Outline

Review

Partial Redundancy Elimination

Postscript
Outline

Review

Partial Redundancy Elimination

Postscript
Optimizations: Dead Code Elimination

- Find useful operations (backward analysis)
- Find useful conditional branches
 - Reverse Dominance Frontier
- Remove code, and “touch up CFG”
Outline

Review

Partial Redundancy Elimination

Postscript
Redundancy: Loop Invariant

\[a = b + c \]

\[t = b + c \]

\[a = t \]
Redundancy: Partial Redundancy

\[a = b + c \]
\[d = b + c \]
\[t = b + c \]
\[a = t \]
\[t = b + c \]
\[d = t \]
Can we insert $t = b + c$ in B_3?
(Similar to when we were inserting minimal ϕ-functions.)
Eliminating Redundancy: Complication 2

Note that there is no block where $t = b + c$ can be introduced without introducing computations not in the original program.
(Possibility of exponential blowup.)
The Lazy Code Motion Algorithm

- Eliminate all expressions when it will not duplicate code
- Do not perform computations not in original program
 - Although where the computation is performed can change
- Delay computation for as long as possible
 - “Lazy”
 - Helps lower resource (esp. register) usage
Setup

For all blocks B in CFG, compute:

- e_{use_B}: set of expressions used in a block
- e_{kill_B}: set of expressions killed in block
 - usually by redefining subcomponents

Also, split all critical edges, inserting empty blocks.
Recall very busy expressions. An expression e is anticipable at block p if:

- ?
Recall *very busy expressions*. An expression e is anticipable at block p if:

- e is used/computed on all paths leading out of p
- And it is not killed before the use
- Implies that p can compute e and all paths could use this result
Anticipable Expressions Analysis

- Direction: Backwards
- Values: Expressions in programs
- Meet: \cap
- Transfer Function
 - $f_B(x) = e_{-use_B} \cup (x - e_{-kill_B})$
- Equations:
 - $\text{OUT}[B] = \bigwedge_{S \in \text{succ}(B)} \text{IN}[S]$
 - $\text{IN}[B] = f_B(\text{OUT}[B])$
- $\top = U$
- $\text{IN}[\text{EXIT}] = \emptyset$
Available Expressions

An expression is available at a program point \(p \) if:

- it has been computed along all paths leading into \(p \)
- it has not been killed since being computed until \(p \)
- (NEW) it is anticipated at \(p \)
 - we could make it available if it is anticipated
Available Expressions Analysis

- **Direction**: Forwards
- **Meet**: \(\cap \)
- **Transfer function**
 - \(f_B(x) = (e_{use_B} \cup \text{anticipable}[B].in) \cup (x - e_{kill_B}) \)
- **Equations**
 - \(\text{IN}[B] = \bigwedge_{P\in\text{pred}(B)} \text{OUT}[P] \)
 - \(\text{OUT}[B] = f_B(\text{IN}[B]) \)
- \(\top = U \)
- \(\text{OUT}[ENTRY] = \emptyset \)
• When is the earliest an expression can be evaluated?
• When is the latest an expression can be evaluated?
Positioning Expressions: Earliest

- When is the earliest an expression can be evaluated?
 - When it anticipated, but not available
- \[\text{earliest}[B] = \text{anticipable}[B].in - \text{available}[B].in \]
 - Observe notation for results of different analyses
Anticipable + (Not) Available = Earliest
Positioning Expressions: Latest

- When is the latest an expression can be evaluated?
 - When it can no longer be postponed
- “Postponed”: expression pushed down from earliest placement
 - When can we push down an expression into the next block?
An expression e is postponable to a block p if:

- e could be placed in block b before p (earliest is before p)
- Such that it is available on all paths leading to p from ENTRY
- But e is not used after block b (and before p)
Postponable Expressions Analysis

- Direction: Forwards
- Values: Expressions
- Meet: ∩
- Transfer functions
 - \(f_B(x) = (\text{earliest}[B] \cup x) - e_{use_B} \)
- Equations
 - \(\text{OUT}[B] = f_B(\text{IN}[B]) \)
 - \(\text{IN}[B] = \bigwedge_{P \in \text{pred}(B)} \text{OUT}[P] \)
- \(\top = \mathcal{U} \)
- \(\text{OUT}[ENTRY] = \emptyset \)
c = 2

a = b + c
d = b + c
e = b + c
A block p is on the *postponement frontier* for an expression e if

- e can be postponed to p
- e cannot be placed at entry to a successor s of p
 - e is used in p
 - e is not postponable from some predecessor of s
 - e is not in $earliest[S]$

\[
latest[B] = (earliest[B] \cup postponable[B].in) \cap (e_{-}use_B \cup (\cap_{S \in succ(B)}(earliest[S] \cup postponable[S].in)))^C
\]

(Note: A^C means the complement of set A)
An expression e in block p is used if:

- Some block q uses e
- There exists a path from p to q that does not invalidate e
 - I.e. recompute e or invalidate its operands
• **Direction:** Backwards
• **Values:** Expressions
• **Meet:** ∪
• **Transfer function**
 - \(f_B(x) = (x \cup e_{use_B}) - latest[B] \)
• **Equations**
 - \(IN[B] = f_B(OUT[B]) \)
 - \(OUT[B] = \land_{S \in succ(B)} IN[s] \)
• \(T = \emptyset \)
• \(IN[EXIT] = \emptyset \)
Putting it all together - I

- Compute $\text{anticipable}[B].in$, $\text{available}[B].in$
- Compute $\text{earliest}[B]$
- Compute $\text{postponable}[B].in$
- Compute $\text{latest}[B]$
- Compute $\text{used}[B].out$
For each expression \(x + y \) in program:

- Create \(t = x + y \) (where \(t \) is a unique temporary)
- Place \(t = x + y \) at the beginning of all blocks \(B \) such that
 - \(x + y \) is in \(\text{latest}[B] \cap \text{used}[B].\text{out} \)
 - i.e. \(B \) is the last block where \(x + y \) can be placed, and \(x + y \) is used after \(B \)
- Replace all \(x + y \) with \(t \) in all block \(B \) where:
 - \(x + y \in (e_{\text{use}}_B \cap (\text{latest}[B]^c \cup \text{used}[B].\text{out})) \)
 - i.e., \(x + y \) is in \(e_{\text{use}}_B \), and
 - \(x + y \) is NOT in \(\text{latest}[B] \), or
 - \(x + y \) is in \(\text{used}[B].\text{out} \)

Algorithm 9.36 in the Dragon Book.
Final result

- $c = 2$
- $t = b + c$
- $a = t$
- $t = b + c$
- $d = t$
- $e = t$
References

- Chapter 9 of the Dragon Book
 - Section 9.5