CSC2/455 Software Analysis and Improvement
Type Inference

Sreepathi Pai

URCS

March 18, 2020
Outline

Types

Type Inference

Unification

Postscript
Outline

Types

Type Inference

Unification

Postscript
Typing in Languages Made Simple

- Compiler knows the type of every expression
 - Static typing
- Values “carry” their type at runtime
 - Dynamic typing
- Programs with type errors do not compile (or throw exceptions at runtime)
 - Strongly typed
- Programs with type errors carry on merrily
 - PHP (older versions only?)
Type Systems

- Poor (Limited expressivity)
 - assembly, C
- Rich
 - C++
 - Ada
- Richest (High expressivity)
 - ML/OCaml
 - Haskell
Why have rich type systems?

- General purpose programming languages impose a set of constraints
 - `int` may not be stored into a `char`
- Applications and APIs impose a set of logical constraints
 - Mass of an object can never be negative
 - `free(ptr)` must not be called twice on the same `ptr` value
- Application programmers must check these constraints manually
 - Although encapsulation in OOP helps
- Can we get the compiler to check _application_-level constraints for us?
 - without knowing anything about the application?
 - i.e. a general-purpose facility to impose logical application-defined constraints
Rust

- Rust is a systems programming language from Mozilla
 - Replacement for C/C++
 - No garbage collector
 - "Bare-metal" programming ability
- Unlike C, Rust provides memory safety
 - No NULL pointer deference errors
 - No use-after-free
 - No double-free
 - etc.
- Rust uses its type system to impose these constraints
 - Rust checks types statically, so programs with these errors fail to compile.
 - Rust’s mechanism is not purely type-based, it also uses additional analyses
Compilers perform the following type-related tasks:

- Type checking
 - Does the program obey the typing rules of the language?
- Type inference
 - What is the type of each expression, variable, function, etc.?
Outline

Types

Type Inference

Unification

Postscript
Inferring types

- Most languages assign types to values
- Some require programmers to specify the type for variables
 - C, C++ (until recently)
- Some infer types of each variable automatically
 - even for polymorphic types
 - famous example: (Standard) ML
Steps for type inference

- Treat unknown types as *type variables*
 - We will use Greek alphabets for type variables
 - Note: distinct from program variables
- Write a set of equations involving type variables
- Solve the set of equations
Example #1

\[a = 0.5 \]
\[b = a + 1.0 \]

- \(\text{typevar}(0.5) = \kappa_1 \)
- \(\text{typevar}(a) = \alpha \)
- \(\text{typevar}(b) = \beta \)
- \(\text{typevar}(1.0) = \kappa_2 \)
- \(\text{typevar}(a + 1.0) = \eta \)
Example #1: Equations

typevar(0.5) = \kappa_1 = \text{Float}

typevar(a) = \alpha = \kappa_1

typevar(b) = \beta = \eta

typevar(1.0) = \kappa_2 = \text{Float}

typevar(a + 1.0) = \eta = +(\alpha, \kappa_2)

+ (\gamma, \gamma) \rightarrow \gamma

\alpha = \kappa_2
Consider the ML example:

```ml
fun length(x) = 
    if null(x) then 0 else length(tl(x)) + 1;
```

- Clearly, `length` is a function of type $\alpha' \rightarrow \beta$, where `typeof(x) = \alpha'`.
- Is α' a fixed type? Consider the two uses:
 - `length(["a", "b", "c"])`
 - `length([1, 2, 3])`
Example #2: Polymorphic Functions

- The type α' can be written as $\text{list}(\alpha)$
- So, length is a function of type $\forall \alpha \text{list}(\alpha) \rightarrow \beta$
Example #2: Equations and solving them

<table>
<thead>
<tr>
<th>EXPR: TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>length : $\beta \rightarrow \gamma$</td>
</tr>
<tr>
<td>x : β</td>
</tr>
<tr>
<td>if : $\text{bool} \times \alpha_i \times \alpha_i \rightarrow \alpha_i$</td>
</tr>
<tr>
<td>null : list(α_n) \rightarrow bool</td>
</tr>
<tr>
<td>null(x) : bool</td>
</tr>
<tr>
<td>0 : int</td>
</tr>
<tr>
<td>+ : int \times int \rightarrow int</td>
</tr>
<tr>
<td>tl : list(α_t) \rightarrow list(α_t)</td>
</tr>
<tr>
<td>tl(x) : list(α_t)</td>
</tr>
<tr>
<td>length(tl(x)) : γ</td>
</tr>
<tr>
<td>1 : int</td>
</tr>
<tr>
<td>length(tl(x)) + 1 : int</td>
</tr>
<tr>
<td>if(...) : int</td>
</tr>
</tbody>
</table>

Note α_n remains in the final type, so we add a $\forall \alpha_n$, making this a polymorphic type. So length is $\forall \alpha \text{list}(\alpha) \rightarrow \text{int}$

UNIFY

- list(α_n) = β
- $\alpha_i = \text{int}$
- list(α_t) = list(α_n)
- $\gamma = \text{int}$
Unify?

Unification is a procedure to symbolically manipulate equations to make them “equal”.

- **No variables in equations, only constants**
 - $5 = 5$, is unified
 - $6 = 9$, can’t be unified

- **Variables in equations**
 - Find a substitution S that maps each type variable x in the equations to a type expression, $S[x \rightarrow e]$
 - Let $S(t)$ be the equation resulting from replacing all variables y in t with $S[y]$
 - Then, S is a unifier for two equations t_1 and t_2, if $S(t_1) = S(t_2)$
Outline

Types

Type Inference

Unification

Postscript
Unification Example

Compute a unifier to unify the equations below:

\[
((\alpha_1 \rightarrow \alpha_2) \times \text{list}(\alpha_3)) \rightarrow \text{list}(\alpha_2)
\]

\[
((\alpha_3 \rightarrow \alpha_4) \times \text{list}(\alpha_3)) \rightarrow \alpha_5
\]
Unifier

<table>
<thead>
<tr>
<th>x</th>
<th>$S(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>α_1</td>
</tr>
<tr>
<td>α_2</td>
<td>α_2</td>
</tr>
<tr>
<td>α_3</td>
<td>α_1</td>
</tr>
<tr>
<td>α_4</td>
<td>α_2</td>
</tr>
<tr>
<td>α_5</td>
<td>list(α_2)</td>
</tr>
</tbody>
</table>

Applying $S(x)$ to both the equations leads to the unified equation:

$$((\alpha_1 \rightarrow \alpha_2) \times \text{list}(\alpha_1)) \rightarrow \text{list}(\alpha_2)$$
Type Graphs

For the unification algorithm, we’ll first build type graphs for the type equations we’ve seen:

- Internal nodes are constructors (→, ×, list)
- Leaf nodes are type variables (α₁, α₂, α₃, ...)
- Edges connect constructors to their arguments
This is the actual type graph that is formed for both the type equations. The shared edges between the graphs represent shared type variables.
High-level Unification Algorithm

- Goal is to generate equivalence classes
 - Two nodes are in the same equivalence class if they can be unified
 - Equivalence classes are identified by a representative node
- A node is trivially unifiable with itself
- Non-variable nodes must be of same type to be unifiable
- Basic algorithm is an asymmetric variant of the union–find data-structure
Setup

- Each node is initially in its own equivalence class, indicated by a number.
- Ultimately, nodes that are equivalent will have the same number.
Unification Algorithm

def unify(node m, node n):
 s = find(m)
 t = find(n)

 if (s == t): return True

 if (s and t are the same basic type): return True

 if (s(s1, s2) and t(t1, t2) are binary op-nodes with the same operator):
 union_asym(s, t) # speculative
 return unify(s1, t1) and unify(s2, t2)

 if (s or t is a variable):
 union_asym(s, t)
 return True

 return False

Figure 6.32 in the Dragon Book.
Unification
Outline

Types

Type Inference

Unification

Postscript
References

- Chapter 6 of the Dragon Book
 - Section 6.5
- Martelli and Montanari, 1982, An Efficient Unification Algorithm
- Good introductory tutorials with Python code:
 - Unification
 - Type Inference