
CSC2/455 Software Analysis and Improvement
Loop Transformations

Sreepathi Pai

URCS

April 3, 2019



Outline

Execution Order

Postscript



Outline

Execution Order

Postscript



Running Example

for(i = 0; i <= 5; i++) {
for(j = i; j <= 7; j++) {

Z[j, i] = 0;
}

}

Dependences?



Dependences

The statements in this loop do not have any dependence.



Execution Order (Default)

[0, 0] [1, 0] [2, 0] [3, 0] [4, 0] [5, 0] [6, 0] [7, 0]
[1, 1] [2, 1] [3, 1] [4, 1] [5, 1] [6, 1] [7, 1]

[2, 2] [3, 2] [4, 2] [5, 2] [6, 2] [7, 2]
[3, 3] [4, 3] [5, 3] [6, 3] [7, 3]

[4, 4] [5, 4] [6, 4] [7, 4]
[5, 5] [6, 5] [7, 5]

Assuming row-major ordering, what can you say about the locality
of this execution order?



Execution Order (New)

[0, 0]
[1, 0] [1, 1]
[2, 0] [2, 1] [2, 2]
[3, 0] [3, 1] [3, 2] [3, 3]
[4, 0] [4, 1] [4, 2] [4, 3] [4, 4]
[5, 0] [5, 1] [5, 2] [5, 3] [5, 4] [5, 5]
[6, 0] [6, 1] [6, 2] [6, 3] [6, 4] [6, 5]
[7, 0] [7, 1] [7, 2] [7, 3] [7, 4] [7, 5]



Changing the order

for(i = 0; i <= 5; i++) {
for(j = i; j <= 7; j++) {

Z[j, i] = 0;
}

}

What would the loop indices need to be if I wanted to execute j as
the outermost loop?

for(j = ?; j <= ?; j++) {
for(i = ?; i <= ?; i++) {

Z[j, i] = 0;
}

}



New Loop Bounds

for(j = 0; j <= 7; j++) {
for(i = 0; i <= min(5, j); i++) {

Z[j, i] = 0;
}

}



The Problem

I Given:
I a set of affine constraints (inequalities) defining the iteration

space
I an “preferred” execution order

I Can we generate a set of loop bounds for each loop in the
loop nest?



Running Example

0 ≤ i

i ≤ 5

i ≤ j

j ≤ 7

I Order i (innermost loop) to j (outermost loop)



What are the loop bounds for j?

Let’s eliminate i :

0 ≤ i

i ≤ 5

i ≤ j

j ≤ 7



Loop bound for j (1)

Rearrange equations so that they are all in the form:

L ≤ c1xm

c2xm ≤ U

I c1, c2, ... are constants, xm is the index variable

I L and U are constraint expressions (possibly containing other
variables)

I yields new constraint: c2L ≤ c1U with xm eliminated!



What are the loop bounds for j?
Let’s eliminate i :

0 ≤ 1i

1i ≤ 5

1i ≤ j

j ≤ 7

yields:

0 ≤ 5

0 ≤ j

j ≤ 7



What are the loop bounds for i?
Let’s eliminate j :

0 ≤ i

i ≤ 5

i ≤ 1j

1j ≤ 7

yields:

0 ≤ i

i ≤ 5

i ≤ 7



Results

I 0 <= j <= 7 when i eliminated
I 0 <= i <= 5 when j eliminated – but this is original loop

bounds
I not entirely unsurprising!

I This method is called Fourier–Motzkin elimination
I Can project one dimension at a time
I Now, need to iteratively construct projections



Fourier–Motzkin Elimination

I S is the original set of iteration space constraints

I C is the set of constraints involving xm
I Form constraint c2L ≤ c1U with xm eliminated for each pair

of L and U in C
I Add to set Cnew if satisfiable
I Else projection is not possible since S is unsatisfiable (and

hence contains 0 points)

I The projection is S ′ = S − C + Cnew

Algorithm 11.11 in the Dragon Book.



Computing New Loop Bounds Iteratively

I Let Sn be the original iteration space constraints
I Let ordering of variables be v1 (outermost) to vn (innermost)

I I.e. v = [j , i ]

I In reverse order i from n to 1:
I Let Lvi be lower bound constraints on vi in Si
I Let Uvi be upper bound constraints on vi in Si
I Let Si−1 be the result of Fourier–Motzkin elimination of vi in

Si
I In order of v1 to vn:

I Remove any redundant constraints in Lvi and Uvi implied by
cumulative previous lower bound and upper bound constraints

Figure 11.15 in the Dragon Book.



For our example

I S2 was original iteration space constraints
I Li : 0 <= i
I Ui : i <= 5, i <= j implies i <= min(5, j)

I S1 is 0 <= j and j <= 7 (i.e. i was eliminated)
I Lj : 0 <= j
I Uj : j <= 7



More than permutations: Traversal Axis

I Original loop was iteration in 2-D space.
I Say, j was x-axis and i was y-axis

I Original loop with i outermost traversed “horizontally” (along
x-axis) first

I Outermost j traversed “vertically” first

I Now we want to traverse “diagonally”



How can we traverse diagonally?

[0, 0] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5]
[1, 0] [2, 1] [3, 2] [4, 3] [5, 4] [6, 5]
[2, 0] [3, 1] [4, 2] [5, 3] [6, 4] [7, 5]
[3, 0] [4, 1] [5, 2] [6, 3] [7, 4]
[4, 0] [5, 1] [6, 2] [7, 3]
[5, 0] [6, 1] [7, 2]
[6, 0] [7, 1]
[7, 0]



Add new constraints

I k = j − i is a constant in inner loop, increasing from 0 to 7
across outer loop

I Substitute i = j − k in the original constraints:
I 0 ≤ j − k ≤ 5
I j − k ≤ j ≤ 7

I Order loop in k, j order
I Lj : k <= j
I Uj : j <= 7, j <= 5 + k
I Lk : 0
I Lk : 7



Result

for(k = 0; k <= 7; k++) {
for(j = k; j <= min(7, 5 + k); j++) {

Z[j, j - k] = 0;
}

}

If loop traversal order can be specified as an affine transformation,
then the loop bounds can be generated as usual.

I Not all traversal orders are affine
I Deciding which axis to traverse is a harder problem

I For example, to improve locality or parallelism or both!

I Recall transformations from last class.



Affine Transformations Workflow

I Identify loops with affine iteration spaces

I Compute dependences
I Figure out transforms of affine spaces

I must respect dependences
I may optimize other metrics (e.g. locality, parallelism)

I Generate loops such that:
I Dependence constraints are met
I Transformed iteration space constraints are met

I Parallelize resulting loops
I Vectorization
I Software Pipelining



Software Pipelining

for(i = 1; i <= m; i++)
for(j = 1; j <= n; j++)

X[i] = X[i] + Y[i, j];

I Inner loop is sequential
I Outer loop can be parallelized

I Processor i handles loop iteration i of outer loop



Software Pipelined Loop

Each iteration of the inner loop is executed on a different
processor, with data being passed from one processor to another.

P0 P1 P3
X[1] += Y[1,1]
X[2] += Y[2,1] X[1] += Y[1,2]
X[3] += Y[3,1] X[2] += Y[2,2] X[1] += Y[1,3]
X[4] += Y[4,1] X[3] += Y[3,2] X[2] += Y[2,3]

X[4] += Y[4,2] X[3] += Y[3,3]
X[4] += Y[4,3]

What are the advantages of doing this?



Stuff we did not cover

I Loop tiling/blocking
I Simple, see textbook

I Many other loop transformations
I See the slides in the readings on polyhedral compilation posted

on Blackboard



Outline

Execution Order

Postscript



References

I Chapter 11 of the Dragon Book
I Section 11.3.2 of the Dragon Book
I Section 11.9 of the Dragon Book


	Execution Order
	Postscript

