
CSC2/452 Computer Organization
Caches and the Memory Hierarchy

Sreepathi Pai

URCS

October 23, 2019

Outline

Recap

Caches

Addressing in Caches

Outline

Recap

Caches

Addressing in Caches

Matrix Multiply – IJK

I Multiplying two matrices:
I A (m × n)
I B (n × k)
I C (m × k) [result]

I Here: m = n = k

for(ii = 0; ii < m; ii++)
for(jj = 0; jj < n; jj++)

for(kk = 0; kk < k; kk++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];

Matrix Multiply – IKJ

for(ii = 0; ii < m; ii++)
for(kk = 0; kk < k; kk++)

for(jj = 0; jj < n; jj++)
C[ii * k + kk] += A[ii * n + jj] * B[jj * k + kk];

Performance of the two versions

I on 1024x1024 matrices

I Time for IJK: 0.554 s ± 0.003s (95% CI)

I Time for IKJ: 6.618 s ± 0.032s (95% CI)

What caused the nearly 12X slowdown?

I Matrix Multiply has a large number of arithmetic operations
I But the number of operations did not change

I Matrix Multiply also refers to a large number of array
elements
I Order in which they access elements changed
I But why should this matter?

Outline

Recap

Caches

Addressing in Caches

Browser Cache

Search Engine Cache

Buffer/Page/Disk Cache

$ vmstat
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
0 0 0 19497520 396644 10880272 0 0 0 0 0 0 0 0 99 0 0

Cache

(Roughly) a cache is a storage location that is faster to access
than the original location.

I Cache type: Cache location, Original location
I Browser: Disk, Website
I Google: Google, Website
I OS Disk Cache: RAM, Disk

Hardware Cache

A hardware cache (specifically a CPU cache) is a small amount of
fast (usually SRAM) memory in the CPU.
Q: Why not use this fast memory for building all of memory?

SRAM vs DRAM

I SRAM is a “flip-flop”, a type of circuit for memory
I Uses at least 4 transistors
I Compare to one transistor + one capacitor for DRAM

I SRAM has lower density

I SRAM is very power hungry

Using Hardware Caches

I The LSU asks the L1 cache
for data at a specific address

I if present, the L1 cache
returns the data

I Otherwise, the L1 cache
asks the L2 cache for the
data

I And so on, until RAM is
queried for the data
I Actually on modern

systems, disk is the last
level (later lectures)

I Caches are transparent to
the programmer
I You don’t have to do

anything

L1 Cache (L1$)

L2 Cache (L2$)

Mem. Ctrller

RAM

to LS/U
CPU

Cache Performance Benefits

I Cache hit: Cache contains the data you’re looking for

I Cache miss: Cache must query the next level of memory

Tmemavg = HL1 ×TL1 + (1−HL1)× (HL2 ×TL2 + (1−HL2)TRAM)

I Assume you have an average L1 hit rate of 100%
I TL1 is 1 cycles1

I TL2 is around 10 cycles
I TRAM is 100 cycles

I What is average time for a memory access?

1Latency Numbers Every Programmer Should Know

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Locality

I Principle of Spatial Locality
I Data that is near in space (in RAM) is accessed closer in time

I Principle of Temporal Locality
I Data that is accessed now is likely to be accessed again in the

near future

Code that shows locality

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

for(i = 0; i < N; i++) {
if(a[i] > max) max = a[i];

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

About 13ms on my laptop, with perf stat -e

cache-misses,cache-references showing:

Performance counter stats for ’./locality’ (10 runs):

622,559 cache-misses # 87.861 % of all cache refs (+- 0.95%)
708,570 cache-references (+- 0.94%)

Code that may not show locality

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

for(i = 0; i < N; i++) {
if(a[b[i]] > max) max = a[i];

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

I In the above code, b[i] = i (i.e. identity)

I About 14ms on my laptop, with perf stat -e

cache-misses,cache-references showing:

Performance counter stats for ’./nolocality1’ (10 runs):

1,222,210 cache-misses # 86.575 % of all cache refs (+- 0.53%)
1,411,733 cache-references (+- 0.84%)

Code that does not show locality

clock_gettime(CLOCK_MONOTONIC_RAW, &start);

// b[i] is now a random permutation of numbers from 0 to N-1
for(i = 0; i < N; i++) {
if(a[b[i]] > max) max = a[i];

}

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

I In the above code, b is a random permutation of the numbers
0 to N-1

I About 65ms on my laptop, with perf stat -e

cache-misses,cache-references showing:

Performance counter stats for ’./nolocality2’ (10 runs):

10,857,423 cache-misses # 70.655 % of all cache refs (+- 0.55%)
15,366,835 cache-references (+- 0.22%)

Locality in code

I Keep data you want to access together near each other
(spatial locality)
I e.g., use arrays
I use a custom memory allocator for pointer-based structures if

possible

I Reuse data as much as possible (temporal locality)
I techniques called “blocking”

CPU Cache Design Problems

I Main memory is usually a few gigabytes
I The biggest caches are a few megabytes and fixed in size

I How do you “fit” all data you want to access in the cache?
I How do you address the cache?
I And if you can’t fit all the data you want, how do you decide

what to keep and what to throw out?

Outline

Recap

Caches

Addressing in Caches

Direct Addressing

I Consider a 128KiB cache, with 64-byte cache lines
I There are 2048 lines in total
I Memory is divided into 64-byte chunks called “lines”
I These lines do not overlap, and provide spatial locality

I How many bits to address a line?

I How many bits required to address a byte inside a cache line?

A Direct-mapped Cache: Try #1

...

0
1
2

2047

3
4

2046
2045
2044
2043

0 63

063 516
byteindex Address

cache line

6

I We use bits 6 to 16 (both inclusive) to index into the cache

I We use bits 0 to 5 (both inclusive) to access individual bytes

I We ignore other bits

A Direct-mapped Cache: Addressing Example

...

0
1
2

2047

3
4

2046
2045
2044
2043

0 63

063 516
byteindex Address

cache line

6

data in 0x7fff00000100–13f

data in 0x7fff0001ff40–f7f

I Each cache line contains 64 bytes of data from memory

I The data is placed in cache line indicated by the index field of
the address

Conflicts in Direct-mapped Caches

...

0
1
2

2047

3
4

2046
2045
2044
2043

0 63

063 516
byteindex Address

cache line

6

(addr & 0x1ffc0) >> 6 == 4

(addr & 0x1ffc0) >> 6 == 2045

There are multiple cache lines that can map to the same cache line!

I E.g., 0x7fff0007ff40 and 0x7fff0005ff40 both map to
line 2045

I How do we distinguish between different addresses that map
to the same line?

Adding tag bits to disambiguate lines

...

0
1
2

2047

3
4

2046
2045
2044
2043

0 63

063 516
byteindex Address

cache line

6

(addr & 0x1ffc0) >> 6 == 4

0 46

tag

tag bits

data in 0x7fff0005ff40–f7f0x7fff0004

I Use bits from address not used so far as a tag
I Store tag with data

I Always compare tags before reading/writing data

I In above figure: the tag is indexed from 0 to 46 bits

Different address → different tags

...

0
1
2

2047

3
4

2046
2045
2044
2043

0 63

063 516
byteindex Address

cache line

6

(addr & 0x1ffc0) >> 6 == 4

0 46

tag

tag bits

data in 0x7fff0001ff40–f7f0x7fff0000

Although 0x7fff0001ff40 will occupy the same line as
0x7fff0005ff40, they will have different tags.

Valid bits

...

0
1
2

2047

3
4

2046
2045
2044
2043

0 63

063 516
byteindex Address

cache line

6

(addr & 0x1ffc0) >> 6 == 4

0 46

tag

tag bits

data in 0x7fff0001ff40–f7f0x7fff0000

V

0

1

I the valid bit is 1 if the cache line contain valid data

I initialized to zero when processor starts

I set to 1 whenever the cache line contains valid data

Direct-mapped Algorithm

in_cache(address) {
index = address[6:16]
tag = address[17:63]

if(cache_lines[index].valid)
if(cache_lines[index].tag == tag)

return HIT;

return MISS;
}

Cache operation

Suppose the program is accessing memory in the following order,
and assume the cache starts out empty:

1: 0x7fff00000100 index= 4, MISS
2: 0x7fff0007ff40 index=2045, MISS
3: 0x7fff00000120 index= 4, HIT
4: 0x7fff0001ff40 index=2045, MISS
5: 0x7fff0007ff40 index=2045, MISS

I Access 3 is a cache hits, because Access 1 brought the data in

I Access 4 misses because the tag does not match, and the
data brought in replaces 0x7fff0007ff40 (same index)

I Access 5 misses because it was replaced, and it replaces
0x7fff0001ff40 in turn (same index)

I Note all the misses happen despite the entire cache being
empty, except for two lines!

Direct Mapped Caches

Direct-mapped caches are simple to build, and fast, but they may
not utilize all cache lines for some patterns.

Associative Addressing

...

0 63

063 5
byte Address

cache line

6

0 57

tag

tag bits

data in 0x7fff0001ff40–f7f0x7fff0000

V

0

1

I Associative caches get rid of index bits

I They use all bits not used to address bytes in the cache line as
tag bits

I In above figure: the tag is indexed from 0 to 57 bits

Associative Cache Algorithm

in_cache(address) {
tag = address[6:63]

foreach cache_line in cache
if(cache_line.valid)

if(cache_line.tag == tag)
return HIT;

return MISS;
}

I Note: in hardware, you can do the checks in parallel
I i.e. it is not a serial loop!

Cache operation

Suppose the program is accessing memory in the following order,
and assume the cache starts out empty:

1: 0x7fff00000100 tag=A MISS
2: 0x7fff0007ff40 tag=B MISS
3: 0x7fff00000120 tag=A HIT
4: 0x7fff0001ff40 tag=C MISS
5: 0x7fff0007ff40 tag=B HIT

I Access 3 hits in the cache, because Access 1 brought the data
in

I Access 4 misses

I Access 5 does not miss because it has a different tag than
0x7fff0001ff40

I There are now 3 lines in the cache

What if the cache can only hold two lines?

The same memory trace, but on an associative cache that can hold
only two lines:

1: 0x7fff00000100 tag=A MISS
2: 0x7fff0007ff40 tag=B MISS
3: 0x7fff00000120 tag=A HIT
4: 0x7fff0001ff40 tag=C MISS --> what to do now?
5: 0x7fff0007ff40 tag=B

I Assuming we must replace an existing cache line
I We can replace 0x7fff00000100
I Or we can replace 0x7fff0007ff40

I Which one should we replace, if we wanted to maximize hit
rate?

The OPT algorithm

1: 0x7fff00000100 tag=A MISS
2: 0x7fff0007ff40 tag=B MISS
3: 0x7fff00000120 tag=A HIT
4: 0x7fff0001ff40 tag=C MISS --> replace 0x7fff00000100
5: 0x7fff0007ff40 tag=B HIT

I Replace the line that going to be used farthest in the future
I 0x7fff00000100, in our case (since we don’t see it in our

trace, assume next use is at ∞)

I Thus, using OPT will cause Access 5 to hit in the cache

I OPT is guaranteed optimal – it will produce the lowest miss
rate

I What is the problem implementing OPT?

The Least-Recently Used (LRU) Algorithm

1: 0x7fff00000100 tag=A MISS
2: 0x7fff0007ff40 tag=B MISS
3: 0x7fff00000120 tag=A HIT
4: 0x7fff0001ff40 tag=C MISS --> replace 0x7fff0007ff40
5: 0x7fff0007ff40 tag=B MISS --> replace 0x7fff00000100

I The LRU algorithm replaces the line whose last use was
farthest in the past
I “if it has not been used recently, maybe it will not be used

again soon”

I Not necessarily as good as OPT (as this example shows)
I But often better than other schemes (e.g., FIFO–first in, first

out, LIFO–last in, first out)

Misses

I Compulsory Misses
I The miss that occurs when the data is first brought in
I Can’t avoid this miss (?)

I Conflict Misses
I A miss that occurs in a direct-mapped cache, but would not

occur in a similarly-sized associative cache

I Capacity Miss
I A miss that occurs in an associative cache

Latency issues in Associative caches

I Associative caches can be slower than direct-mapped caches
I Especially for very large sizes

I They also consume a lot of power
I Parallel search

Set-Associative Addressing

0
1
2

1023

3
4

1022
1021
1020
1019

063 515
byteindex Address

6
tag

...

0 63

cache line

(addr & 0xffc0) >> 6 == 4

0 47

tag bits

V

0

...

0 63

cache line

(addr & 0xffc0) >> 6 == 4

0 47

tag bits

V

0

Set 1 Set 2
I Combines both direct-mapped and associative caches

I First, locate the set using index

I Then, search the set for tag

I In above figure: the tag is indexed from 0 to 47 bits

Set-Associative Algorithm

in_cache(address) {
index = address[6:15]
tag = address[16:63]

foreach cache_line in cache_sets[index]
if(cache_line.valid)

if(cache_lines.tag == tag)
return HIT;

return MISS;
}

Set-associative Cache operation

1: 0x7fff00000100 index= 4, MISS, placed in set 1
2: 0x7fff0007ff40 index=2045, MISS, placed in set 1
3: 0x7fff00000120 index= 4, HIT
4: 0x7fff0001ff40 index=2045, MISS, placed in set 2
5: 0x7fff0007ff40 index=2045, HIT

I Most hardware caches use 4 cache lines per set
I Some go up to 8

I Diminishing returns after that point

Real Hardware Caches don’t use LRU

I Implementing real LRU would require tracking time each
cache line was accessed

I Most hardware implements pseudo-LRU
I Approximates LRU, different for each manufacturer
I Only thing we can be sure of is that it is not LRU

I Lots of sophisticated replacement policies dreamt up over the
years
I Still an open area of research

Getting rid of compulsory misses

I Can get rid of compulsory misses if we can fetch data into
cache just before it is required

I This is the task of the prefetch unit
I Snoops on all memory accesses, trying to identify patterns
I Once a pattern is detected, starts fetching cache lines ahead of

time to reduce misses

I Again, an open area of research
I How to prefetch useful lines before they will be used?

[timeliness]
I How to not displace existing useful lines? [cache pollution]

References

I Chapter 6: The Memory Hierarchy

	Recap
	Caches
	Addressing in Caches

