
CSC2/452 Computer Organization
Pointers and Arrays

Sreepathi Pai

URCS

September 30, 2019

Outline

Administrivia

Recap

Pointers

Arrays

Miscellaneous Pointers

Outline

Administrivia

Recap

Pointers

Arrays

Miscellaneous Pointers

Assignments and Homeworks

I Homework #3 due today IN CLASS
I Assignment #2 landing tomorrow

I Due Friday Oct 11, 7PM

I Homework #4 landing tomorrow
I Due next Monday, Oct 7 in class

I Midterms, Wednesday Oct 9 in class
I Will send instructions on Blackboard
I One 8.5x11in double-sided handwritten sheet of notes allowed
I Content inclusive of Oct 4 class on midterm

I Oct 7, review class?

Outline

Administrivia

Recap

Pointers

Arrays

Miscellaneous Pointers

Previously: Functions in x86/x64 Assembly Language

I Called using CALL instruction

I Return to caller using RET instruction
I For each function instance, a stack frame is created

I Contains arguments to functions (when arguments passed on
stack)

I Contains return address
I Caller’s saved registers (e.g. %ebp, %rbp)
I Stores function’s local variables

I Stack frame created by caller
I Can be destroyed by caller or callee (depends on calling

convention)

What happens when we run this code?

#include <stdio.h>

int sum(unsigned int n) {
printf("%u\n", n);
return sum(n - 1);

}

int main(void) {
sum(100);

}

What happens when we run this code?

#include <stdio.h>

int sum(unsigned int n) {
printf("%u\n", n);
return sum(n - 1);

}

int main(void) {
sum(100);

}

Output: (results may vary on your system)

...
4294705546
4294705545
Segmentation fault (core dumped)

I Each call of sum needs a stack frame
I Eventually runs out of memory on the stack: stack overflow

I Manifests in C programs as a segmentation fault

Previously: Addresses

greeting:
.string "hello world\n"

...

Which of the following instruction sequences will load the address
of greeting into %rbx?

I movq greeting, %rbx

I leaq greeting, %rbx

I movq (greeting), %rbx

Loading data using indirect addresses

greeting:
.string "hello world\n"

...

leaq greeting, %rbx

Now, which instruction should follow leaq to load the first byte of
greeting into %al?

I movb (greeting, 0), %al

I movb 0(greeting), %al

I movb 0(%rbx), %al

I movb (%rbx, , 0), %al

I movl $0, %rsi followed by movb (%rbx, %rsi, 1), %al

Re-summarizing Addresses

I Labels are addresses
I Addresses are memory
I All storage in memory has an address
I All variables in memory have an address

I We can load an address into a register using the leaq

instruction
I We can load data using the mov instruction

I Must also indicate size of data

Outline

Administrivia

Recap

Pointers

Arrays

Miscellaneous Pointers

Local variables

int main(void) {
int s = 0;

...
}

I We know (from last class) that s is on the stack
I Its address is -4(%rbp)

The address-of operator (&)

I The unary C address-of operator & obtains the address of an
lvalue.

I It is equivalent to the lea instruction
I But only works on lvalues (not C labels)

I A C lvalue is anything that can appear on the left-hand side of
an assignment

Lvalues Quiz

int sum(int x, int y) {
int s = 0;

s = x + y;

return s;
}

Which of the following are lvalues?

I 0

I s

I x and y

I sum

Using the address-of operator

#include <stdio.h>

int main(void) {
int s = 0;

printf("address-of s = %p\n", &s);

return 0;
}

The output of this code is:

address-of s = 0x7ffc06d15e04

I The %p conversion specifier for printf indicates the value to
be printed is a pointer

I Addresses on 64-bit x86 systems currently use only 48-bits
I Note: addresses will change across machines/runs, etc.

What happened under the hood?

000000000000064a <main>:
64a: push %rbp
64b: mov %rsp,%rbp
64e: sub $0x10,%rsp
652: movl $0x0,-0x4(%rbp) # s = 0
659: lea -0x4(%rbp),%rax # %rax = &s
65d: mov %rax,%rsi # %rsi = %rax, 2nd parameter
660: lea 0x9d(%rip),%rdi # %rdi = &format string, 1st param.
667: mov $0x0,%eax # number of vector registers
66c: callq 520 <printf@plt>
671: mov $0x0,%eax
676: leaveq
677: retq

I Note that 0x9d(%rip) is the address of the format string
"address-of s =..."

Doing arithmetic on addresses

#include <stdio.h>

int main(void) {
int s = 0;

printf("address-of s = %p %p\n", &s, &s + 1);

return 0;
}

Why does this result in the following output?

address-of s = 0x7ffdf7b9db5c 0x7ffdf7b9db60

I What is 0x7ffdf7b9db60 - 0x7ffdf7b9db5c?

Relevant assembly

652: movl $0x0,-0x4(%rbp)
659: lea -0x4(%rbp),%rax # %rax = &s
65d: add $0x4,%rax # %rax = %rax + 4
661: lea -0x4(%rbp),%rcx # %rcx = &s
665: mov %rax,%rdx # %rdx = %rax, third parameter
668: mov %rcx,%rsi # %rsi = %rcx, second paramter
66b: lea 0xa2(%rip),%rdi # ...
672: mov $0x0,%eax
677: callq 520 <printf@plt>

More on the address-of operator

I The address-of operator does not return a 64-bit integer

I It returns a C pointer, C’s abstraction of a machine address
I Ordinarily, each pointer “knows” the size of data it points to

I Recall, to load data from a address, you have to know the size
of the data!

I Therefore, &s is a pointer value to an integer (since s is an
integer)

I Arithmetic on pointer values increases them by size of data
pointed to
I So &s + 1 actually increases &s by 1*4 (on systems with a

32-bit int)
I This is very useful, as we shall see later

Dereferencing Pointers: On the RHS

#include <stdio.h>

int main(void) {
int s = 1024;

printf("s = %d, *(&s) = %d\n", s, *(&s));

return 0;
}

Output:

s is 1024, *&s = 1024

I On the right-hand side, the * unary operator applied to an
pointer reads the data at that address
I Called a dereference operator or an indirection operator

Dereferencing Pointers: On the LHS

#include <stdio.h>

int main(void) {
int s = 1024;

*(&s) = 1234;

printf("s = %d, *(&s) = %d\n", s, *(&s));

return 0;
}

Output:

s is 1234, *&s = 1234

I On the left-hand side, the * unary operator applied to an
pointer writes the data to the address

Storing Pointer Values

I A pointer value is stored in a pointer variable

#include <stdio.h>

int main(void) {
int s = 0;
int *ps;

ps = &s;

printf("address-of s = %p %p\n", &s, ps);

return 0;
}

Output:

address-of s = 0x7ffde5cad8d4 0x7ffde5cad8d4

Pointer declarations

#include <stdio.h>

int main(void) {
int s = 0;
int *ps;

ps = &s;

printf("address-of s = %p %p\n", &s, ps);

return 0;
}

I int *x is read as:
I “x is an int pointer”
I “x is a pointer to int”

I The name of the pointer is ps

I We are storing &s, the address of int s into it

Pointer variables behaviour

#include <stdio.h>

int main(void) {
int s = 1024;
int *ps;

ps = &s;
*ps = 1234;

printf("s = %d, *ps = %d\n", s, *ps);

return 0;
}

Output?

I s = 1024, *ps = 1024

I s = 1234, *ps = 1234

I s = 1024, *ps = 1234

I s = 1234, *ps = 1024

Diving into the disassembly

000000000000064a <main>:
64a: push %rbp
64b: mov %rsp,%rbp
64e: sub $0x10,%rsp
652: movl $0x400,-0xc(%rbp) # s = 1024
659: lea -0xc(%rbp),%rax # %rax = &s
65d: mov %rax,-0x8(%rbp) # ps = %rax
661: mov -0x8(%rbp),%rax # %rax = ps
665: movl $0x4d2,(%rax) # *ps = 1234
66b: mov -0x8(%rbp),%rax # %rax = ps
66f: mov (%rax),%edx # %edx = *ps
671: mov -0xc(%rbp),%eax # %eax = s
674: mov %eax,%esi # ...
676: lea 0x97(%rip),%rdi
67d: mov $0x0,%eax
682: callq 520 <printf@plt>

The * operator maps to indirect addressing

I The deference or indirect operator maps to the indirect
addressing mode

I First load the pointer into a register
I mov -0x8(%rbp),%rax (this is loading ps into %rax)

I Then, access the data for reading:
I mov (%rax),%edx, (this is the equivalent of ... = *ps)

I Or for writing:
I movl $0x4d2,(%rax), (this is the equivalent of *ps = ...)

Summary of C pointers

I C pointers hold addresses to particular data types
I Declared using a * on variable name: int *p

I Addresses are obtained using the & operator on lvalues
I ps = &v
I If reading or writing ps, the indirection operator * must NOT

be used
I ps is said to alias v

I To read and write data, you must use the indirection operator
I *ps = 1, sets the value of v to 1
I s = *ps, sets the value of s to the value of v
I The indirection operator does not change ps

Swap

#include <stdio.h>

void swap(int x, int y) {
int tmp = x;

x = y;
y = tmp;

printf("x=%d y=%d\n", x, y);
}

int main(void) {
int a = 1;
int b = 2;

swap(a, b);

printf("a=%d b=%d\n", a, b);
}

Output:

x=2 y=1
a=1 b=2

Swap stack frame

Just before returning to main

swap main
tmp ebp ret x y b a
[1][][][2][1] [2][1]...

What does main do immediately after call returns?

Stack frame for swap destroyed by main after return

After main has destroyed stack frame:

main
b a

.... [2][1]...

I C passes arguments by value, by copying them
I Note, when passing arguments in registers, the copies are in

registers, not on the stack frame
I But in both cases, copies are made

I But we want to modify original a and b
I We can use pointers for this!

Swap reimplemented using pointers

#include <stdio.h>

void swap(int *x, int *y) {
int tmp = *x;

*x = *y;
*y = tmp;

printf("x=%d y=%d\n", *x, *y);
}

int main(void) {
int a = 1;
int b = 2;

swap(&a, &b);

printf("a=%d b=%d\n", a, b);
}

Stack frame for swap just before returning

swap main
tmp ebp ret x y b a
[1][][][&a][&b] ... [1][2]...

Note:

I [&v] indicates the stack location contains the address of v

I Values a and b have been modified indirectly through pointers

Pointer arithmetic

#include <stdio.h>

int main(void) {
int s = 1024;
int *ps;

ps = &s + 1;
*ps = 1234;

printf("s = %d, *ps = %d\n", s, *ps);

return 0;
}

What will the output be?

Result

Segmentation fault (core dumped)

Trying to reason what happened

main
s ebp ret
[1024][][]

I s is a scalar variable, it can only hold one value
I That value is stored at address &s

I (&s + 1) is an address “outside” of s
I &s + 1 may be valid machine-level address
I But we have no idea what it means in the context of our C

program, so dereferencing it (i.e., *(&s + 1)) is undefined

I In this case, maybe the previous value of %ebp was at that
location and was overwritten
I There are ways to verify this, using a machine-level debugger

I However, in C, reading/writing to an address beyond the
extent of a variable is undefined
I Anything can happen, including a segfault

Segmentation Faults

I A segmentation fault (or a general protection fault on x86) is
almost always an attempt to dereference an invalid address

I The processor and OS work together to track all reads/writes
and raise a fault if your program attempts to read/write an
invalid address
I Or if you don’t have permission to write or read an address

I For many reasons (which we will learn about later in the
course), a fault may not be raised in all invalid situations

I Can make tracking down these bugs difficult

Pointer Arithmetic: What is it good for?

I For scalar variables, it makes no sense to do pointer arithmetic

I It is provided in C for arrays

Outline

Administrivia

Recap

Pointers

Arrays

Miscellaneous Pointers

Arrays in C

#include <stdio.h>

int main(void) {
int a[10];
int i;

for(i = 0; i < 10; i++) {
a[i] = i;

}
}

I The array a is allocated on the stack (it is a local)
I Cannot be very big

I Each element of a is placed next to each other in memory

I C does not record the size of the array

Arrays == Pointers in C

I An array is a pointer in C
I It is “syntactic sugar” over pointers

I The array name a is a pointer to the first element of the array
I &(a[0]) is just a
I &(a[4]) is just a + 4
I &(a[i]) is just a + i

I The [] operator is translated internally to pointer notation
I a[i] = i is translated to *(a + i) = i
I x = a[i] is translated to x = *(a + i)

Equivalence

#include <stdio.h>

int main(void) {
int a[10];
int *b;
int i;

b = a;

for(i = 0; i < 10; i++) {
b[i] = i;

}
}

I a is notionally an array, b is notionally a pointer

I However, b is made to point to a

I And a is updated indirectly through b

C pointers and arrays

I C cannot distinguish between pointers and arrays
I It assumes every pointer is an array

I Scalar variables can be viewed as arrays of length 1

I It does not record size of arrays either
I Unlike nearly every other language that came after

I Therefore, it cannot tell you if you are accessing an
out-of-bounds address
I Out-of-bounds: beyond the bounds of an array, e.g. a[10]

Outline

Administrivia

Recap

Pointers

Arrays

Miscellaneous Pointers

The NULL pointer value

int *p = NULL;

I The NULL value is a special value assigned to a pointer

I It indicates (by convention) that it is not pointing anywhere
I Convention also requires that the machine trap (i.e. fault)

when you try to dereference a NULL pointer
I *p = 1 will always cause a segmentation fault

The void pointer type

int v = 10;
void *x = &v;

I The void * type can only store addresses
I Can be assigned from any other pointer type

I Since there is no associated size information with void, it
cannot:
I do pointer arithmetic
I dereference addresses

I To do this, you must cast the pointer to a non-void type.

printf("%d\n", *x); // fails to compile

printf("%d\n", *((int *) x)); // succeeds, and prints value of v

Type Punning

float pi = 3.14;
uint32_t *px;

float *ppi = π
void *tmp = ppi;

// attempt to read the single-precision float value (32-bits) as a
// unsigned 32-bit integer, by casting a void pointer

px = (uint32_t *) tmp;
printf("%u\n", *px);

I DO NOT DO THIS, IT IS UNDEFINED BEHAVIOUR
I Even if your textbook says its okay (they’re wrong)

I Specifically, C forbids you from having pointers of different
types pointing to the same address
I C assumes strict aliasing

I Your program will break at high levels of optimization

Integers are NOT pointers

int x = 20;
int *px = &x;

uint64_t ip;

ip = px;

I Assigning pointers to integers (and vice versa) is
implementation-defined
I I.e., results are not guaranteed to be the same everywhere

I If you must really do this, use C99’s uintptr t
I Most useful when loading addresses directly, instead of using &
I Almost always in very low-level code (e.g. in OS or driver)

I Read: CERT Secure C coding standards for more details

https://wiki.sei.cmu.edu/confluence/display/c/INT36-C.+Converting+a+pointer+to+integer+or+integer+to+pointer

Dangling Pointers

int *mul2(int a) {
int r = a * 2;

return &r;
}

I The mul function returns a pointer
I Unfortunately, it returns a pointer to a local variable

I That local variable no longer exists after mul returns!

I This is called a dangling pointer
I Points to data that longer exists
I May lead to segfaults when dereferenced

	Administrivia
	Recap
	Pointers
	Arrays
	Miscellaneous Pointers

