CSC2/455 Software Analysis and Improvement
Dependence Testing

Sreepathi Pai
URCS

April 1, 2019



Outline

Review

Dependence Testing

Loop transformations

Postscript



Outline

Review



Loop optimizations so far

» Important applications

» Loop Dependences

» Identifying loop dependences
» Vectorization



Outline

Dependence Testing



The need for dependence testing

P Recall vectorization needs a dependence graph
» If no dependence, can be vectorized!
» Otherwise, need to figure out what the type of dependences
exist
» And their direction
» Other loop transformations (not just vectorization) will
depend heavily on accurate dependence information
» General problem requires solving an ILP
» Can we avoid this?



Recall: Dependence using lteration Vectors

Let « and 3 be iteration vectors:
> o= (i, 03, IN)
> 5= (i1, 0y, 05,0y ipy)
Then a dependence exists if:
> (vectors) a < 3
> X(a) =gX(B), forl<=X<=M

» remember, £X and gX are assumed to be affine expressions
» if they are not?



“Independence” Testing

» If no solutions to the ILP exist, then there are no dependences!
» Otherwise:

» What is direction of dependence?
» What level of the loop carries the dependence?



Exact and Conservative Tests

» Conservative test

> Always correct when it determines there is no dependence
» May be wrong when it determines there is a dependence

P> Exact tests
» Detects dependence if and only if they actually exist



Subscripts

DO i
DO j
DO k
A(i, j) = A, k) + C

» First subscript: i/ and /
» Second subscript: j and k



ZIV, SIV and MIV

DO i
DO j
DO k
A(5, i+1, j) = A(N, i, k) + C
ENDDO
ENDDO
ENDDO

» First subscript 5 and N are zero-index variable (ZIV)
subscripts

» Second subscript i + 1 and i are single-index variable (SIV)
subscripts

» Third subscript j and k are multiple-index variable (MIV)
subscripts



Why ZIV, SIV and MIV matter

» Classifying subscripts allows tests tailored to each class of
subscript
» ZIV can simply be tested for equality
» SIV tests are usually simpler than MIV tests
» Other notions that help simplify dependence testing:
» Separability: a subscript does not share its index variables with
other subscripts
» Coupled: some subscripts share index variables
A(i+1,j,k-1)=A(i,j+i,k-1)
> See AK, Section 3.2 for more



The GCD test for integral solutions

The (linear) Diophantine equation:

aih +ash+..4+ap,=c

has solutions only if the greatest common divisor (gcd):

gcd(a1, a2, ..., an)

divides ¢



Examples

> 2i—-2j=1

> Ox + 15y + 21z =30

» Consider these together:
> x—2y+z=0
> 3x+2y+z=5
» After solving for z7



GCD test

» The GCD test returns false for an affine equality if the gcd
does not divide ¢
» So, for each affine expression:
» Check if the GCD test returns false, this implies no dependence
» If the GCD test returns true for all equations:

» Solve them using (e.g.) gaussian elimination
P> Redo the GCD test, if result is false implies no dependence

» GCD is not an exact test
» Solutions may exist outside loop iteration space



Other heuristics

» Dragon Book 11.6.4
» Independent Variables Test
» Acyclic Test
» The Loop Residue Test
> AK, Chapter 3
» Various SIV tests
> Banerjee's Inequality
» Delta test
» See 3.4.2 for more, esp. the Omega test



Outline

Loop transformations



Operating on intermediate forms

» All examples so far on FORTRAN source code
» with loops clearly marked
» with loop indices and array indices easily related
» Can we operate on an intermediate representation?

» |dentify loops in CFGs
» Identify loop induction variables



|dentifying loops

> Back edge

» An edge between nodes t and h, i.e. t — h, where h
dominates t

» A natural loop has a single-entry header node:

» All nodes in the loop are dominated by the header
» There is a back edge to the header node

» More formally, the natural loop for a back edge n — d,
» is the set of all nodes that can reach n without going through d

» Can be constructed using a depth-first search on the reverse
CFG
» See Algorithm 9.46 in the Dragon Book, Chapter 9, Section
9.6.6



Induction variables

An induction variable is a variable that changes by a fixed constant
value every iteration of the loop

» Can be computed using a single addition/subtraction every
iteration
» Can be used to eliminate multiplications
» Strength reduction



The problem with induction variables

for(i = 1; i < 10; i++) {
k=23 % 1i;
Alk] = Alk - 1] + A[k + 1]1;
}

P> k is not an index variable
» Can't use in dependence tests
» |t is, however, an induction variable
> Also, an affine function of the index variable



Substituting induction variables

for(i = 1; i < 10; i++) {
A[3*i] = A[3*i - 1] + A[3*i + 1];
}

See AK, Chapter 4, Section 4.5, for algorithms.



Loop normalization

for (i

=3; i < 30; i+=3) {
Ali] =
}

A[i - 1] + A[i + 1];

After normalization:

for(i = 1; i < 10; i+=1) {
A[3%i] = A[3*i - 1] + A[3*i + 1];
}



Loop Transformation Workflow

v

Identify loops

v

Identify induction variables
» Normalize loops

» Loop bounds start from 0 (or 1)

» Loop bounds increase by 1

» All array index expressions only involve index variables or
loop-invariant expressions

» Perform dependence analysis

» Transform code

> (already seen) Vectorization
» Others: today and next lecture



Loop Source Transformations

See Dragon Book, Section 11.7.8 for affine transformations that
lead to source code transformations demo-ed on the remaining
slides.



Loop Fusion

Before:
for(i = 1; i <= N; i++)
Y[i]l = Z[i];
for(j = 1; j <=N; j++)
X[31 = Y[j1;
After
for(p = 1; p <= N; p++)
Y[pl = Z[p];
X[pl = Y[pl;



Loop Fission

Before:

for(p =
Y[p]
X[p]

After:



Loop Re-indexing

Before:
for(i = 1; i <= N; i++)
Y[i] = z[il;
X[i] = Y[i - 1];
After:

if (N >=1) X[1] = Y[0]

for(p = 1; p <= N-1; p++) <
Y[pl = Z[pl;
X[p+1] = Y[pl;

}

if (N>=1) Y[N] = Z[N];



Loop Scaling

Before:
for(i = 1; i <= N; i++)
Y[2*xi] = Z[2*i];

j <= 2xN; j++)
Y[il;



Loop Reversal

Before:

for(i = 0; i <= N; i++)
Y[N-i] = Zz[i];

for(j = 0; j <= N; j++)

X031 = Y[3l;
After:
for(p = 0; p <= N; p++) {
Y[pl] = Z[N-p];
X[pl = Y[pl;

}



Loop Permutation

Before:

for(i = 1; i <=N; i++)
for(j = 0; j <=M; j++)
zli, j1 = Z[i-1, j1;

After:
for(p = 0; p <= M; p++)
for(q = 0; q <= N; qg++)
Zlq, pl = Z[9-1, pl;



Loop Skewing

Before:

for(i = 1; 4 < N + M - 1; i++)
for(j = max(l, i+N); j <= min(i, M); j++)
z[i, jl = z[i-1, j-11;

After:
for(p = 1; p<=N; p++)
for(q = 1; q<=M; q++)
Zlp, q-pl = Zlp-1, q-p-1l;



Outline

Postscript



References

» Allen and Kennedy, Chapter 3

> Alternatively, Chapter 11, Sections 11.4 and 11.6 of the
Dragon book

» Section 11.7.8 of the Dragon Book



	Review
	Dependence Testing
	Loop transformations
	Postscript

