
Dataflow Analysis and Datalog

Avi Saven

April 8th 2020

1 / 24



Dataflow Analysis Until Now: Parameterization

So far, iterative data flow analysis are defined by a series of
parameters:

1 The direction of the analysis
2 The values the analysis is defined over
3 The meet operator for combining values from different paths
4 A family transfer functions.

2 / 24



Dataflow Analysis Until Now: Liveness Analysis

1 Direction of the analysis: Backward
2 The values the analysis is defined over: the variables
3 How nodes are met: Union VALUES
4 Transfer function:

LIVEOUT(n) =
⋃

m∈succ(n)
UE(m) ∪ (LIVEOUT(m) ∩ DEF(m))

3 / 24



Dataflow Analysis Until Now: Solving

Dataflow analyses are then executed using an iterative
algorithm

1 Start at the entry node (or end, based on direction)
2 For each node each node, reducing using the meet operator,

and then applying the transfer function.
3 Repeating until there’s no more change

4 / 24



Limitations

Embedded in compilers, difficult to transfer analyses between
projects
Takes significant compiler time and space.
No inherent parallelism in the execution

LLVM’s dataflow framework is sequential
Implementation of Analyses is far removed from definitions
Analyses done using only the CPU

5 / 24



Datalog

A declarative language which is a subset of Prolog.
Not Turing Complete.
Used for databases and dataflow analyses
Various compilers/interpreters for datalog

ABCDatalog
bddbddb
Soufflé
Many others

6 / 24



Datalog: Atoms

The most fundamental unit of datalog is the atom, of form
p(X1, X2, . . . , Xn)
p is the predicate

The textbook describes the predicate as “a symbol that
represents a type of statement such as ‘a definition reaches the
beginning of a block’ ”

X1, X2, . . . , Xn are the terms of the predicate.
These can be either variables or constants.

A ground atom is a predicate which has only constants in its
arguments

7 / 24



Datalog: Atoms

Atoms represent a true or a false value
To represent a falsity, one writes !p(X1, X2, . . . , Xn)

8 / 24



Datalog: Atom Examples

edge("X", "Y")
There is an edge between node X and Y

def("X", 1)
Node X defines variable 1

use("Y", A)
Node Y uses a variable parameterized by A
Placeholder
Unknown that is filled in

9 / 24



Datalog: Predicates

Predicates can be thought of as a relation, similar to how
databases represent its information.

These relations can be turned into tables.
Consider the following graph:

Figure 1: graph
10 / 24



Datalog: Predicates

We can represent that graph with the following Datalog
predicates:

edge("a", "b").
edge("a", "c").
edge("b", "d").
edge("c", "d").

Figure 2: graph 11 / 24



Datalog: Predicates

These can be represented in the following table

from to

a b
a c
b d
c d

Figure 3: graph

Table: edge predicates

12 / 24



Datalog: Predicates

Consider the atom edge("a", X), which values of X make
this atom true?

"b"
"c"

Figure 4: graph
13 / 24



Datalog: Rules

Rules are of the form (where H and Bi are atoms)

H:-B1, B2, . . . Bn.

H is the “head” and B1, B2, . . . Bn is the body of the rule
:- can be read as “if”
Note, the textbook uses a different notational form than what
we will use (which is what Soufflé uses).

Instead of “,”, they use “&”
We can also represent the notion of OR by using “;”

however this is syntactic sugar for having same relation have
multiple rules

All rules will end in a period.

14 / 24



Datalog: Rules Examples

reaches(X, Y) :- edge(X, Y).
reaches(X, Z) :- edge(X, Y), reaches(Y, Z).

Read as:
“There is a relation reaches(X, Y) if there is a relation
edge(X, Y)”
“There is a relation reaches(X, Z) if there is a relation
edge(X, Y) and a relation reaches(Y, Z)”

Can also be written

reaches(X, Y) :- edge(X, Y) ;
edge(X, Z), reaches(Z, Y).

15 / 24



Datalog: Liveness Analysis

Consider the traditional equation for liveness analysis

LIVEOUT(n) =
⋃

m∈succ(n)
UE(m) ∪ (LIVEOUT(m) ∩ DEF(m))

How can this be changed to a declarative program?

16 / 24



Datalog: Liveness Analysis

Consider the following graph:

Figure 5: graph

and consider the following facts on this graph:

A, B, C, and, D define variable x
D upwardly exposes x

Which nodes is x alive at?
17 / 24



Datalog: Liveness Analysis

We could use the following analysis (written in Soufflé’s syntax):

.decl edge(from: symbol, to: symbol)

.input edge

.decl ue(block: symbol, var: symbol)

.input ue

.decl def(block: symbol, var: symbol)

.input def

We start by declaring input data and relations

18 / 24



Datalog: Liveness Analysis

.decl live(block: symbol, var: symbol)

live(n, v) :- edge(n, m), ue(m, v).
live(n, v) :- edge(n, m), live(m, v), !def(m, v).

.output live

Nearly a direct translation from the equation.
Express not using sets but declaring per-variable

Not iterating through each successor, but rather declaring the
atom edge(n, m)

This has a grounded term n which is input from the head atom
liveout(n, v)
m is filled in by the engine to any value that would make
edge(n, m) true

19 / 24



Datalog: Liveness Analysis

Soufflé facts are written as tab separated .facts files, where the
predicate is the name of the file
From the previous example:

$ ls facts
def.facts edge.facts ue.facts
$ souffle -F facts ./liveness.dl
$ cat live.csv
B x
C x

20 / 24



Datalog: How is it executed?

Many ways to execute datalog, no one prescriptive way
One is described in Chapter 12.3.4

An iterative algorithm, very reminscient of the iterative dataflow
analysis algorithm
Separates predicates into IDB and EDBs, which declares
whether or not its input data or derived from rules.
See textbook for more details

In this lecture previously, and the assignments, we’ll be using
Soufflé.

21 / 24



Datalog: Soufflé

For our purposes we are going to use Soufflé
(https://souffle-lang.github.io), a Datalog runtime from Oracle
Soufflé translates your datalog into highly-parallel C++ which
can then be executed natively on your processor.
Uses various transformations such as the Magic Set
transformation (described in the Soufflé documentation) and
data structures to improve runtime.

22 / 24



Datalog: Soufflé

Soufflé requires some extra information about the datalog in
order to compile it

Before writing your rules, you have to declare your atoms, where
each term receives a type
If the relation comes as an input, or is outputted, you must
declare this as well

Soufflé includes two fundamental types:
symbol is a string
number is an signed 32 bit number (note: Soufflé can be
compiled to support 64 bit numbers as well)
Further documentation about the type system is provided in the
documentation - it is relatively complex and there’s an
object-oriented type system included, however most analyses
don’t require such sophisticated types.

23 / 24



Demo.

24 / 24


