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Loop optimizations so far

I Important applications

I Loop Dependences

I Identifying loop dependences

I Vectorization
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The need for dependence testing

I Recall vectorization needs a dependence graph
I If no dependence, can be vectorized!
I Otherwise, need to figure out what the type of dependences

exist
I And their direction

I Other loop transformations (not just vectorization) will
depend heavily on accurate dependence information

I General problem requires solving an ILP
I Can we avoid this?



Recall: Dependence using Iteration Vectors

Let α and β be iteration vectors:

I α = (i1, i2, i3, ..., iN)

I β = (i ′1, i
′
2, i

′
3, ..., i

′
N)

Then a dependence exists if:

I (vectors) α < β

I fX (α) = gX (β), for 1 <= X <= M
I remember, fX and gX are assumed to be affine expressions

I if they are not?



“Independence” Testing

I If no solutions to the ILP exist, then there are no dependences!
I Otherwise:

I What is direction of dependence?
I What level of the loop carries the dependence?



Exact and Conservative Tests

I Conservative test
I Always correct when it determines there is no dependence
I May be wrong when it determines there is a dependence

I Exact tests
I Detects dependence if and only if they actually exist



Subscripts

DO i
DO j
DO k

A(i, j) = A(i, k) + C
...

I First subscript: i and i

I Second subscript: j and k



ZIV, SIV and MIV

DO i
DO j
DO k

A(5, i+1, j) = A(N, i, k) + C
ENDDO

ENDDO
ENDDO

I First subscript 5 and N are zero-index variable (ZIV)
subscripts

I Second subscript i + 1 and i are single-index variable (SIV)
subscripts

I Third subscript j and k are multiple-index variable (MIV)
subscripts



Why ZIV, SIV and MIV matter

I Classifying subscripts allows tests tailored to each class of
subscript
I ZIV can simply be tested for equality
I SIV tests are usually simpler than MIV tests

I Other notions that help simplify dependence testing:
I Separability: a subscript does not share its index variables with

other subscripts
I Coupled: some subscripts share index variables

A(i+1,j,k-1)=A(i,j+i,k-1)
I See AK, Section 3.2 for more



The GCD test for integral solutions

The (linear) Diophantine equation:

a1i1 + a2i2 + ...+ anin = c

has solutions only if the greatest common divisor (gcd):

gcd(a1, a2, ..., an)

divides c



Examples

I 2i − 2j = 1

I 9x + 15y + 21z = 30
I Consider these together:

I x − 2y + z = 0
I 3x + 2y + z = 5
I After solving for z?



GCD test

I The GCD test returns false for an affine equality if the gcd
does not divide c

I So, for each affine expression:
I Check if the GCD test returns false, this implies no dependence

I If the GCD test returns true for all equations:
I Solve them using (e.g.) gaussian elimination
I Redo the GCD test, if result is false implies no dependence

I GCD is not an exact test
I Solutions may exist outside loop iteration space



Other heuristics

I Dragon Book 11.6.4
I Independent Variables Test
I Acyclic Test
I The Loop Residue Test

I AK, Chapter 3
I Various SIV tests
I Banerjee’s Inequality
I Delta test
I See 3.4.2 for more, esp. the Omega test
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Operating on intermediate forms

I All examples so far on FORTRAN source code
I with loops clearly marked
I with loop indices and array indices easily related

I Can we operate on an intermediate representation?
I Identify loops in CFGs
I Identify loop induction variables



Identifying loops

I Back edge
I An edge between nodes t and h, i.e. t → h, where h

dominates t

I A natural loop has a single-entry header node:
I All nodes in the loop are dominated by the header
I There is a back edge to the header node

I More formally, the natural loop for a back edge n→ d ,
I is the set of all nodes that can reach n without going through d

I Can be constructed using a depth-first search on the reverse
CFG
I See Algorithm 9.46 in the Dragon Book, Chapter 9, Section

9.6.6



Induction variables

An induction variable is a variable that changes by a fixed constant
value every iteration of the loop

I Can be computed using a single addition/subtraction every
iteration

I Can be used to eliminate multiplications
I Strength reduction



The problem with induction variables

for(i = 1; i < 10; i++) {
k = 3 * i;
A[k] = A[k - 1] + A[k + 1];

}

I k is not an index variable
I Can’t use in dependence tests

I It is, however, an induction variable
I Also, an affine function of the index variable



Substituting induction variables

for(i = 1; i < 10; i++) {
A[3*i] = A[3*i - 1] + A[3*i + 1];

}

See AK, Chapter 4, Section 4.5, for algorithms.



Loop normalization

for(i = 3; i < 30; i+=3) {
A[i] = A[i - 1] + A[i + 1];

}

After normalization:

for(i = 1; i < 10; i+=1) {
A[3*i] = A[3*i - 1] + A[3*i + 1];

}



Loop Transformation Workflow

I Identify loops

I Identify induction variables
I Normalize loops

I Loop bounds start from 0 (or 1)
I Loop bounds increase by 1
I All array index expressions only involve index variables or

loop-invariant expressions

I Perform dependence analysis
I Transform code

I (already seen) Vectorization
I Others: today and next lecture



Loop Source Transformations

See Dragon Book, Section 11.7.8 for affine transformations that
lead to source code transformations demo-ed on the remaining
slides.



Loop Fusion

Before:

for(i = 1; i <= N; i++)
Y[i] = Z[i];

for(j = 1; j <=N; j++)
X[j] = Y[j];

After:

for(p = 1; p <= N; p++)
Y[p] = Z[p];
X[p] = Y[p];



Loop Fission

Before:

for(p = 1; p <= N; p++)
Y[p] = Z[p];
X[p] = Y[p];

After:

for(i = 1; i <= N; i++)
Y[i] = Z[i];

for(j = 1; j <=N; j++)
X[j] = Y[j];



Loop Re-indexing

Before:

for(i = 1; i <= N; i++)
Y[i] = Z[i];
X[i] = Y[i - 1];

After:

if(N >=1) X[1] = Y[0]
for(p = 1; p <= N-1; p++) {

Y[p] = Z[p];
X[p+1] = Y[p];

}
if(N>=1) Y[N] = Z[N];



Loop Scaling

Before:

for(i = 1; i <= N; i++)
Y[2*i] = Z[2*i];

for(j = 1; j <= 2*N; j++)
X[j] = Y[j];

After:

for(p = 1; p <= 2*N; p++) {
if(p mod 2 == 0)

Y[p] = Z[p];
X[p] = Y[p];

}



Loop Reversal

Before:

for(i = 0; i <= N; i++)
Y[N-i] = Z[i];

for(j = 0; j <= N; j++)
X[j] = Y[j];

After:

for(p = 0; p <= N; p++) {
Y[p] = Z[N-p];
X[p] = Y[p];

}



Loop Permutation

Before:

for(i = 1; i <=N; i++)
for(j = 0; j <=M; j++)

Z[i, j] = Z[i-1, j];

After:

for(p = 0; p <= M; p++)
for(q = 0; q <= N; q++)

Z[q, p] = Z[q-1, p];



Loop Skewing

Before:

for(i = 1; i < N + M - 1; i++)
for(j = max(1, i+N); j <= min(i, M); j++)

Z[i, j] = Z[i-1, j-1];

After:

for(p = 1; p<=N; p++)
for(q = 1; q<=M; q++)

Z[p, q-p] = Z[p-1, q-p-1];
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References

I Allen and Kennedy, Chapter 3

I Alternatively, Chapter 11, Sections 11.4 and 11.6 of the
Dragon book

I Section 11.7.8 of the Dragon Book
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