
CSC2/452 Computer Organization
Virtual Memory

Sreepathi Pai

URCS

October 30, 2019



Outline

Administrivia

Recap

Memory Virtualization

x86-64 Implementation of Virtual Memory

OS implementation of virtual memory



Outline

Administrivia

Recap

Memory Virtualization

x86-64 Implementation of Virtual Memory

OS implementation of virtual memory



Administrivia

I Assignment #3 is already out
I Due Nov 8, 2019 at 7PM

I Homework #5 out today
I Due Monday, Nov 11
I I have printed copies with me today



Outline

Administrivia

Recap

Memory Virtualization

x86-64 Implementation of Virtual Memory

OS implementation of virtual memory



The OS and virtualization

I The operating system and CPU cooperate to perform
virtualization

I CPU virtualization
I Time sharing

I Memory virtualization
I Today



Outline

Administrivia

Recap

Memory Virtualization

x86-64 Implementation of Virtual Memory

OS implementation of virtual memory



The High-Level Problem

How do you make every program
believe it has access to the full
RAM?

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0 

Memory
invisible to
user code

Read/write data 

Read-only code and data

Loaded from the 
hello

printf function 

Program
start



Time Sharing

Program A

Program B

Memory

I Program A starts executing with full access to memory

I Timer interrupt
I All memory for Program A is copied to “swap area”

I swap area could be hard disk, for example

I All memory for Program B is loaded from “swap area”

I Program B starts executing

I Repeat



The Problem with Time Sharing

I My laptop has 8GB of RAM
I Worst case save and restore data size

I My HDD writes about 500MB/s

I 16s to save full contents of memory

I 16s to load full contents of memory

I 32s to switch between programs



Space Sharing

Program A Program B Empty

Memory

I Divide memory into portions

I Each program gets some portion of memory



The Problems with Space Sharing: #1

Program A Program B Empty

Memory

I How do we size each portion?
I Fixed-size allocations waste space



Problem #2: Contiguous address space requirements

Program A Program B Program A

Memory

I Can’t change size of allocations as programs are running
I Atleast not easily
I Need contiguous address spaces

I Think of an array that is bigger than each portion, but smaller
than two portions combined



Problem #3: Can’t move allocations

Program B Program A

Memory

I Can’t move allocations
I Pointers in programs would need to be updated



Adding a Translation Layer

I Programs need to see one contiguous address space
I We will call this the virtual address space

I We will translate from this virtual address space to actual
physical address space

I Programs use virtual addresses, only the OS sees physical
addresses



Virtual and Physical Addresses

I A virtual address and a physical address are “physically”
indistinguishable
I Both are 64-bit
I However, virtual addresses span the whole 64-bit range
I Physical addresses only span the actual amount of physical

memory present

I All addresses used in programs are virtual
I Except in very special cases when values of virtual addresses

and its translated physical address are the same
I Usually, when doing I/O with devices that don’t understand

virtual addresses



Translation Granularity

I We could translate any virtual address to any physical address
I I.e. at byte level granularity

I But, it is more efficient to translate larger regions of memory
I Memory is divided into non-overlapping contiguous regions

called pages
I Most common page size is 4096 bytes (or 4KB)
I But modern systems support large (or huge) pages (2MB or

more)



The Memory Management Unit

translate

page offset

page offsetpage frame

virtual address

physical address

0111263

I A load or store instruction uses virtual addresses
I The memory management unit (MMU) translates this virtual

address to a physical address
I Nearly everything “downstream” of the MMU sees physical

addresses



Who maintains the translations?

I Although the CPU performs the translations, they are actually
set up by the OS

I Page translations can change
I Virtual address remains the same
I Physical address changes

I This allows:
I Allocation sizes to shrink and grow at page size granularity
I Physical addresses can be non-contiguous



Swapping Pages Out

I The OS can mark virtual addresses as “not present”
I The pages corresponding to these virtual addresses are not

“mapped in”
I Their contents may be on disk
I No physical addresses are assigned to these virtual addresses

I Accessing these “swapped out” pages causes a page fault
I CPU “suspends” processing of load/store instruction that

caused fault
I MMU notifies OS



Swapping Pages Back In

I When the OS receives a page fault notification, it can:
I identify a page in physical memory
I create a new mapping from the faulting virtual address to this

page
I load the contents of the newly mapped page from disk (if it

was swapped out)
I tell MMU that a new mapping has been set up

I CPU can then resume processing of load/store instruction



Summary

I Virtual memory uses a virtual address space
I One, contiguous, linear address space

I Addresses are in the virtual address space are translated to
physical addresses at page granularity

I Translations are setup by OS

I CPU MMU performs the translation on every load/store
I Virtual addresses can be marked as not present

I Allows system to support allocating more physical memory
than actually present!

I CPU notifies OS whenever these addresses are accessed

I Programs do not notice these translations (except as loss in
performance)



Outline

Administrivia

Recap

Memory Virtualization

x86-64 Implementation of Virtual Memory

OS implementation of virtual memory



x86-64 VM Implementation

I Pages are 4KB (4096 bytes) in size
I How many bits?
I Also supports 2MB and 1GB pages, but we will not discuss

these

I Uses a structure called a page table to maintain translations
I Note, current implementations only use 48-bit virtual addresses
I How many entries in page table?



x86-64 Page Table Design

I 12 bits for offset within page (4096 bytes)
I 36 bits remaining

I 16 bits not used in current x86-64 implementations

I Page table will contain 236 entries
I Each program will require 8 × 236 bytes for its page table
I How much is this?



Space requirements for the page table

512GB

I Ideally, we only need to store as many translations as there are
physical pages
I e.g., if 8GB physical RAM, then 2097152 pages, so 16MB for

page table entries
I Called an inverted page table design

I Not used by x86-64



Hierarchical Page Tables

I Instead of a single page table, multi-level page tables are used
I On the x86-64, each level contains 512 entries

I How many bits required to index into each level?
I How many levels (given we have 36 bits)?

I Each entry is 64-bits wide
I Total size of each level?

I NOTE: (updated after class), x86-64 supports 52-bits in
physical addresses



Translation: Goal

39 38

4-KByteOffsetDirectory Ptr

Linear Address

Table

011122021

Directory

30 29

PML4

47

12

Physical Addr

4-KByte Page

Offset



Translation: First level

CR3

39 38
ble

40

4-KByteOffsetDirectory Ptr

Linear Address

Table

011122021

Directory

30 29

PML4

47

9

PML4E

12

Physical Addr

4-KByte Page

Offset



Translation: Second level

PDPTE

CR3

39 38

Pointer Table

9

40

4-KByteOffsetDirectory Ptr

Linear Address

Table

011122021

Directory

30 29

Page-Directory-

PML4

47

9

PML4E

40

12

Physical Addr

4-KByte Page

Offset



Translation: Third level

PDPTE

CR3

39 38

Pointer Table

9
9

40

4-KByteOffset

PDE with PS=0

Directory Ptr

Linear Address

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

12

Physical Addr

4-KByte Page

Offset



Translation: Fourth level

PTE

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

9

40

4-KByteOffset

PDE with PS=0

Directory Ptr

Linear Address

Table

011122021

Directory

30 29

Page-Directory-

Page-Directory

PML4

47

9

PML4E

40

40

40

12

Physical Addr

4-KByte Page

Offset



Space requirements for multi-level page tables

I Each level contains 512 8-byte entries containing physical
addresses
I 4096 bytes

I A minimal program could get away with 4096*4 bytes for the
page tables
I No need for 512GB or even 16MB

I Note some of these levels can be “paged out”
I I.e. each entry in these tables contains a present bit



Translation Overheads

I Translating one memory address requires reading 4 other
addresses!
I This is called a “page table walk”, performed by the MMU

I Can we avoid reading the page table on every read access?



The Translation Look-aside Buffer (TLB)

I The TLB is a small cache used by the MMU
I Usually fewer than 10 entries, fully associative

I It caches the contents of final translation
I Must be invalidated whenever the translation changes (the

invlpg instruction)

I MMU checks TLB if it contains translation
I If it does, no page table walk is performed



Entry formats

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved2 Address of PML4 table Ignored
P
C
D

P
W
T

Ign. CR3

X
D
3

Ignored Rsvd. Address of page-directory-pointer table Ign. Rs
vd

I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1 PML4E:
present

Ignored 0
PML4E:

not
present

X
D

Prot.
Key4 Ignored Rsvd. Address of

1GB page frame Reserved
P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:

1GB
page

X
D

Ignored Rsvd. Address of page directory Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:
page

directory

Ignored 0
PDTPE:

not
present

X
D

Prot.
Key4 Ignored Rsvd. Address of

2MB page frame Reserved
P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D

Prot.
Key4 Ignored Rsvd. Address of 4KB page frame Ign. G

P
A
T

D A
P
C
D

P
W
T

U
/S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present



Page Permissions

I U/S: User/Supervisor
I if this bit is 0, a user-space process cannot read/write this page
I this is how the kernel protects itself from user programs

(among other “defenses”)

I R/W: Read/Write
I if this bit is 0, this page cannot be written
I e.g. pages containing code or read-only data

I XD: eXecute Disable (Intel terminology)
I if this bit is 1 and the machine supports XD, then instructions

cannot be fetched from this page

Attempting to perform forbidden actions causes the CPU to
generate a fault.



How Caches Change with Virtual Memory

I Should you use virtual addresses to index the cache?
I Should you do this at all levels?

I Which address should the tag be constructed from?
I Virtual or physical?



How Prefetchers Change with Virtual Memory

I Recall, a prefetcher fetches data before it is required

I What happens if a prefetcher tries to fetch data from a page
that is swapped out?



Outline

Administrivia

Recap

Memory Virtualization

x86-64 Implementation of Virtual Memory

OS implementation of virtual memory



OS Implementations of Virtual Memory

I mmap

I mprotect



References and Acknowledgements

I Chapter 9
I Acknowledgements

I Figure of memory layout from the textbook
I Figures of page tables and page table entries from Intel

Software Developers Manual, Vol 3, System Programming
Guide


	Administrivia
	Recap
	Memory Virtualization
	x86-64 Implementation of Virtual Memory
	OS implementation of virtual memory

