
CSC2/452 Computer Organization
The Processor Pipeline

Sreepathi Pai

URCS

October 16, 2019



Outline

Recap

Instruction Execution

Instruction Pipelining

Software and the Pipeline



Outline

Recap

Instruction Execution

Instruction Pipelining

Software and the Pipeline



The Processor and RAM (so far)

RAM

CPU

ALUALU FPU

AGU L/SU
Fetch Decode

Re
gi

st
er

s
RD: address RD: data

WR: address+data



Recall hellopi execution statistics (lecture 1)

$ perf stat -e instructions ./a.out
Hello, the value of pi is 3.141593

Performance counter stats for ’./a.out’:

662,172 instructions

0.001168841 seconds time elapsed



The Problem

How do you execute billions of instructions as quickly as possible?



The Performance Equation

T =
W × t

P

I W , work items to be completed
I e.g., instructions to be executed

I t, the average time per work item
I cost per work item

I P, average parallelism
I Number of work items that can be executed in parallel

I T , total time for execution



Example: Preparing Breakfast

I Work item 1: Toast
I Time for making toast: 2 minutes

I Work item 2: Coffee
I Time for making coffee: 3 minutes
I Not instant!



Prep. Time for Breakfast: Serial

Coffee Toast

3min 2min
Time
Ta

sk

I Toast: 2 minutes, Coffee: 3 minutes
I Only Stove available to make breakfast

I Average Parallelism: P = 1
I Work items W = 2
I Average Time t = (3 + 2)/2
I Total Time: ?



Prep. Time for Breakfast: Parallel

I Toast: 2 minutes, Coffee: 3
minutes

I Stove and Toaster available
I Total Time: 3 minutes
I Work items W = 2
I Average Time

t = (3 + 2)/2
I Average Parallelism: P =

(2 × 2 + 1 × 1)/3 = 1.66

I Speedup (serial time/parallel
time) is 5/3 = 1.66
I But, requires more

equipment

Coffee
Toast

2min 1min
Time

Ta
sk



Other ways to speed up breakfast

I Don’t eat toast
I Decreases work, W

I Drink instant coffee
I Decreases average time, t



Speeding up Programs

I Do less work (i.e., decrease W )
I fewer instructions
I choose algorithms with fewest operations

I Do cheaper work (i.e., decrease t)
I not all instructions have the same cost
I e.g. integer multiplies are slower than integer shifts
I the algorithm with lower constant costs is better
I purpose of this course: to teach you which instructions are

cheap and which are expensive
I Moore’s Law gave us free decreases in t

I Increase parallelism (i.e. increase P)
I only option left if you’ve already reduced W and t
I take CSC258 to know more



Example: Making a Sandwich

Toast

2min 1min
Time

Ta
sk

Cheese+Tomato (C&T)

Melt

1min

I Toast 2 bread slices (2 minute)
I Add cheese and tomato slices (1 minute)

I Assuming tomatoes and cheese have to be sliced

I Melt cheese (1 minute)

I Total time: ?

I Average Parallelism: ?



Making 3 sandwiches

Ta
sk

2min 1min
Time
1min

Toast MeltC&T
Toast MeltC&T
Toast MeltC&T

I Total time: ?

I Average Parallelism: ?
I Equipment needed: ?

I Toasters?
I Knives?
I Stove? [assume one stove can melt cheese in one sandwich]
I Workers?



Making sandwiches: Observations

I Making one sandwich takes 4 minutes, end-to-end
I Each step is dependent on previous step, no parallelism

I Making multiple sandwiches is highly parallel
I Making each sandwich is independent of the other
I But exploiting that parallelism requires lots of equipment
I Also, as far as sandwich eaters are concerned, they get a one

sandwich every 4 minutes



Pipeline Parallelism in the Kitchen

2min 1min
Time

1min

Toast

Melt
C&T

Toast

Melt
C&T

Toast

Melt
C&T

Toaster

Filling 
Station
Melt
Station

2min 2min

Sandwich 1 Sandwich 2 Sandwich 3

I Equipment needed?
I Toasters (Toaster station): ?
I Knives (Filling station): ?
I Stove (Melt station): ?
I Workers?

I Time for first sandwich?
I Time for subsequent sandwiches (indicated by stars)?

I Each sandwich still takes 4 minutes to make



Alternate View: Pipeline Parallelism in the Kitchen

MeltC&T

Toast MeltC&T
Toast MeltC&T

2min 1min
Time

1min 2min 2min

Sandwich 1

Sandwich 2

Sandwich 3

Toast

I Same timeline as previous figure, but from perspective of
sandwich instead of a work station



Some performance measures

I Sandwich Latency (also Job Service Time): 4 minutes
I Also pipeline fill time

I Service time (or System Latency) for making sandwiches: 2
minutes
I Time after pipeline is full

I Throughput (rate) of making sandwiches: 1 sandwich every 2
minutes



Pipeline Parallelism

I Used to parallelize many similar (but independent) tasks

I Each task consists of highly dependent steps
I Pipelines consist of (sequential/serial) stages

I Usually correspond to steps of each task

I But each stage can be handling steps from different tasks at a
given time
I e.g. at Time 5: sandwich 3 in Toaster and sandwich 2 in Filling

I Does not require more equipment than that required by one
task
I May require more “workers”



You’re not in culinary class!

How do these techniques apply to instruction execution (our
original problem)?



Outline

Recap

Instruction Execution

Instruction Pipelining

Software and the Pipeline



Steps in Instruction Execution

Instruction execution in a processor consists of at least 3 steps:

I Fetch instruction

I Decode instruction

I Execute instruction

Each step is dependent on the previous one. But there are many
instructions in a program!



Program Execution: Example #1

I1: movq -8(%rbp), %rax
I2: addq %rcx, %rdx

Are I1 and I2 independent of each other?

I I1:
I reads memory: -8(%rbp)
I writes register: %rax

I I2:
I reads register: %rcx
I writes register: %rdx



Program Execution: Example #2

I3: movq -8(%rbp), %rax
I4: addq %rax, %rdx

Are I3 and I4 independent of each other?

I I3:
I reads memory: -8(%rbp)
I writes register: %rax

I I4:
I reads register: %rax
I writes register: %rdx



Data Dependences

I I1 and I2 are independent
I Reads and writes do not overlap

I I3 and I4 are dependent
I I3 produces (i.e. writes) value that is consumed (i.e. read) by

I4
I I4 execution must wait until I3 produces a value



Program Execution: Example #3

test %eax, %eax
jnz L1
movq ...
add ...
div ...
jmp ...

L1:
xor %eax, %eax
ret

I Which instruction follows jnz?

I Which instruction follows ret?



Pipeline State

 jnz

movq

addFetch

Execute

Decode

movq

 jnz

 jnz

Time
I If jnz does not jump, then current state of pipeline (green

box) is valid.
I If jnz does make the jump, what must we do?

I can’t execute movq and add



Control Dependences

I Can’t decide which instruction follows jnz until it finishes
execution
I Could be movq if %eax is zero
I Could be xor (at L1)

I Can’t decide which instruction follows ret either
I Need to look at function stack to find return address

I In these cases, the instructions we have fetched and decoded
may be wrong
I Usually, we need to throw them away
I Called a “pipeline flush”



Program Execution: Example #4

divl %ecx
addq %edi, %esi

I Both divl and addq use the ALU
I But divl takes more time than addq

I addq must wait until divl is done



Structural Dependence/‘Hazards’

I Different instructions may require use of the same (type) of
resources

I Instructions must wait until “structure” (e.g. functional unit)
is free
I Could be other structures, e.g. queues

I Kitchen example:
I Toast + Coffee with only one stove and no toaster
I Can only toast or make coffee at the same time, not both



Instruction Execution: The Problem

I Could be pipelined
I Each instruction consists of multiple steps
I There are many instructions that must be executed

I Complication: Not all instructions are independent
I Data dependence: Instruction requires results from previous

instruction
I Control dependence: Next instruction depends on execution of

current instruction
I Structural dependence: Instructions may require use of same

structure or some structure is full

I Other complications
I Instructions can take different execution times (e.g. divl vs

addq)



Outline

Recap

Instruction Execution

Instruction Pipelining

Software and the Pipeline



Stages

Although a 3-stage pipeline can be used (and sometimes fewer
stages can also be used, usually by eliminating decode1), usually 5
stages are used:

I Instruction Fetch (IF)

I Instruction Decode (ID)

I Instruction Execute (EX)

I Memory (MEM)

I Instruction Writeback (or retirement) (WB)

The MIPS R2000 (the first MIPS processor from Stanford)
popularized the 5-stage pipeline.

1See the Berkeley RISC I processor



EX/MEM

addq %rax, %rdx # %rdx = %rdx + %rax
movq (%rdi, %rsi, 2), %rbx # %rbx = memory[%rdi + %rsi * 2]

I Note how movq is computing an effective address and then
loading data from memory
I Two steps combined into one

I EX stage handles all arithmetic computation
I MEM stage is used to access memory

I skipped if the instruction does not access memory



WB

I The writeback stage isn’t always necessary in simple designs
I But if you can flush a pipeline, then you need to prevent wrong

instruction results from being made visible

I Stage where results are made permanent (sometimes called
“Commit”)
I Values written back to registers

I Also releases any resources occupied by instruction



Dealing with dependences

I General solution, add an interlock
I This is a circuit that delays instructions

I introduces “bubbles” (a no-op) by stalling a stage (stops the
stage) in the pipeline



More sophisticated solutions: Use a compiler!

I Reorder instructions to:
I keep dependent instructions far from each other
I prevent structural hazards
I reordering must preserve program semantics!

I Use branch-delay slots for control dependence
I Instruction after branch is always executed, regardless of

direction of branch
I Can be a NOP instruction
I Now considered to be a poor design practice

I These techniques were used by MIPS (Microprocessor without
Interlocked Pipelined Stages)



Terminology

I Superscalar processor: A processor that can execute more
than one instruction at the same time

I In-order pipeline: Instructions are executed in
(assembly-language) program order
I Note: like on MIPS, the compiler may reorder instructions, but

the pipeline doesn’t

I Out-of-order pipelines: Instructions are executed out-of-order
I In-order fetch
I Out-of-order execute
I In-order retirement
I Most modern high-performance processors

I Speculative pipelines: Pipelines that guess which direction a
branch is going to execute
I Check guess at writeback stage and either flush or commit

This course looks at in-order pipelines, for the others, take CSC251.



A view of the processor

RAM

CPU

ALUALU FPU

AGU L/SU

Fetch Decode

Re
gi

st
er

s

Execute Memory Writeback



Outline

Recap

Instruction Execution

Instruction Pipelining

Software and the Pipeline



Does the pipeline affect how you write software?

I Knowledge of the pipeline is crucial to understanding
performance issues

I You can get information on pipeline behaviour using the perf
tool on Linux
I we’ll see next class



References

I A detailed description of the pipeline is given in Chapter 4 of
the textbook

I We will be more software-centric than hardware-centric in this
course
I Take CSC251 if you want to really build a processor at the

hardware level


	Recap
	Instruction Execution
	Instruction Pipelining
	Software and the Pipeline

