
CSC2/452 Computer Organization
IO, OS, and Virtualization

Sreepathi Pai

URCS

October 28, 2019

Outline

Administrivia

Recap

System-level I/O

Time-sharing

The Operating System

Outline

Administrivia

Recap

System-level I/O

Time-sharing

The Operating System

Administrivia

I Assignment #3 (Memory Allocator) is out today
I Due Nov 8, 2019 at 7PM
I Start early, this one is difficult
I 300 to 400 lines of pointer-heavy code

I Homework #5 out Wednesday
I Due Monday, Nov 11

Outline

Administrivia

Recap

System-level I/O

Time-sharing

The Operating System

CPU + RAM

L1 Cache (L1$)

L2 Cache (L2$)

Mem. Ctrller

RAM

to LS/U
CPU

What about peripheral devices or input/output devices?

I Mouse, Keyboard

I Monitor

I Disks

Outline

Administrivia

Recap

System-level I/O

Time-sharing

The Operating System

Bus

A bus is a logical interface for communication between multiple
devices. In its simplest form, it is a bunch of wires with devices
connected to it (e.g. I2C).

I Peripheral Component Interconnect (PCI)
I Succeeded ISA (Industry Standard Architecture, the bus in the

IBM PC)
I Most modern computers have PCIe (for express)
I Used for “extension cards” (e.g. sound cards, video cards, etc.)

I Serial AT Attachment
I AT: Advanced (1980s!) Technology (from IBM PC/AT)
I Used for (internal) rotating hard disks

I Universal Serial Bus (USB)
I Commonly used for external devices

I I2C
I Used for sensors (fan speed, temperature, etc.)
I More common in embedded devices (e.g. Raspberry Pi)

I/O Port

Since multiple devices can be connected to the same bus, we need
a mechanism to address each device.

I Many different solutions, no one solution
I Common idea, assign a set of addresses to a device

I Usually such an I/O address is also called an I/O port

x86 I/O

I On x86, I/O addresses look like memory addresses, but
cannot be used by load/store instructions

I These I/O addresses form a distinct I/O address space
I x86 has special instructions to read/write I/O devices:

I IN imm8 (or DX), AL or AX or EAX
I OUT
I also, for strings for data, INS and OUTS

Design considerations

Why a separate I/O address space?

Alternate Design: Memory-mapped I/O

I Devices appear in the same address space as RAM

I Use load/store instructions to read/write from these devices
I Processor redirects loads/stores to devices or to RAM

I Depends on address of load/store

I Key advantage: no I/O instructions needed
I Key disadvantage: consumes part of address space

I Not a big deal in 64-bit address spaces?

Setting up MMIO

I The OS and/or the firmware (usually BIOS) query each device
connected to a bus
I Usually at boot

I Each attached device is given a portion of the address space
I This space cannot be used as “memory”
I All reads/writes to these addresses will go to the device

I Needless to say:
I This varies from system to system (PC/Mac/Raspberry Pi,

etc.)
I Also varies by operating system

Communicating with an I/O device

I In the early days of computing, I/O was very slow
I Actually handed off to dedicated I/O processors

I I/O is still considered slow relative to the CPU
I A CPU can execute billions of instructions per second
I Keyboards, printers, scanners, disks, etc. are much slower

I Some I/O devices are very very fast
I High-speed network devices (10GbE)
I Some new flash memory

I Two strategies to deal with I/O devices
I Polling (Synchronous)
I Interrupt-Driven (Asynchronous)

Synchronous I/O (aka Polling)

I CPU sends request to device
I By writing to an I/O port (or mapped address)

I CPU “polls” device for request completion
I Usually by reading a status I/O port in a loop
I Are you done yet?
I Are you done yet?
I Are you done yet?
I ...

I When device completes request, the status value CPU is
reading changes

I The CPU can then continue whatever it was doing

Polling

I Polling is simple, but ties up the CPU
I Usually avoided except for very high-speed devices

I In these cases, devices can respond within nanoseconds
I Examples: high-bandwidth network links (10GbE, 100GbE)

Asynchronous I/O (aka Interrupt-Driven I/O)

I CPU sends request to device

I Device begins working on request
I When device finishes, it notifies the CPU that it is done

I Notification sent using a hardware mechanism called an
interrupt

I CPU receives interrupt
I Stops whatever it is doing
I Handles the interrupt (i.e., the I/O request)
I Resumes whatever it was doing when the interrupt arrived

Interrupt Service Routine (ISR)

I An ISR is the handler for the interrupt
I It is automatically invoked by the processor when an interrupt

is received
I On the x86, in 16-bit “real mode”, the first 1024 bytes of

memory contains the function pointers for each ISR
I Address 0 contains the address of ISR for Interrupt 0
I Address 4 contains the address of ISR for Interrupt 1 and so on
I 32 and 64-bit x86 allow this table of function pointers to be

anywhere in memory

I An interrupt may occur at any time (asynchronous)

I How should an ISR save and resume the execution state?

Scenario: Knowing where to return

ISR:

... read value from I/O device into eax
test %eax, %eax
jz ...
...
iret

User’s program:

add $1, %ecx
----------------> interrupt happens here
cmp %ecx, $9
jg loop_exit
...

There is no CALL to the ISR, how does iret know where to
return?

Scenario: Preserving State

ISR:

... read value from I/O device into eax
test %eax, %eax
jz ...
...
iret

User’s program:

add $1, %ecx
cmp %ecx, $9
----------------> interrupt happens here
jg loop_exit
...

What value of EFLAGS will jg operate on?

Execution State

It is possible to store the current “execution” state of the
processor, by storing the current values of the following registers
before switching to the ISR and restoring them after iret

I Program Counter (PC) (rip)

I Flags register (EFLAGS) (eflags)
I And in some special cases (read the x86 manual for IRET):

I Segment Registers (cs, etc.)
I Stack Pointer (SP) (rsp)
I and other registers ...

The processor automatically saves the processor state before
invoking the ISR.

Interrupts

I Interrupts originally were used by external devices to signal
the CPU

I But the CPU also uses interrupts to signal exceptions:
I division by zero,
I segmentation fault

I Software can also generate interrupts directly
I using the int instruction
I for example, the Linux kernel system calls can be invoked using

int $0x80 in 32-bit mode
I example of a system call: open a file

No Interruptions

I It is possible to turn off interrupts (or actually “mask” them)
I Interrupts are still generated
I But are not handled

I This is very useful when you do not want interference from
ISRs

I However, some interrupts cannot be turned off
(“non-maskable interrupts”)

Direct Memory Access (DMA)

I A DMA controller is a device that can read/write to RAM
independent of the CPU

I Used to transfer large amounts of data from RAM to a
hardware device (or vice versa)
I Without occupying the CPU

I General flow:
I CPU sets up DMA controller to read/write from one range of

memory addresses to another
I DMA performs the reads/writes
I DMA interrupts the CPU when it is done

Summary of I/O

I Memory-mapped I/O

I Synchronous I/O (Polling)
I Asynchronous I/O (Interrupt-driven I/O)

I Interrupts, ISRs, etc.

I DMA

Outline

Administrivia

Recap

System-level I/O

Time-sharing

The Operating System

A Hardware Timer

I Imagine you have a timer device that generates interrupts at a
fixed rate
I Say one every 100ms

I Can be used to keep track of time at 100ms intervals
I Or can be used to implement a crude form of time-sharing

I Where multiple programs run at the same time

Crude Time-sharing

I Program A is running

I Timer interrupt fires, and control transfers to ISR
I ISR saves Program A’s state, and returns to Program B

I Does not use IRET

I Repeat by returning to Program C, Program D, Program A,
Program B, etc.

Non-crude Time-sharing

I Most modern operating systems use the hardware clock to
give each program a slice of CPU time
I Usually 100ms

I Program state is saved and another program is given a time
slice at the end of each interval
I CPU supports special instructions to save/restore program

state

I This is the first essential step to get multiple programs
running on the CPU
I Called “CPU virtualization”
I Each program thinks it has use of full CPU

Outline

Administrivia

Recap

System-level I/O

Time-sharing

The Operating System

Resources

I Many resources on a computer
I CPU
I RAM
I I/O devices

I How to share these resources among different programs?
I For efficiency

I How to provide uniform interfaces for different devices?
I For productivity

Virtualization

I The Operating System (OS) and the CPU conspire to make
every program believe it has sole access to the machine.

I Each program believes
I it has its own CPU
I RAM
I access to I/O devices

I Except that behind the scenes, multiple programs are:
I time-sharing the CPU
I space-sharing/time-sharing the RAM
I interleaving accesses to I/O devices

The Operating System

I Also called the kernel

I A program that interfaces to the CPU and I/O devices on
behalf of user programs

I Provides uniform abstractions over diverse hardware
I A keyboard is a keyboard, regardless of whether it is bluetooth,

USB or PS/2

I Provides a large number of useful services to programs
I Data/file storage, network connectivity, etc.

I Security mechanisms
I Learn more about OS in CSC256

I In 252, we will focus on OS + CPU/Hardware interactions

Process

A process is an operating system abstraction for a (running)
program and its state.

I Code

I Data

I All CPU state (program counter, stack, etc.)

I All files

I Network connections, etc.

Different processes share the CPU using time-sharing (also called
multitasking).

Signals

A signal is a Unix-specific mechanism to notify programs
asynchronously.

I It is a software analogue to interrupts
I Actually, many interrupts are translated into signals

I A handler is a C function that is called when a signal is
received
I Equivalent to an ISR

I The OS:
I Saves the current execution state of the program
I Calls the signal handler
I Resumes execution once the signal handler returns

Generating Signals

I The raise or kill system calls can be used to generate
signals
I Analogous to the Int instruction

I A program can send signals to itself using raise

I A program can send signals to other programs using kill
I A crude form of interprocess communication
I And clearly not a very well-thought out name

Some examples of signals

I C standard signals (signal.h)
I SIGABRT, abort execution
I SIGFPE, floating point exception
I SIGILL, invalid/illegal instruction
I SIGINT, interrupt program, sent when you press CTRL+C
I SIGSEGV, segmentation fault
I SIGTERM, terminate request, sent when you press CTRL+\

I Other important Unix signals
I SIGSTOP, stop a program
I SIGCONT, continue a stopped program
I SIGTSTP, request a program to stop, sent when you press

CTRL+Z
I SIGKILL, kill a program
I many more ..., run kill -l in a shell for the list

Signal handling

I Most signals can be “caught” and handled, or ignored
I You provide handlers for them, or use default handler

I Some signals cannot be caught or ignored
I SIGKILL
I SIGSTOP

Example: Handler

void my_int_handler(int sig, siginfo_t *info, void *ucontext) {
puts("In interrupt handler, receiving signal\n");

}

I sig is the signal being handled

I info contains lots more information about where and how the
signal was generated

I ucontext contains information on what the program was
doing
I Not generally used

Example: Setting up a handler

int main(void) {
struct sigaction setup;
struct sigaction prev;

// Indicate that I’m providing a new handler
setup.sa_flags = SA_SIGINFO;

// Provide the function pointer to my new handler
setup.sa_sigaction = my_int_handler;

// install handler for sigint
if(sigaction(SIGINT, &setup, &prev) == 0) {

int x;

while(1) {
printf("Enter a number: ");
scanf("%d", &x);

}
} else {

printf("ERROR: Could not install signal handler: %d\n", errno);
}

}

Demo

Slide intentionally blank.

scanf

Why did scanf terminate?
In the scanf manual page:

EINTR The read operation was interrupted by a signal; see signal(7).

References

I For hardware details
I Read the Intel manuals

I For Processes
I Section 8.2 of the textbook

I For Signals
I Section 8.5 of the textbook

I Next class: Virtual Memory (Chapter 8)

	Administrivia
	Recap
	System-level I/O
	Time-sharing
	The Operating System

