
CSC2/455 Software Analysis and Improvement
Type Inference

Sreepathi Pai

URCS

April 15, 2019



Outline

Types

Type Inference

Unification

Postscript



Outline

Types

Type Inference

Unification

Postscript



Typing in Languages Made Simple

I Compiler knows the type of every expression
I Static typing

I Values “carry” their type at runtime
I Dynamic typing

I Programs with type errors do not compile (or throw
exceptions at runtime)
I Strongly typed

I Programs with type errors carry on merrily
I PHP (older versions only?)



Type Systems

I Poor (Limited expressivity)
I assembly, C

I Rich
I C++
I Ada

I Richest (High expressivity)
I ML/OCaml
I Haskell



One perspective on type systems

I General purpose programming languages impose a set of
constraints
I int may not be stored into a char

I Applications and APIs impose a set of logical constraints
I Mass of an object can never be negative
I free(ptr) must not be called twice on the same ptr

I Application programmers must check these constraints
manually
I Although encapsulation in OOP helps

I Can we get the compiler to check application-level constraints
for us?
I without knowing anything about the application?
I i.e. a general-purpose facility to impose logical

application-defined constraints



Rust

I Rust is a systems programming language from Mozilla
I Replacement for C/C++
I No garbage collector
I ”Bare-metal” programming ability

I Unlike C, Rust provides memory safety
I No NULL pointer deference errors
I No use-after-free
I No double-free
I etc.

I Rust uses its type system to impose these constraints
I Rust checks types statically, so programs with these errors fail

to compile.



Compilers and Type Systems

Compilers perform the following type-related tasks:

I Type checking
I Does the program obey the typing rules of the language?

I Type inference
I What is the type of each expression, variable, function, etc.?



Outline

Types

Type Inference

Unification

Postscript



Inferring types

I Most languages assign types to values
I Some require programmers to specify the type of each variable

I C, C++ (until recently)

I Some infer types of each variable automatically
I even for polymorphic types
I famous example: ML



Steps for type inference

I Treat unknown types as type variables
I We will use Greek alphabets for type variables
I Note: distinct from program variables

I Write a set of equations involving type variables

I Solve the set of equations



Example #1

a = 0.5
b = a + 1.0

I typeof(0.5) = κ1

I typeof(a) = α

I typeof(b) = β

I typeof(1.0) = κ2

I typeof(a + 1.0) = η



Example #1: Equations

typeof(0.5) = κ1 = Float

typeof(a) = α = κ1

typeof(b) = β = η

typeof(1.0) = κ2 = Float

typeof(a + 1.0) = η = +(α, κ2)

+(γ, γ) → γ

α = κ2



Example #2

Consider the ML example:

fun length(x) =
if null(x) then 0 else length(tl(x)) + 1;

I Clearly, length is a function of type α′ → β, where
typeof(x) = α′

I Is α′ a fixed type? Consider the two uses:
I length(["a", "b", c"])
I length([1, 2, 3])



Example #2: Polymorphic Functions

I The type α′ can be written as list(α)

I So, length is a function of type ∀α list(α)→ β



Example #2: Equations and solving them

EXPR: TYPE UNIFY
length: β → γ

x : β
if: bool× αi × αi → αi

null : list(αn)→ bool

null(x) : bool list(αn) = β
0 : int αi = int

+ : int× int→ int

tl : list(αt)→ list(αt)
tl(x) : list(αt) list(αt) = list(αn)

length(tl(x)) : γ γ = int

1 : int

length(tl(x)) + 1 : int

if(...) : int
Note αn remains in the final type, so we add a ∀αn, making this a
polymorphic type. So length is ∀list(α)→ int



Unify?

Unification is a procedure to symbolically manipulate equations to
make them “equal”.

I No variables in equations, only constants
I 5 = 5, is unified
I 6 = 9, can’t be unified

I Variables in equations
I Find a substitution S that maps each type variable x in the

equations to a type expression, S [x → e]
I Let S(t) be the equation resulting from replacing all variables

y in t with S [y ]
I Then, S is a unifier for two equations t1 and t2, if

S(t1) = S(t2)



Outline

Types

Type Inference

Unification

Postscript



Unification Example

Compute a unifier to unify the equations below:

((α1 × α2)× list(α3)) → list(α2)

((α3 × α4)× list(α3)) → α5



Unifier

x S(x)

α1 α1

α2 α2

α3 α1

α4 α2

α5 list(α2)
This unifies to:

((α1 → α2)× list(α1))→ list(α2)



Type Graphs

I Internal nodes are constructors

I Leaf nodes are type variables

I Edges connect constructors to their arguments



High-level Unification Algorithm

I Goal is to generate equivalence classes
I Two nodes are in the same equivalence class if they can be

unified
I Equivalence classes are identified by a representative node

I Non-variable nodes must be of same type to be unifiable

I The same node is trivially unifiable



Unification Algorithm

def unify(node m, node n):
s = find(m)
t = find(n)

if (s == t): return True

if (s and t are the same basic type): return True

if (s(s1, s2) and t(t1, t2) are binary op-nodes with the same operator):
union(s, t)
return unify(s1, t1) and unify(s2, t2)

if (s or t is a variable):
union(s, t)
return True

return False

Figure 6.32 in the Dragon Book.



Example Figure

See Figure 6.31 in the Dragon Book (we’re going to work through
it)



Outline

Types

Type Inference

Unification

Postscript



References

I Chapter 6 of the Dragon Book
I Section 6.5

I Martelli and Montanari, 1982, An Efficient Unification
Algorithm

I Good introductory tutorials in Python:
I Unification
I Type Inference

https://eli.thegreenplace.net/2018/unification/
https://eli.thegreenplace.net/2018/type-inference/

	Types
	Type Inference
	Unification
	Postscript

