001100)
c=10 (00000000 00000000 00000000 00001010)
x=2 (00000000 00000000 00000000 00000010)

Violated property:
 unwinding assertion loop 0

• CBMC can’t show loop terminates for a (fixed) finite number of unwindings
 • Here unwind=10 and CBMC says more unwindings would be needed for k = 12
• Conclusions may be unsound
• For C, k is still an integer.
 • Finite number of values
 • Could try out all possible unwindings by fixing an upper bound
• Might be feasible for simple
 • But add more loops, and time/space increases significantly
• Strategy not even feasible for languages like Python
 • Python has infinite precision integers
• Can we try something else?
void fn(int k) {
 int x = k;
 int c = 0;

 while(x > 0) {
 c = c + 1;
 x = x - 1;
 }

 assert(x == 0);
 assert(c == k);
}

int main(void) {
 int k;

 klee_make_symbolic(&k, sizeof(k), "k");
 klee_assume(k >= 0);
 fn(k);
}
Symbolic execution using KLEE doesn’t seem to work either

- I interrupted after a minute or so.
- Without `klee_ASSUME`, KLEE also detects the assertion failure of `x == 0`
What about abstract interpretation?

```plaintext
x := k;
c := 0;
while(x > 0) {
  x := (x - 1);
c := (c + 1)
}
```

- **Input:**
 - \(M^\# = \{ k \mapsto [0, +\infty), x \mapsto \top, c \mapsto \top \} \)

- **Output:**
 - \(\{ 'k': (0, +\text{inf}), 'x': (0, 0), 'c': (0, +\text{inf}) \} \)
 - \(M^\# = \{ k \mapsto [0, +\infty), x \mapsto [0, 0], c \mapsto [0, +\infty) \} \)
Does $M^\#$ allow us to prove our assertions?

$$M^\# = \{ k \mapsto [0, +\infty), \ x \mapsto [0, 0], \ c \mapsto [0, +\infty) \}$$

- Logically $P : (k \geq 0) \land (x = 0) \land (c \geq 0)$
 - We want to prove $a_0 : x = 0$
 - We want to prove $a_1 : c = k$

- For a_0
 - If P is valid, then so is a subset of P, in particular $P_0 : (x = 0)$
 - (This is because $a \land b \land c \implies a$ is valid)
 - $P_0 \implies a_0$ is valid (also written as $P_0 \models a_0$)

- This won’t work for a_1
 - $P_1 : (k \geq 0) \land (c \geq 0)$ [any subset can be chosen]
 - $P_1 \not\models (c = k)$
 - Not strong enough. Counterexample: $k = 6, c = 5$
 - Recall intervals domain is not relational, so can’t relate c to k
void fn(int k) {
 int x = k;
 int c = 0;
 while(x > 0) {
 c = c + 1;
 x = x - 1;
 }
 assert(x == 0);
 assert(c == k);
}

• Clearly, \(P_0 \) captures the state of the program at the end of the loop well enough to allow us to prove \(x = 0 \)
• Can we derive \(P_0 \) (logically)?
 • First glance, only from loop condition, all we can say is that \(x \leq 0 \) if loop executes and exits.
 • Not strong enough to prove \(x = 0 \)
• Loops may execute zero, a finite number, or an infinite number of iterations
 • Bounded Model Checkers: Can’t handle loops soundly without a fixed upper bound
 • Symbolic checkers: same
 • Abstract interpretation: Approximation may prevent us from verifying some properties

• But if we can find a P that captures the state of the program at the end of a loop
 • executing zero, finite or infinite number of iterations
 • P may be strong enough to prove properties we’re interested in
 • without having to model the loop iteration by iteration
Loop Invariants

- A loop invariant is a condition over the program state that holds:
 - Before the loop
 - At the beginning of each iteration
 - At the end of each iteration
A loop invariant in simple.c

```c
assert(x >= 0);
while(x > 0) {
    assert(x >= 0);
    c = c + 1;
    x = x - 1;
    assert(x >= 0);
}
```

- \(x \geq 0 \) holds before the loop (since \(x = k \), and \(k \geq 0 \))
- \(x \geq 0 \) holds at beginning of iteration, since \(x > 0 \) (from loop condition)
- \(x \geq 0 \) holds at end of iteration
 - \(x \) is reduced by 1 each iteration
 - \(x > 0 \implies x \geq 1 \implies x - 1 \geq 0 \)
Using the loop invariant to prove $x = 0$

- At end of loop
 - $x \leq 0$ (from loop condition, if loop exits, then $\neg(x > 0)$ holds)
 - $x \geq 0$ (from loop invariant)
 - $x \leq 0 \land x \geq 0 \implies x = 0$

- What about $c == k$?
Trying out some candidate loop invariants for $c == k$

- Will $c \leq k$ work?

```c
assert(c <= k);
while(x > 0) {
  assert(c <= k);
  c = c + 1;
  x = x - 1;
  assert(c <= k);
}
```

- Definitely holds before loop ($k \geq 0$, and $c = 0$)
- But harder to show that c won’t exceed k during loop
 - We *know* it is true, but hard to prove!
 - We only know $x > 0$ at the beginning of each iteration
 - Hard to show that $c + 1 \leq k$ from that premise (even assuming $c \leq k$)
 - In fact $c \leq k$ allows $c = k$ which would mean $c + 1 > k$!
assert(c <= k);
while(c < k) {
 assert(c <= k);
 c = c + 1;
 x = x - 1;
 assert(c <= k);
}

- Definitely holds before loop \((k \geq 0, \text{ and } c = 0)\)
- Holds on entry to loop as well \(c < k \implies c \leq k\)
- Holds after each iteration as well:
 - \(c + 1 \leq k + 1\), (from invariant)
 - \(c < k\) (from loop condition)
 - \(c + 1 \leq k\)
Using the loop invariant to prove $c == k$

- At end of loop
 - $c \geq k$ (from loop condition, if loop exits, then $\neg(c < k)$ holds)
 - $c \leq k$ (from loop invariant)
 - $c \leq k \land c \geq k$ \implies $c = k$

- What about $x == 0$?
 - Back to square one?

- How about combining the loop conditions and the invariants?
Combining the loop invariants and loop conditions

```c
assert(x >= 0 && c <= k);
while(x > 0 && c < k) {
    assert(x >= 0 && c <= k);
    c = c + 1;
    x = x - 1;
    assert(x >= 0 && c <= k);
}
```

- This doesn’t seem to work
 - Not strong enough to imply either assertion after combination with loop exit condition!
 - If you work it out, you may be tempted to change the loop condition...
Let’s look at some concrete program executions

- \(k = 5 \)

 entry : \(k: 5, x: 5, c: 0 \)
 end: \(k: 5, x: 4, c: 1 \)

 entry: \(k: 5, x: 4, c: 1 \)
 end: \(k: 5, x: 3, c: 2 \)

 entry: \(k: 5, x: 3, c: 2 \)
 end: \(k: 5, x: 2, c: 3 \)

 entry: \(k: 5, x: 2, c: 3 \)
 end: \(k: 5, x: 1, c: 4 \)

 entry: \(k: 5, x: 1, c: 4 \)
 end: \(k: 5, x: 0, c: 5 \)

 exit: \(k: 5, x: 0, c: 5 \)

- Do you see a relation between \(x, c, \) and \(k \)?
- Do you see a pattern that is unchanging (i.e. invariant)?
Invariant candidate #4: $x + c = k$

```c
assert(x + c == k);
while(x > 0) { /* note original loop condition */
    assert(x + c == k);
    c = c + 1;
    x = x - 1;
    assert(x + c == k);
}
```

- Clearly holds before entering loop and on first iteration
 - $x = k \land c = 0 \implies x + c = k$
- Assume holds at some iteration
 - $x + c = k$
- Then, it still holds at end of iteration (and next iteration)
 - $x - 1 + c + 1 = k$
- (Inductive argument)
Proving \(a_0 \) and \(a_1 \)

- \(P : \neg(x > 0) \land (x + c = k) \)
 - For \(a_0 \): \((x \leq 0) \land (x + c = k) \implies x = 0\)
 - For \(a_1 \): \((x \leq 0) \land (x + c = k) \implies c = k\)

- Can’t prove these using \(P \) as derived, since \(P \) admits \(x < 0 \).
 - We want \(x = 0 \) for the proof to go through
 - Without \(x = 0 \), setting \(x = -1 \) is a counterexample for both \(P \implies a_0 \) and \(P \implies a_1 \)

- But we can derive that \(x \geq 0 \)
 - We are given that \(k \geq 0 \)
 - \(\{k \geq 0\} x := k \{x \geq 0\} \) (assignment axiom)

- We can therefore strengthen \(P \) by adding \(x \geq 0 \)
 - Allowed since \(P \land true \) is still true

- This allows both the proofs to go through!
 - \((x \leq 0) \land (x + c = k) \land (x \geq 0) \implies x = 0\)
Summary

- A loop invariant captures the effects of a loop on the program state
 - Without having to “run” or approximate states
 - Just have to prove the invariant satisfies the definition
- A useful loop invariant allows us to prove properties
 - May require additional facts given or derived from other parts of the program
- How to find loop invariants?
 - Use the Feynman “Algorithm” [not serious]
 - No general technique to find loop invariants!
Partial Correctness

• Big elephant in the room
 • Our proofs only hold if the loops terminate!
• Do the loops in the programs so far terminate?
 • Easy to show that they do
 • All have a strictly decreasing variable
 • Loop terminates when that variable reaches zero
• But, revisit the loop condition $x > 0 \land c < k$
 • with loop invariant $x \geq 0 \land c \leq k$
 • the negation of the loop condition prevents us from proving a_0 and a_1
• Might be tempted to use $x > 0 \lor c < k$ after figuring that out
```c
void fn(int k) {
    int x = k;
    int c = 0;

    assert(x >= 0 && c <= k);

    while(x > 0 || c < k) {
        assert(x >= 0 && c <= k);
        c = c + 1;
        x = x - 1;
        assert(x >= 0 && c <= k);
    }

    assert(x == 0);
    assert(c == k);
}
```

- Assume the loop invariant is still valid
- How do you prove the loop terminates?
 - Need to show that x becomes zero at the same time as c becomes k
Total correctness = Partial Correctness + Termination
Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript
Interactive Theorem Provers

- Sometimes called Proof Assistants
 - Isabelle
 - Coq
 - Lean
- Allow you to write proofs
 - Assist you in solving them
 - Proof writing is undecidable in general
- Verify your proofs are correct!
- Actually make writing proofs fun
 - Though still very tedious?
Dafny

- A free programming language that only compiles programs that can be verified
 - Generates C#, JS or Go
- Termed “auto-active program verifier”
 - Can verify your programs as you type them
- Can be used as a batch style compiler
 - But best used with an Editor
 - VS Code and Emacs supported
Obtaining Dafny

- Available for free for Windows, Linux and macOS
 - Even in Debian/Ubuntu repository
 - (though old version)
- I’m using the version from the Github repo
method fn(k: int) returns (c: int)
 ensures c == k
{" var x := k;
 c := 0;
 while x > 0
 {
 x := x - 1;
 c := c + 1;
 }
 assert x == 0;"}
Adding requires

```dylan
method fn(k: int) returns (c: int)
    requires k ≥ 0
    ensures c == k
{
    var x := k;
    c := 0;

    while x > 0
    {
        x := x - 1;
        c := c + 1;
    }

    assert x == 0;
}
```
Postcondition might not hold

```
method fn(k: int) returns (c: int)
  requires k >= 0
  ensures c == k

  var x := k;
  c := 0;

  while x > 0
  {
    x := x - 1;
    c := c + 1;
  }

  assert x == 0;
```

BP5003: A postcondition might not hold on this return path.
Add $x \geq 0$ invariant

```dylan
method fn(k: int) returns (c: int)
    requires k \geq 0
    ensures c == k

    var x := k;
    c := 0;

    while x > 0
        invariant x \geq 0
        \{
            x := x - 1;
            c := c + 1;
        \}

    assert x == 0;
```

BP5003: A postcondition might not hold on this return path.
Add \(c \leq k \) invariant
Add \(c \leq k \) invariant, contd

```dylan
method fn(k: int) returns (c: int)
  requires k \geq 0
  ensures c == k
{
  var x := k;
  c := 0;

  while c < k
    invariant c \leq k
    {
      x := x - 1;
      c := c + 1;
    }

  assert x == 0;
}
```

```
-**. simple1.dfy All L15 (Dafny hs yas company FlyC:1/\emptyset)
assertion violation
```
Combining invariants

```dany
method fn(k: int) returns (c: int)
  requires k ≥ 0
  ensures c == k
{
  var x := k;
  c := 0;

  while x > 0 ∧ c < k
    invariant x ≥ 0 ∧ c ≤ k
    { x := x - 1; c := c + 1; }

  assert x == 0;
}
```

assertion violation
method fn(k: int) returns (c: int)
 requires k ≥ 0
 ensures c == k

 var x := k;
 c := 0;

 while x > 0 ∧ c < k
 invariant x ≥ 0 ∧ c ≤ k
 {
 x := x - 1;
 c := c + 1;
 }

 assert x == 0;

BP5003: A postcondition might not hold on this return path.
method fn(k: int) returns (c: int)
 requires k ≥ 0
 ensures c == k
{
 var x := k;
 c := 0;

 while x > 0
 invariant x +c == k
 {
 x := x - 1;
 c := c + 1;
 }

 assert x == 0;
}
Non-terminating loop

```d乎
method fn(k: int) returns (c: int)
  requires k ≥ 0
  ensures c == k
{
  var x := k;
  c := 0;

  while x > 0 ∨ c < k
    invariant x ≥ 0 ∧ c ≤ k
    {
      x := x - 1;
      c := c + 1;
    }

  assert x == 0;
}
```

`simple1.dfy` All L8 (Dafny hs yas company FlyC:1/0)
decreases
cannot prove termination; try supplying a decreases clause for the loop
Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript
Further Resources

• We focused entirely on loop invariants today
 • Their utility and ability to model entire loop executions
 • Their use in proving properties

• Introduced you to Dafny
 • The Dafny Project at Microsoft Research
 • Try it in your browser: dafny at rise4fun (work through the Dafny tutorial)
 • More reading (including 4-part video lectures)

• Next week: Hoare Logic
 • Source of the assignment axiom, and other rules for deriving program facts
 • Strongly recommend reading Background Reading on Hoare Logic, by Mike Gordon
• Let \(\text{popcount}(x) \) be the number of bits set to 1 in \(x \)
• Show that \(\text{popcount}(x) - \text{popcount}(x \& (x - 1)) = 1 \)
 • (where \& is bitwise and)
• Example:
 • 5 is 0b101, 4 is 0b100, 5 \& 4 = 0b100 = 4