CSC2/455 Software Analysis and Improvement
Dominators and SSA Form - II

Sreepathi Pai
February 10, 2020
URCS
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

Postscript
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

Postscript
Dominators

- A node n in the CFG dominates a node m iff:
 - n is on all paths from entry to m
 - by definition, a node n always dominates itself
 - if $n \neq m$, then n strictly dominates m
- Computed using a dataflow-style analysis
 - Each node annotated with a set of its dominators
• Simple algorithm to generate SSA form
 • Introduce ϕ functions
 • Rename variables using Reaching Definitions
• Algorithm can generate excessive ϕ functions
 • TODAY: Use dominance frontiers to place the minimal number of ϕ functions
• Also today: Removing ϕ functions
 • Machines don’t support ϕ functions, so we must emulate them
Maximal SSA Form

- Insert ϕ nodes for each definition at every join node
- Rename LHS
- Rename RHS using reaching definitions
Reducing the number of \textit{phi} nodes

- Why insert ϕ nodes at only join nodes?
- Can we skip inserting ϕ nodes for a definition at some join node?
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

Postscript
Dominance Frontiers

- The dominance frontier of a node \(n \) (DF(\(n \))) is a set of nodes.
- A node \(m \in \text{DF}(n) \) iff:
 - \(n \) does not strictly dominate \(m \)
 - \(n \) dominates \(q \) where \(q \in \text{pred}(m) \)
- Note that dominance frontiers only contain join nodes:
 - i.e. nodes with multiple predecessors
- Computing the dominance frontier of each node:
 - Iterative Data-flow analysis?
Direct calculation of dominance frontiers using *dominator trees*.
• The \textit{immediate} dominator of a node \(m \) (\(\text{IDOM}(m) \)) is the node \(n \):
 • such that \(n \) strictly dominates \(m \), and
 • \(n \) does not strictly dominate \(o \) where \(o \in (\text{DOM}(m) - \{m\}) \)
 • in some sense, \(n \) is the “closest” dominator in the CFG to \(m \).

• By definition, \(\text{ENTRY} \) has no immediate dominator
Not Strictly Dominates

- n strictly dominates m
 - $SDOM(n, m) = n \in DOM(m) \land n \neq m$
- n does not strictly dominate m
 - $\neg SDOM(n, m) = n \notin DOM(m) \lor n = m$
Dominator Tree

- Note that each node in the CFG can have only one immediate dominator
 - Can you see why?
- Create a graph $G = (V, E)$, where:
 - V is the set of basic blocks
 - There is an edge (n, m) in E if n is the immediate dominator of m (i.e. $\text{IDOM}(m) = n$)
Example: CFG and its dominator tree
Computing the dominance frontier

- Find all join nodes in CFG, e.g. j
- For all nodes n that dominate predecessors of j (in the CFG)
 - If n does not strictly dominate j, add j to DF(n)
- This last step can be operationalized as:
 - Start traversing the dominator tree from a predecessor p of j in the CFG
 - Add j to DF(p)
 - Move up the dominator tree and repeat until you reach IDOM(j)
Example: Non-redundant ϕ functions

\[\begin{align*}
 y_0 &= x_0 + 1 \\
 x_1 &= 2 \\
 y_1 &= \phi(y_0, y_4) \\
 y_1 &= y_1 > 3 \\
 y_2 &= 3 \\
 a &= 3 \\
 y_3 &= \phi(y_1, y_2) \\
 y_4 &= x_1 + y_3 + 2 \\
\end{align*} \]
Placing ϕ functions

- For each definition d in basic block n:
 - Place a ϕ function for d in all nodes m where $m \in DF(n)$
 - Note that each ϕ function is also a definition!
 - Repeat, until no more ϕ functions need to be inserted
- This is the minimal number of ϕ functions for a definition d
 - Can we further reduce the overall number of ϕ functions?
- (Figure 9.9 in Cooper and Turczon)
Other optimizations

- **Dead definitions**
 - Definitions that are not read (i.e. overwritten) do not need ϕ functions

- **Two forms:**
 - *Semi-pruned* SSA form, using "globals" names (those variables that are live in to a block)
 - *Pruned* SSA form, using \texttt{LIVEOUT} information
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

Postscript
Renaming variables

- SSA form introduced “subscripts” for each variable
- Should we drop them when generating code?

\[
\begin{align*}
a_0 &= x_0 + y_0 \\
b_0 &= a_0 \\
a_1 &= 17 \\
c_0 &= a_0
\end{align*}
\]
Problem with dropping subscripts

\[
a = x + y
\]
\[
b = a
\]
\[
a = 17
\]
\[
c = a \quad \# \text{ WRONG!}
\]
Handling subscripts

- Each definition becomes a new variable
 - I.e. Do NOT drop subscripts
- Preserves data dependences
 - Esp. important when we aggressively move code from basic blocks (e.g. very busy expressions, loop invariant code motion, etc.)
Code for ϕ functions

- Introduce copies along each incoming edge to a join node

\[
\begin{align*}
i_2 &= 1 \\
i_3 &= a + b \\
i_4 &= \phi(i_2, i_3) \\
&\vdots
\end{align*}
\]
Inserting appropriate copies along incoming edges

\[i_2 = 1 \]
\[i_4 = i_2 \]
\[i_3 = a + b \]
\[i_4 = i_3 \]
Critical edges

- Executing ϕ functions by inserting copies into predecessor blocks is not always correct.
- If such a predecessor block has multiple successors, then the ϕ function may execute when it shouldn’t.
 - This may be harmless, but not always.
- Edges connecting such predecessors to the block containing the ϕ function are called *critical* edges.
i_2 = 1
i_4 = i_2
...
i_3 = a + b
i_4 = i_3
...
Such edges need to be **split** by inserting a block on that edge.

See the discussion in Cooper and Turczon for more details and an example.
• Excessive copies
 • Copy propagation into ϕ functions
 • Note args in resulting $x_1 = \phi(x_0, y_1)$ ϕ functions are for different variables
Outline

Review

Dominance Frontiers and Dominator Trees

Emitting code for SSA form

Postscript
• Chapter 9 of Cooper and Turczon
 • Section 9.2.1
 • Section 9.3