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Administrivia

I Assignment #4 is out
I Due date: Tuesday, Nov 26, 7PM

I Assignment #5 (last!) will be out Dec 2
I Due on Dec 11
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Communication between computers

I Getting different computers to work together requires
networking

I Many different ways of physically building a network
I Physical: Copper, Optical fibre, Wireless, etc.
I Technologies: Ethernet, InfiniBand, GSM, CDMA, 802.11 etc.

I Lots of physical (and logical) components
I Nodes, bridges, routers, etc.

I Ultimately, though, software needs to use the network
I The focus of today’s class
I See the textbook for details on network organization
I Or take CSC2/457



Streams and Packets

I Stream-oriented communication
I Data is sent in some order and must be received in that same

order
I Usually because data bytes are ordered (e.g. contents of a file)
I Communication must be reliable, data bytes must not be lost

and errors must be detected
I Usually long-lived

I Packet-oriented communication
I Data is sent as “packets”, independent pieces of data
I Packets are not ordered, can be delivered out-of-order
I Packets may be lost, corrupted or duplicated
I Communication usually does not last longer than a single

packet



Circuit-switching vs Packet switching

I Switching: determining the path taken by data
I Circuit-switching

I Establish a circuit from source to destination once at
beginning of connection

I Data takes the path established by the circuit
I Beloved of telephone companies
I e.g. ISDN, ATM (not the machines dispensing money)

I Packet-switching
I No fixed path from source to destination
I Packets choose their own path, on a hop-by-hop basis
I Foundation of the Internet
I e.g. Internet Protocol



Stream-oriented communication using packets?

I ARPA chose packet-switching for the initial design of the
Internet because it was highly resilient
I Imagine the network as a graph, with computers as nodes and

communication links as edges
I Packet-switching can get the data across even when many

links and nodes fail
I Usually by choosing a path around these failures

I But, packets can:
I be reordered
I can be corrupted
I can get lost

I How to build an abstraction of stream-oriented
communication over a packet-switched network?
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Internet Protocol

I The building block of the Internet
I two major versions: IPv4 and IPv6

I IP is designed to connect networks (hence internet(working))
I Typically, machines on a single network can talk directly to

each other
I IP specifies how to route packets across networks

I All nodes in the network have an address
I IPv4: 32-bit addresses
I IPv6: 128-bit addresses

I IP usually runs over a local network protocol
I Usually, Ethernet for wired networks



Ethernet: A local network protocol

I Designed at Xerox PARC by Bob Metcalfe
I Originally designed for a shared broadcast medium

I All computers share the same communication medium
I Two (or more) computers cannot talk at the same time
I Key question: how to allow computers to share this medium?



How Ethernet solves the shared medium problem

I Computers check if a communication is in progress

I If not, they start communicating
I If two computers started communicating at the same time,

they’ll interfere with each other
I Called a collision
I These collisions can be detected

I Both computers will stop and try again after waiting a
random interval of time
I This interval of time will increase exponentially on each

unsuccessful attempt
I Called random (or exponential) backoff

I Alternatives to Ethernet: Token Ring



How IP works

$ route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.1.1 0.0.0.0 UG 600 0 0 wlan0
192.168.1.0 0.0.0.0 255.255.255.0 U 600 0 0 wlan0

I Each node contains a routing table (you can use the
command route) to print it out

I The routing table contains information on how to route
packets

I In the example above
I addresses 192.168.1.0 to 192.168.1.255 are local and packets

should be sent directly via interface wlan0
I all other addresses should be sent to the gateway at

192.168.1.1 which will forward them

I These are IPv4 addresses, consisting of four 8-bit numbers
separated by periods.



Local IP transmission

I If 192.168.1.5 wants to send packets to 192.168.1.1, it can
send them directly

I However, this requires knowing the MAC address of
192.168.1.1
I Media Access Control, i.e. the “Ethernet” address

I Usually, this is done by broadcasting a query to all local
nodes: “who is 192.168.1.1?”
I This is called the address resolution protocol (or ARP)
I The result is cached to avoid frequent broadcasts

I Once a MAC address is obtained, Ethernet can be used to
directly send the packet



Non-local IP transmission

I If 192.168.1.5 wants to send packets to 8.8.8.8, it cannot send
them directly

I For non-local addresses, packets are sent to the gateway
I The gateway is on the local network

I The gateway is connected to at least two networks
I If the packet is intended for one of its two networks, it can do

local delivery
I Otherwise, it forwards the packet to the next gateway

I The forwarding step can be made faster using “routers”
I Gateways that discover and remember the fastest path to a

network



IP Data transmission algorithm

I If address is local
I find MAC address using ARP (if not known)
I send packet directly using link-layer protocol (i.e. Ethernet)

I If address is non-local
I send packet to gateway



IP Packets

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I TTL: field is decremented by one by each gateway/router
I Packet discarded when the field reaches 0

I Protocol: identifies next-level protocol
I Ethernet at bottom, followed by IP, followed by ...

(from historical standard RFC 791)

https://tools.ietf.org/html/rfc791


Example IP Packet (or ‘Datagram’)

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ver= 4 |IHL= 5 |Type of Service| Total Length = 21 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification = 111 |Flg=0| Fragment Offset = 0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time = 123 | Protocol = 1 | header checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| source address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| destination address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| data |
+-+-+-+-+-+-+-+-+

I Protocol 1 is Internet Control Message Protocol (ICMP)
I The protocol used for sending pings
I Or network error messages (“Destination unreachable”)
I BTW, this is not a valid ICMP packet, just an example



TCP and UDP

I Like ICMP, these are next level protocols built on top of IP
I User Datagram Protocol or UDP

I Provides user-level (think application-level) packet
communication

I Recall, IP is for node-to-node communication

I Transmission Control Protocol or TCP
I Provides a reliable, stream-oriented communication on top of

IP
I Also user/application-level



UDP

0 7 8 15 16 23 24 31
+--------+--------+--------+--------+
| Source | Destination |
| Port | Port |
+--------+--------+--------+--------+
| | |
| Length | Checksum |
+--------+--------+--------+--------+
|
| data octets ...
+---------------- ...

I UDP extends IP addresses with the notion of a port
I A port is a 16-bit unsigned number (0 to 65535)

I An application “listens” on a well-known port
I e.g. 8.8.8.8:53, where 53 is the port on node 8.8.8.8
I data addressed to a port is forwarded to the application

I UDP packets are encapsulated in IP
I I.e. a UDP packet is the “data” portion of an IP packet
I Protocol is set to 17



TCP

I TCP must:
I provided stream-like data transfer
I deliver data in order
I detect data corruption
I handle lost packets

I Usually implemented over IP, so TCP/IP



General outline of TCP

I TCP provides stream-like data transfer
I By using the notion of a connection before transferring data
I Each connection is identified by an address:port pair, one for

both sides of a connection
I e.g. 192.168.1.2:5810 to 8.8.8.8:80

I Delivers data in order
I Adds sequence numbers which aid ordering

I Detect data corruption
I Adds checksums

I Handles lost packets
I Sequence numbers identify lost or late packets
I Packets are retransmitted after a timeout
I Also identifies duplicate packets

I Many other details
I Setting up connections
I Congestion control



Well-known ports

I TCP requires a connection to be established
I Need to know addresses of both nodes
I Need source port and destination port

I Many destination ports are well-known
I 80 is for a web server using HTTP
I 443 is for a web server using HTTPS
I 21 is for file transfer protocol
I 22 is for secure shell
I 25 is for SMTP (i.e. sending email)

I Your OS usually assigns a random port to the source side of
the connection



Programmer’s Perspective

I Does your application need reliable, ordered communication?
I Use TCP

I Is it transactional and can handle missing/corrupted packets?
I Use UDP

I Note sometimes protocols mandate use of TCP or UDP
I Domain name service (DNS) uses UDP (but also supports

TCP)
I HTTP/1 and HTTP/2 only use TCP
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Sockets

I Original terminology from ARPANET
I Usage today very different from that definition

I A socket is one end of a connection (i.e. one address:port
pair)

I Programming interface for networking applications
I Developed and popularized by BSD Unix

I Nearly the same interface in any operating system
I And across programming languages
I the Plan9 OS is a notable exception



Creating sockets

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

I domain is AF INET for IPv4
I also used AF UNIX for Inter-process Communication

I type is SOCK STREAM or SOCK DGRAM
I Roughly correspond to TCP and UDP respectively

I protocol is usually 0
I socket returns a file descriptor

I Use read and write for TCP
I Use send and recv for UDP (can also be used for TCP)



Specifying destination

int connect(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

I For TCP, connect will try to open a connection to addr

I For UDP, connect will send any future packets to addr
I It will also only accept packets sent by addr

I These must be numeric addresses, not names
I I.e. 172.217.7.14 not google.com



Aside: Resolving names to addresses

#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints,
struct addrinfo **res);

I Names are “converted” into addresses using a resolver
I Known as name resolution
I Needs to look up a database of names to addresses

I Nearly always use the Domain Name Server (DNS) protocol
I But can also use other alternatives like UPnP

I getaddrinfo takes a name (node) and a service (“http”)
and returns an address
I service can be NULL
I Don’t use gethostbyname which is obsolete



Sending data

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

I Sends data to a destination
I Must have been specified using a previous connect call



Receiving data

ssize_t recv(int sockfd, void *buf, size_t len, int flags);

I Receives data from a socket
I This must be a connected socket

I recv will block until data is received



Blocking vs Nonblocking I/O

I Many functions that perform I/O block by default
I read, recv, scanf

I Although this simplifies programming, programs may want to
check if data is available or not

I Programs can use fcntl to set a socket to non-blocking
mode

I In this case, if the operation would normally block, it will
instead return EWOULDBLOCK
I Or EAGAIN

I Allows you to overlap I/O with computation
I Very useful prior to threading



Asynchronous I/O

I Instead of checking if an I/O operation has completed, you
can use asynchronous I/O

I OS will notify your program that I/O is complete

I All operations in asynchronous I/O are non-blocking by default
I See manual page for aio for more information

I Or see Overlapped I/O in Windows



Overview of Client-side Interface

I Create a socket

I connect it

I send or recv data from it

I close it
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Server-side sockets: bind

int bind(int sockfd, const struct sockaddr *addr,
socklen_t addrlen);

I sockfd is obtained from socket

I addr is local address to accept requests on
I Usually set to 0.0.0.0 for IPv4 to accept requests on all of the

node’s IP addresses



Listen

int listen(int sockfd, int backlog);

I sockfd is a socket for which bind has been called

I backlog specifies queue depth – connections made after this
has been exceeded may be refused



Accept

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

I Waits until a connection is made (unless the socket is
non-blocking) to sockfd
I which must be a socket on which listen has been called

I Returns the address of the other side of the connection in
addr

I Returns the file descriptor for an accepted socket, i.e. the
connection
I This is used to send and receive data
I The original socket continues to listen for more connections
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Echo Server: Creating and Binding a socket

l = socket(AF_INET, SOCK_STREAM, 0);
if(l == -1) {
perror("socket");
exit(1);

}

struct sockaddr_in addr;

memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(5000); /* convert to network byte order */
addr.sin_addr.s_addr = INADDR_ANY;

if(bind(l, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("bind");
exit(1);

}



Echo Server: Listening

if(listen(l, 1) == -1) {
perror("listen");
exit(1);

}



Echo Server: Accept Loop

struct sockaddr_in sender;
socklen_t addrlen = sizeof(sender);
int s, r;

char buf[256];

while((s = accept(l, (struct sockaddr *) &sender, &addrlen)) != -1) {
r = recv(s, buf, 255, 0);
if(r == -1) {

perror("recv");

close(s);
} else {

buf[r] = ’\0’;

printf("received ’%s’\n", buf);

if(send(s, buf, r, 0) == -1) {
perror("send");

}

close(s);
}

}



Echo Client: Creating a socket

l = socket(AF_INET, SOCK_STREAM, 0);
if(l == -1) {
perror("socket");
exit(1);

}



Echo Server: Connecting

struct sockaddr_in addr;

memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(5000);
addr.sin_addr.s_addr = htonl(0x7f000001); // 127.0.0.1

if(connect(l, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("connect");
exit(1);

}
printf("connected\n");



Echo Server: Send/Recv

char buf[256];
int r;

r = scanf("%255s", buf);
if(r != 1) {

perror("scanf");
exit(1);

}

if(send(l, buf, strlen(buf)+1, 0) == -1) {
perror("send");
exit(1);

}

r = recv(l, buf, 255, 0);
if(r == -1) {

perror("recv");
exit(1);

} else {
buf[r] = ’\0’;
printf("got ’%s’\n", buf);

}



Problems with the Echo Server

I The echo server handles one connection at a time

I It is serial
I What if a client connects but does not send a message?

I What happens to clients who connected after that client?



References

I Chapter 11 of the textbook
I And Chapter 12.2 which talks about I/O multiplexing (one

solution to one client at a time)

I Read the manual pages for socket and pages related to it
I Or read the GNU libc manual for sockets

https://www.gnu.org/software/libc/manual/html_node/Sockets.html##Sockets
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