CSC2/455 Software Analysis and Improvement Proving Programs Correct

Sreepathi Pai
April 22, 2020 [released April 23]
URCS

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

What is a correct program?

- A program that meets its specification is a correct program
- What is the correct specification for a program?
- The scope of this question is beyond this course
- Not entirely technical
- Our goal is only to study methods that check if a program meets its provided specification
- Technical only

Our simple program

```
void fn(int k) {
    int x = k;
    int c = 0;
    while(x > 0) {
        c = c + 1;
        x = x - 1;
    }
    assert(x == 0);
    assert(c == k);
}
```

Will those assertions always be true? [i.e. are they always valid?]

CBMC: Try \#1

```
$ cbmc --function fn --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
Parsing simple1.c
Converting
Type-checking simple1
Generating GOTO Program
Adding CPROVER library (x86_64)
Removal of function pointers and virtual functions
Generic Property Instrumentation
Running with 8 object bits, 56 offset bits (default)
Starting Bounded Model Checking
Unwinding loop fn.0 iteration 1 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration 2 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 3 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 4 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration 5 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration 6 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration 7 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration 8 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 9 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration 10 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration }11\mathrm{ file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration }12\mathrm{ file simple1.c line 14 function fn thread 0
```

...

Whoops, infinite loop!

CBMC: Try \#2

```
$ cbmc --function fn --unwind 10 --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
Starting Bounded Model Checking
Unwinding loop fn.0 iteration 1 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration 2 file simple1.c line }14\mathrm{ function fn thread 0
Unwinding loop fn.0 iteration 8 file simple1.c line 14 function fn thread 0
Unwinding loop fn.0 iteration 9 file simple1.c line 14 function fn thread 0
Not unwinding loop fn.0 iteration 10 file simple1.c line 14 function fn thread 0
** Results:
[fn.assertion.1] assertion x == 0: FAILURE
[fn.assertion.2] assertion c == k: FAILURE
    k: -2147483648 (10000000 00000000 00000000 00000000)
    x=-2147483648(10000000 00000000 00000000 00000000)
    c=0 (00000000 00000000 00000000 00000000)
Violated property: assertion x == 0
    x == 0
Violated property: assertion c == k
    c == k
```

- if k is negative (note: output is reformatted to fit)
- x will not be zero
- c will not be equal k

Specifying k must always be greater than zero

- We check our specifications, and notice that fn should only work on non-negative k

```
void fn(int k) {
    __CPROVER_assume(k >= 0);
```


CBMC: Try \#3

```
$ cbmc --unwinding-assertions --function fn --unwind 10 --trace simple1.c
CBMC version 5.10 (cbmc-5.10) 64-bit x86_64 linux
Unwinding loop fn.0 iteration 9 file simple1.c line 14 function fn thread 0
Not unwinding loop fn.0 iteration 10 file simple1.c line 14 function fn thread 0
** Results:
[fn.assertion.1] assertion x == 0: SUCCESS
[fn.assertion.2] assertion c == k: SUCCESS
[fn.unwind.0] unwinding assertion loop 0: FAILURE
Trace for fn.unwind.0:
    INPUT k: 12(00000000 00000000 00000000 00001100)
    c=10 (00000000 00000000 00000000 00001010)
    x=2(00000000 00000000 00000000 00000010)
Violated property:
    unwinding assertion loop 0
```

- CBMC can't show loop terminates for a (fixed) finite number of unwindings
- Here unwind=10 and CBMC says more unwindings would be needed for $\mathrm{k}=12$
- Conclusions may be unsound

Try out all possible unwindings

- For C, k is still an integer.
- Finite number of values
- Could try out all possible unwindings by fixing an upper bound
- Might be feasible for simple
- But add more loops, and time/space increases significantly
- Strategy not even feasible for languages like Python
- Python has infinite precision integers
- Can we try something else?

KLEE

```
void fn(int k) {
    int x = k;
    int c = 0;
    while(x > 0) {
        c = c + 1;
        x = x - 1;
    }
    assert(x == 0);
    assert(c == k);
}
int main(void) {
    int k;
    klee_make_symbolic(&k, sizeof(k), "k");
    klee_assume(k >= 0);
    fn(k);
}
```


KLEE, contd.

clang -I ~/ext/klee-2.1/include/ -emit-llvm -c -g -OO -Xclang -disa
~/ext/klee-2.1/build/bin/klee simple1.bc
KLEE: output directory is "src/klee-out-0"
KLEE: Using Z3 solver backend
-CKLEE: ctrl-c detected, requesting interpreter to halt.
KLEE: halting execution, dumping remaining states
KLEE: done: total instructions $=5174$
KLEE: done: completed paths $=273$
KLEE: done: generated tests $=273$

- Symbolic execution using KLEE doesn't seem to work either
- I interrupted after a minute or so.
- Without klee_assume, KLEE also detects the assertion failure

$$
\text { of } x=0
$$

What about abstract interpretation?

```
x := k;
c := 0;
while(x > 0) {
        x := (x - 1);
        c := (c + 1)
}
```

- Input:
- $M^{\sharp}=\{k \mapsto[0,+\infty), x \mapsto T, c \mapsto T\}$
- Output:
- $\left\{{ }^{\prime} k\right.$ ': $(0,+i n f),{ }^{\prime} x^{\prime}:(0,0),{ }^{\prime} c$ ': ($\left.\left.0,+i n f\right)\right\}$
- $M^{\sharp}=\{k \mapsto[0,+\infty), x \mapsto[0,0], c \mapsto[0,+\infty)\}$

Does M^{\sharp} allow us to prove our assertions?

$$
M^{\sharp}=\{k \mapsto[0,+\infty), x \mapsto[0,0], c \mapsto[0,+\infty)\}
$$

- Logically $P:(k \geq 0) \wedge(x=0) \wedge(c \geq 0)$
- We want to prove $a_{0}: x=0$
- We want to prove $a_{1}: c=k$
- For a_{0}
- If P is valid, then so is a subset of P, in particular $P_{0}:(x=0)$
- (This is because $a \wedge b \wedge c \Longrightarrow a$ is valid)
- $P_{0} \Longrightarrow a_{0}$ is valid (also written as $P_{0} \vDash a_{0}$)
- This won't work for a_{1}
- $P_{1}:(k \geq 0) \wedge(c \geq 0)$ [any subset can be chosen]
- $P_{1} \not \vDash(c=k)$
- Not strong enough. Counterexample: $k=6, c=5$
- Recall intervals domain is not relational, so can't relate c to k

simple.c, logically deriving P_{0}

```
void fn(int k) {
    int x = k;
    int c = 0;
    while(x > 0) {
        c = c + 1;
        x = x - 1;
    }
    assert(x == 0);
    assert(c == k);
}
```

- Clearly, P_{0} captures the state of the program at the end of the loop well enough to allow us to prove $x=0$
- Can we derive P_{0} (logically)?
- First glance, only from loop condition, all we can say is that $x \leq 0$ if loop executes and exits.
- Not strong enough to prove $x=0$

Loops ...

- Loops may execute zero, a finite number, or an infinite number of iterations
- Bounded Model Checkers: Can't handle loops soundly without a fixed upper bound
- Symbolic checkers: same
- Abstract interpretation: Approximation may prevent us from verifying some properties
- But if we can find a P that captures the state of the program at the end of a loop
- executing zero, finite or infinite number of iterations
- P may be strong enough to prove properties we're interested in
- without having to model the loop iteration by iteration

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

Loop Invariants

- A loop invariant is a condition over the program state that holds:
- Before the loop
- At the beginning of each iteration
- At the end of each iteration

A loop invariant in simple.c

```
assert(x >= 0);
while(x > 0) {
    assert(x >= 0);
    c = c + 1;
    x = x - 1;
    assert(x >= 0);
}
```

- $x \geq 0$ holds before the loop (since $\mathrm{x}=\mathrm{k}$, and $k \geq 0$)
- $x \geq 0$ holds at beginning of iteration, since $x>0$ (from loop condition)
- $x \geq 0$ holds at end of iteration
- x is reduced by 1 each iteration
- $x>0 \Longrightarrow x \geq 1 \Longrightarrow x-1 \geq 0$

Using the loop invariant to prove $\mathrm{x}==0$

- At end of loop
- $x \leq 0$ (from loop condition, if loop exits, then $\neg(x>0)$ holds)
- $x \geq 0$ (from loop invariant)
- $x \leq 0 \wedge x \geq 0 \Longrightarrow x=0$
- What about $\mathrm{c}=\mathrm{k}$?

Trying out some candidate loop invariants for $c==k$

- Will $c \leq k$ work?

```
assert(c <= k);
while(x > 0) {
    assert(c <= k);
    c = c + 1;
    x = x - 1;
    assert(c <= k);
}
```

- Definitely holds before loop ($k \geq 0$, and $c=0$)
- But harder to show that c won't exceed k during loop
- We know it is true, but hard to prove!
- We only know $x>0$ at the beginning of each iteration
- Hard to show that $c+1<=k$ from that premise (even assuming $c<=k$)
- In fact $c<=k$ allows $c=k$ which would mean $c+1>k$!

Change the loop condition?

```
assert(c<= k);
while(c<k) {
    assert(c <= k);
    c}=c+1
    assert(c <= k);
}
```

- Definitely holds before loop ($k \geq 0$, and $c=0$)
- Holds on entry to loop as well $c<k \Longrightarrow c<=k$
- Holds after each iteration as well:
- $c+1 \leq k+1$, (from invariant)
- $c<k$ (from loop condition)
- $c+1 \leq k$

Using the loop invariant to prove $\mathrm{c}=\mathrm{k}$

- At end of loop
- $c \geq k$ (from loop condition, if loop exits, then $\neg(c<k)$ holds)
- $c \leq k$ (from loop invariant)
- $c \leq k \wedge c \geq k \Longrightarrow c=k$
- What about $\mathrm{x}==0$?
- Back to square one?
- How about combining the loop conditions and the invariants?

Combining the loop invariants and loop conditions

```
assert(x >= 0 && c <= k);
while(x > 0 && c < k) {
    assert(x >= 0 && c <= k);
    c = c + 1;
    x = x - 1;
    assert(x >= 0 && c <= k);
}
```

- This doesn't seem to work
- Not strong enough to imply either assertion after combination with loop exit condition!
- If you work it out, you may be tempted to change the loop condition...

Let's look at some concrete program executions

- $k=5$

```
entry : k: 5, x: 5, c: 0
end: k: 5, x: 4, c: 1
entry: k: 5, x: 4, c: 1
end: k: 5, x: 3, c: 2
entry: k: 5, x: 3, c: 2
end: k: 5, x: 2, c: 3
entry: k: 5, x: 2, c: 3
end: k: 5, x: 1, c: 4
entry: k: 5, x: 1, c: 4
end: k: 5, x: 0, c: 5
exit: k: 5, x: 0, c: 5
```

- Do you see a relation between x, c, and k ?
- Do you see a pattern that is unchanging (i.e. invariant)?

Invariant candidate \#4: x $+\mathrm{c}=\mathrm{k}$

```
assert(x + c == k);
while(x > 0) { /* note original loop condition */
    assert(x + c == k);
    c = c + 1;
    x = x - 1;
    assert(x + c == k);
}
```

- Clearly holds before entering loop and on first iteration
- $x=k \wedge c=0 \Longrightarrow x+c=k$
- Assume holds at some iteration
- $x+c=k$
- Then, it still holds at end of iteration (and next iteration)
- $x-1+c+1=k$
- (Inductive argument)

Proving a_{0} and a_{1}

- $P: \neg(x>0) \wedge(x+c=k)$
- For $a_{0}:(x \leq 0) \wedge(x+c=k) \Longrightarrow x=0$
- For $a_{1}:(x \leq 0) \wedge(x+c=k) \Longrightarrow c=k$
- Can't prove these using P as derived, since P admits $x<0$.
- We want $x=0$ for the proof to go through
- Without $x=0$, setting $x=-1$ is a counterexample for both $P \Longrightarrow a_{0}$ and $P \Longrightarrow a_{1}$
- But we can derive that $x \geq 0$
- We are given that $k \geq 0$
- $\{k \geq 0\} \mathrm{x}:=\mathrm{k}\{x \geq 0\}$ (assignment axiom)
- We can therefore strengthen P by adding $x \geq 0$
- Allowed since $P \wedge$ true is still true
- This allows both the proofs to go through!
- $(x \leq 0) \wedge(x+c=k) \wedge(x \geq 0) \Longrightarrow x=0$

Summary

- A loop invariant captures the effects of a loop on the program state
- Without having to "run" or approximate states
- Just have to prove the invariant satisfies the definition
- A useful loop invariant allows us to prove properties
- May require additional facts given or derived from other parts of the program
- How to find loop invariants?
- Use the Feynman "Algorithm" [not serious]
- No general technique to find loop invariants!

Partial Correctness

- Big elephant in the room
- Our proofs only hold if the loops terminate!
- Do the loops in the programs so far terminate?
- Easy to show that they do
- All have a strictly decreasing variable
- Loop terminates when that variable reaches zero
- But, revisit the loop condition $\mathrm{x}>0$ \&\& $\mathrm{c}<\mathrm{k}$
- with loop invariant $x \geq 0 \wedge c \leq k$
- the negation of the loop condition prevents us from proving a_{0} and a_{1}
- Might be tempted to use $\mathrm{x}>0 \| \mathrm{l}$ < k after figuring that out

Example

```
void fn(int k) {
    int x = k;
    int c = 0;
    assert(x >= 0 && c <= k);
    while(x > 0 || c < k) {
        assert(x >= 0 && c <= k);
        c = c + 1;
        x = x - 1;
        assert(x >= 0 && c <= k);
    }
    assert(x == 0);
    assert(c == k);
}
```

- Assume the loop invariant is still valid
- How do you prove the loop terminates?
- Need to show that x becomes zero at the same time as c becomes k

Total Correctness

Total correctness $=$ Partial Correctness + Termination

Outline

Proofs of Program Correctness

Loop Invariants

Theorem Proving

Postscript

Interactive Theorem Provers

- Sometimes called Proof

Assistants

- Isabelle
- Coq
- Lean
- Allow you to write proofs
- Assist you in solving them
- Proof writing is undecidable in general
- Verify your proofs are correct!
- Actually make writing proofs
 fun
- Though still very tedious?

Dafny

Difiny

method DutchFlag(a: array<Color>)
requires $a \neq$ null modifies a
\gg ensures $\forall i, j \cdot 0 \leq i<j<a$.Length \Rightarrow Ordered (a[i], a[j]) ensures multiset(a[..]) $==$ old(multiset(a[..]))
\{
var $r, w, b:=0,0, a$. Length;
$»$ while $w \neq b$
invariant $0 \leq r \leq w \leq b \leq a$. Length;
invariant $\forall i \cdot 0 \leq i<r \Longrightarrow a[i]==$ Red
invariant multiset $(a[\ldots])==$ old(multiset $(a[\ldots]))$
\{ match a[w]
case Red \Rightarrow
$a[r], a[w]:=a[w], a[r] ;$
$r, w:=r+1, w+1$;
case White \Rightarrow
$w:=w+1$;
case Blue \Rightarrow

- A free programming language that only compiles programs that can be verified
- Generates C\#, JS or Go
- Termed "auto-active program verifier"
- Can verify your programs as you type them
- Can be used as a batch style compiler
- But best used with an Editor
- VS Code and Emacs supported

Obtaining Dafny

- Available for free for Windows, Linux and macOS
- Even in Debian/Ubuntu repository
- (though old version)
- I'm using the version from the Github repo

Simple program in Dafny

File Edit Options Buffers Tools YASnippet Hide/Show Help

```
# 5
< 四 & v F. 㐭 Q
```

```
method fn(k: int) returns (c: int)
ensures c == k
#{
    var x := k;
    c:= 0;
    while x > 0
    {
        x := x - 1;
        c}:=c+1
    }
# assert x = = 0;
}
```


Adding requires

File Edit Options Buffers Tools YASnippet Hide/Show Help

```
# 5
* 2%
method fn(k: int) returns (c: int)
    requires k \geq 0
# ensures c == k
#{
    var x := k;
    c := 0;
    while x > 0
    {
        x := x - 1;
        c := c + 1;
    }
    assert x == 0;
}
```


Postcondition might not hold

File Edit Options Buffers Tools YASnippet Hide/Show Help

```

```

method fn(k: int) returns (c: int)
requires k \geq 0
ensures c == k
|
var x := k;
c := 0;
while x > 0
{
x := x - 1;
c := c + 1;
}
assert x == 0;
}

```

\section*{Add \(x \geq 0\) invariant}

File Edit Options Buffers Tools YASnippet Hide/Show Help

method fn(k: int) returns (c: int)
requires \(k \geq 0\)
ensures \(c==k\)
"
\(\operatorname{var} x:=k\);
\(c:=0\);
while \(x>0\)
invariant \(x \geq 0\)
\{
\(x:=x-1 ;\)
\(c:=c+1\);
\}
assert \(x==0 ;\)
\}

\section*{Add \(c \leq k\) invariant}

File Edit Options Buffers Tools YASnippet Hide/Show Help
```


F

3 (N) \& v 有 胃 Q

```
```

method fn(k: int) returns (c: int)
requires $\mathrm{k} \geq 0$
ensures $c==k$
"\{
var $x:=k$;
c : $=0$;
while x > 0
invariant cas
\{
$x:=x-1 ;$
$c:=c+1$;
\}
assert $\mathrm{x}=\mathbf{=} 0$;
\}

```

\section*{Add \(c \leq k\) invariant, contd}

File Edit Options Buffers Tools YASnippet Hide/Show Help

method fn(k: int) returns (c: int)
    requires \(k \geq 0\)
    ensures \(c==k\)
\{
    var \(x\) := \(k\);
    \(c:=0 ;\)
    while c < k
        invariant \(c \leq k\)
    \{
        \(x:=x-1\);
        \(c:=c+1\);
    \}
》 assert \(x=0\);
\}

\section*{Combining invariants}

File Edit Options Buffers Tools YASnippet Hide/Show Help
```


居 * N

method fn(k: int) returns (c: int)
requires k \geq0

ensures c == k

\#{
var x := k;
c := 0;
while x > 0 ^ c<<k
invariant x \geq 0 ^ c s k
{
x := x - 1;
c:= c + 1;
}
assert x 息 0;
}

```

\section*{Combining invariants - Part \#2}

File Edit Options Buffers Tools YASnippet Hide/Show Help
```


5 \# N N

method fn(k: int) returns (c: int)
requires k \geq0
ensures c == k
*
var x := k;
c := 0;
while }x>0\wedgec<
invariant x \geq 0 ^ c s k
{
x := x - 1;
c := c + 1;
}
assert x == 0;
}

```

\section*{Final Invariant}

File Edit Options Buffers Tools YASnippet Hide/Show Help

```

method fn(k: int) returns (c: int)
requires k \geq0
ensures c == k
{
var x := k;
c := 0;
while x > 0
invariant }\textrm{x}+\textrm{c}==\textrm{k
{
x := x - 1;
c := c + 1;
}
assert x == 0;
}

```

\section*{Non－terminating loop}

File Edit Options Buffers Tools YASnippet Hide／Show Help
```


目 有 N

```
method fn(k: int) returns (c: int)
    requires \(k \geq 0\)
    ensures \(c==k\)
\{
    var \(x:=k\);
    \(c:=0\);
》 while \(x>0 \vee c<k\)
        invariant \(x \geq 0 \wedge c \leq k\)
    \{
        \(x:=x-1 ;\)
        \(c:=c+1\);
    \}
    assert \(x=0\);
\}

\section*{Outline}
Proofs of Program Correctness
Loop Invariants
Theorem Proving
Postscript

\section*{Further Resources}
- We focused entirely on loop invariants today
- Their utility and ability to model entire loop executions
- Their use in proving properties
- Introduced you to Dafny
- The Dafny Project at Microsoft Research
- Try it in your browser: dafny at rise4fun (work through the Dafny tutorial)
- More reading (including 4-part video lectures)
- Next week: Hoare Logic
- Source of the assignment axiom, and other rules for deriving program facts
- Strongly recommend reading Background Reading on Hoare Logic, by Mike Gordon

\section*{Homework}
- Let popcount \((x)\) be the number of bits set to 1 in \(x\)
- Show that popcount \((x)-\operatorname{popcount}(x \&(x-1))=1\)
- (where \& is bitwise and)
- Example:
- 5 is \(0 b 101,4\) is \(0 b 100,5 \& 4=0 b 100=4\)```

