CSC2/455 Software Analysis and Improvement
Type Inference

Sreepathi Pai
URCS

April 15, 2019

Outline

Types

Type Inference

Unification

Postscript

Outline

Types

Typing in Languages Made Simple

» Compiler knows the type of every expression
» Static typing
» Values “carry” their type at runtime
» Dynamic typing
» Programs with type errors do not compile (or throw
exceptions at runtime)
» Strongly typed
» Programs with type errors carry on merrily
» PHP (older versions only?)

Type Systems

» Poor (Limited expressivity)
» assembly, C

> Rich
> Cidt
> Ada

» Richest (High expressivity)
» ML/OCaml
> Haskell

One perspective on type systems

» General purpose programming languages impose a set of
constraints

» int may not be stored into a char
» Applications and APls impose a set of logical constraints
» Mass of an object can never be negative
> free(ptr) must not be called twice on the same ptr
P Application programmers must check these constraints
manually
» Although encapsulation in OOP helps
» Can we get the compiler to check application-level constraints
for us?
» without knowing anything about the application?
P i.e. a general-purpose facility to impose logical
application-defined constraints

Rust

P> Rust is a systems programming language from Mozilla
» Replacement for C/C++
» No garbage collector
» " Bare-metal” programming ability
» Unlike C, Rust provides memory safety
» No NULL pointer deference errors
» No use-after-free
» No double-free
> etc.
> Rust uses its type system to impose these constraints
» Rust checks types statically, so programs with these errors fail
to compile.

Compilers and Type Systems

Compilers perform the following type-related tasks:

» Type checking
» Does the program obey the typing rules of the language?
» Type inference
> What is the type of each expression, variable, function, etc.?

Outline

Type Inference

Inferring types

> Most languages assign types to values
» Some require programmers to specify the type of each variable

»> C, C++ (until recently)
» Some infer types of each variable automatically

» even for polymorphic types
» famous example: ML

Steps for type inference

» Treat unknown types as type variables

» We will use Greek alphabets for type variables
» Note: distinct from program variables

> Write a set of equations involving type variables
» Solve the set of equations

Example #1

Example #1: Equations

typeof(0.5)
typeof(a)
typeof(b)
typeof(1.0)
typeof(a + 1.0)
+(r.7)

a

1

k1 = Float
o = K1
f=n

ko = Float
n= +(aa 52)
~y

Example #2

Consider the ML example:

fun length(x) =
if null(x) then O else length(tl(x)) + 1;

» Clearly, length is a function of type o/ — 3, where
typeof(x) = o/
» Is o/ a fixed type? Consider the two uses:
> length(["a", "b", c"1)
»> length([1, 2, 31)

Example #2: Polymorphic Functions

» The type o’ can be written as list(«a)
» So, length is a function of type Valist(a) —

Example #2: Equations and solving them

length:
X:

if:

null :
null(x) :
0:

+

tl:
tl(x) :
length(t!(x

~

= ~— ~—

length(tl(x)) + 1 :
if(...) :

EXPR:

TYPE

=

B

bool X o X ajf = o
list(cn) — bool
bool

int

int X int — int
list(ae) — list(av)
list(cve)

Y

int

int

int

UNIFY

list(ap) = B

aj = int

list(cvy) = list(avp)
v = int

Note «a, remains in the final type, so we add a Ve, making this a
polymorphic type. So length is Vlist(«) — int

Unify?

Unification is a procedure to symbolically manipulate equations to
make them “equal”.

» No variables in equations, only constants
» 5 =25, is unified
» 6 =09, can't be unified
» Variables in equations
» Find a substitution S that maps each type variable x in the
equations to a type expression, S[x — €]
> Let S(t) be the equation resulting from replacing all variables
y in t with S[y]
» Then, S is a unifier for two equations t; and t, if
5(t) = S(k2)

Outline

Unification

Unification Example

Compute a unifier to unify the equations below:

((a1 x ag) x list(ag)) — list(ag)
((a3 x ag) x list(az)) — as

Unifier

X S(x)
aq a1
%] a2
as a1
Q4 (6]

as list(ae)
This unifies to:

(1 = ap) x list(az)) — list(a)

Type Graphs

» Internal nodes are constructors
» Leaf nodes are type variables

» Edges connect constructors to their arguments

High-level Unification Algorithm

» Goal is to generate equivalence classes

» Two nodes are in the same equivalence class if they can be
unified

» Equivalence classes are identified by a representative node
» Non-variable nodes must be of same type to be unifiable
» The same node is trivially unifiable

Unification Algorithm

def unify(node m, node n):

s = find(m)
t = find(n)
if (s == t): return True

if (s and t are the same basic type): return True

if (s(s1l, s2) and t(tl, t2) are binary op-nodes with the same o
union(s, t)
return unify(sl, t1) and unify(s2, t2)

if (s or t is a variable):
union(s, t)
return True

return False

Figure 6.32 in the Dragon Book.

Example Figure

See Figure 6.31 in the Dragon Book (we're going to work through

it)

Outline

Postscript

References

» Chapter 6 of the Dragon Book
» Section 6.5
» Martelli and Montanari, 1982, An Efficient Unification
Algorithm
» Good introductory tutorials in Python:

> Unification
» Type Inference

https://eli.thegreenplace.net/2018/unification/
https://eli.thegreenplace.net/2018/type-inference/

	Types
	Type Inference
	Unification
	Postscript

