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Typing in Languages Made Simple

I Compiler knows the type of every expression
I Static typing

I Values “carry” their type at runtime
I Dynamic typing

I Programs with type errors do not compile (or throw
exceptions at runtime)
I Strongly typed

I Programs with type errors carry on merrily
I PHP (older versions only?)



Type Systems

I Poor (Limited expressivity)
I assembly, C

I Rich
I C++
I Ada

I Richest (High expressivity)
I ML/OCaml
I Haskell



Why have rich type systems?

I General purpose programming languages impose a set of
constraints
I int may not be stored into a char

I Applications and APIs impose a set of logical constraints
I Mass of an object can never be negative
I free(ptr) must not be called twice on the same ptr value

I Application programmers must check these constraints
manually
I Although encapsulation in OOP helps

I Can we get the compiler to check application-level constraints
for us?
I without knowing anything about the application?
I i.e. a general-purpose facility to impose logical

application-defined constraints



Rust

I Rust is a systems programming language from Mozilla
I Replacement for C/C++
I No garbage collector
I ”Bare-metal” programming ability

I Unlike C, Rust provides memory safety
I No NULL pointer deference errors
I No use-after-free
I No double-free
I etc.

I Rust uses its type system to impose these constraints
I Rust checks types statically, so programs with these errors fail

to compile.
I Rust’s mechanism is not purely type-based, it also uses

additional analyses



Compilers and Type Systems

Compilers perform the following type-related tasks:

I Type checking
I Does the program obey the typing rules of the language?

I Type inference
I What is the type of each expression, variable, function, etc.?
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Inferring types

I Most languages assign types to values
I Some require programmers to specify the type for variables

I C, C++ (until recently)

I Some infer types of each variable automatically
I even for polymorphic types
I famous example: (Standard) ML



Steps for type inference

I Treat unknown types as type variables
I We will use Greek alphabets for type variables
I Note: distinct from program variables

I Write a set of equations involving type variables

I Solve the set of equations



Example #1

a = 0.5
b = a + 1.0

I typevar(0.5) = κ1

I typevar(a) = α

I typevar(b) = β

I typevar(1.0) = κ2

I typevar(a + 1.0) = η



Example #1: Equations

typevar(0.5) = κ1 = Float

typevar(a) = α = κ1

typevar(b) = β = η

typevar(1.0) = κ2 = Float

typevar(a + 1.0) = η = +(α, κ2)

+(γ, γ) → γ

α = κ2



Example #2

Consider the ML example:

fun length(x) =
if null(x) then 0 else length(tl(x)) + 1;

I Clearly, length is a function of type α′ → β, where
typeof(x) = α′

I Is α′ a fixed type? Consider the two uses:
I length(["a", "b", "c"])
I length([1, 2, 3])



Example #2: Polymorphic Functions

I The type α′ can be written as list(α)

I So, length is a function of type ∀α list(α)→ β



Example #2: Equations and solving them

EXPR: TYPE UNIFY
length: β → γ

x : β
if: bool× αi × αi → αi

null : list(αn)→ bool

null(x) : bool list(αn) = β
0 : int αi = int

+ : int× int→ int

tl : list(αt)→ list(αt)
tl(x) : list(αt) list(αt) = list(αn)

length(tl(x)) : γ γ = int

1 : int

length(tl(x)) + 1 : int

if(...) : int
Note αn remains in the final type, so we add a ∀αn, making this a
polymorphic type. So length is ∀αlist(α)→ int



Unify?

Unification is a procedure to symbolically manipulate equations to
make them “equal”.

I No variables in equations, only constants
I 5 = 5, is unified
I 6 = 9, can’t be unified

I Variables in equations
I Find a substitution S that maps each type variable x in the

equations to a type expression, S [x → e]
I Let S(t) be the equation resulting from replacing all variables

y in t with S [y ]
I Then, S is a unifier for two equations t1 and t2, if

S(t1) = S(t2)
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Unification Example

Compute a unifier to unify the equations below:

((α1 → α2)× list(α3)) → list(α2)

((α3 → α4)× list(α3)) → α5



Unifier

x S(x)

α1 α1

α2 α2

α3 α1

α4 α2

α5 list(α2)

Applying S(x) to both the equations leads to the unified equation:

((α1 → α2)× list(α1))→ list(α2)



Type Graphs

→

× list

→ list

α2α1 α3

→

× α5

→ list

α3 α4

For the unification algorithm, we’ll first build type graphs for the
type equations we’ve seen:

I Internal nodes are constructors (→,×, list)
I Leaf nodes are type variables (α1, α2, α3, ...)

I Edges connect constructors to their arguments



Actual Type Graph

→

× list

→ list

α2α1 α3 α4

→

× α5

→ list

This is the actual type graph that is formed for both the type
equations. The shared edges between the graphs represent shared
type variables.



High-level Unification Algorithm

I Goal is to generate equivalence classes
I Two nodes are in the same equivalence class if they can be

unified
I Equivalence classes are identified by a representative node

I A node is trivially unifiable with itself

I Non-variable nodes must be of same type to be unifiable

I Basic algorithm is an asymmetric variant of the union–find
data-structure



Setup

→:1

×:2 list:8

→:3 list:6

α2:5α1:4 α3:7 α4:12

→:9

×:10 α5:14

→:11 list:13

I Each node is initially in its own equivalence class, indicated by
a number

I Ultimately, nodes that are equivalent will have the same
number



Unification Algorithm

def unify(node m, node n):
s = find(m)
t = find(n)

if (s == t): return True

if (s and t are the same basic type): return True

if (s(s1, s2) and t(t1, t2) are binary op-nodes with
the same operator):

union_asym(s, t) # speculative
return unify(s1, t1) and unify(s2, t2)

if (s or t is a variable):
union_asym(s, t)
return True

return False

Figure 6.32 in the Dragon Book.



Unification

→:1

×:2 list:8

→:3 list:6

α2:5α1:4 α3:7 α4:12

→:9

×:10 α5:14

→:11 list:13

→:1

×:2 list:8

→:3 list:6

α2:5α1:4 α3:4 α4:5

→:1

×:2 α5:8

→:3 list:6
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I Good introductory tutorials with Python code:
I Unification
I Type Inference

https://eli.thegreenplace.net/2018/unification/
https://eli.thegreenplace.net/2018/type-inference/

	Types
	Type Inference
	Unification
	Postscript

