
CSC2/452 Computer Organization
Functions

Sreepathi Pai

URCS

September 24, 2019

Outline

Administrivia

Recap

Programming in Assembly: Functions

Parameter Passing in Memory

Parameter Passing in Registers

Outline

Administrivia

Recap

Programming in Assembly: Functions

Parameter Passing in Memory

Parameter Passing in Registers

Assignments and Homeworks

I Assigment #1 due this Friday
I Use the autograder to test your assignments
I No penalties for incorrect submissions before deadline
I Unlimited submissions before deadline
I PLEASE USE package.py TO PREPARE YOUR

SUBMISSION

I Homework #3 out
I Homework #3 due next Monday (Sep 30) in CLASS as usual

I Assignment #2 landing next Monday/Tuesday

Outline

Administrivia

Recap

Programming in Assembly: Functions

Parameter Passing in Memory

Parameter Passing in Registers

Previously: Assembly Language

I Storage: Only memory or registers
I Memory: heap or stack

I Registers: Limited storage on CPU
I Lack block structure

I goto’s galore!

I Variables, Expressions, Conditionals, Loops

Outline

Administrivia

Recap

Programming in Assembly: Functions

Parameter Passing in Memory

Parameter Passing in Registers

Basics of translating HLLs to Assembly (so far)

I Simplify expressions

I Find locations for variables
I Destructure loops

I Use conditional and unconditional jumps

I Functions?

Handling Function Calls

I How to pass arguments to function?

I How to jump to a function?
I How to come back to just after call location?

I How does ret know where to return to?

I How to receive the return value from a function?

How to pass arguments to functions

I Parameters are variables
I Where can we store variables?

Parameter Passing: Locations

I Memory

I Registers

Outline

Administrivia

Recap

Programming in Assembly: Functions

Parameter Passing in Memory

Parameter Passing in Registers

Parameter Passing in Memory

I Where shall we put the parameters in memory?
I Both main and sum must agree on location!

Location, Location, Location

Which of the following is a good choice to store arguments to sum?

I A fixed, pre-determined, reserved location in memory
I Say address 0x10203040

I A fixed, pre-determined, reserved location in memory for each
function

I A new location for each function call, created by main
I How does sum know where this location is?

I A new location (#1) for each function call, created by main
I and a fixed location (#2) to send the address of the location

#1
I Where should location #2 be?

Design constraints for storing in memory

I Both caller and callee must agree on location
I caller (e.g., main) to store arguments
I callee (e.g., sum3) to access them

I When storing arguments in memory, other things caller and
callee must also agree on:
I Order of arguments in memory: left-to-right, or right-to-left?
I I.e., a, b, c or c, b, a?

I How to pass number of arguments?
I e.g., printf("Today is %d %d %d", day, month, year);

I Do we need to pass sizes of each argument?
I Who frees allocated region?

I Caller? Callee?

Performance

I Must be fast
I New space must be allocated for each function call
I This space must be released at the end of each function call

I Can’t go looking around in memory for free space at every
function call!

The Stack Frame

partial stack frame for main(void)

? ?
[][]

partial stack frame for sum3

a b c ?
[][][][]

I A region of memory created for each function call
I Created on function call

I All arguments are placed into the frame by caller
I Address of the frame passed to callee in a well-known

pre-determined register

I Destroyed on function exit

I Also called the “call frame”

The Stack Frame on x86

sum main
a b c ? ? ?
[][][]...[][][]
^ top of memory->
|
|
%esp

I Note: Each [] represents contiguous memory locations
containing one 32-bit value

I Created in a region of memory called the stack
I On x86, %esp points to top of stack

I %rsp in 64-bit mode
I Where you can push new data
I I.e., where you can allocate space!

I Note: stack grows downward on x86

I All call frames are next to each other in memory

Recursion

int sum_upto(int n) {
int s = 0;

if(n == 0) return 0;

s = n + sum_upto(n - 1);

return s;
}

I We know each call of sum n gets its own copy of n
I Because n is a parameter and is part of the stack frame

I What about local variable s?
I Is it local to sum upto or to each call of sum upto?

Another use for the stack frame: Storing locals

sum main
s a b c d ? ?
[]...[][][][][][]
^ top of memory->
|
|
%esp

I Since locals are local to a function call
I each function call gets its own copy

I They are also stored on the stack frame for a function call
I How to address them?

I %esp only points to top of stack
I And can change as we push/pop

The base pointer

I The base pointer contains the address of the base of the stack
frame
I The address after caller has pushed arguments
I But before callee has pushed locals

I On x86-64, the base pointer is %ebp
I The callee copies %esp (caller’s top-of-stack) into %ebp on

entry
I i.e., mov %esp, %ebp

I It then subtracts %esp to make space for locals
I subl 0x4, %esp

Addressing via the base pointer

sum main
s ? ? a b c d ? ?
[][][][][][][][][]
^ ^ top of memory->
| |
| |
%esp %ebp

I Arguments:
I a: 0x8(%ebp)
I b: 0xc(%ebp)
I c: 0x10(%ebp)

I Locals
I s: -0x4(%ebp)

Stack frame on x86: before calling sum

main
a b c d ? ?
[][][][][][]
^ ^ top of memory->
| |
| |
%esp %ebp

Stack frame on x86: after calling sum

sum main
s ? ? a b c d ? ?
[][][][][][][][][]
^ ^ top of memory->
| |
| |
%esp %ebp

What happens when sum returns?

main
a b c d ? ?
[][][][][][]

^ ^ top of memory->
| |
| |
%ebp %esp

I If we just pop off locals, and mystery objects, %esp is restored
I But what about %ebp?

I How do we restore the value of %ebp for main after sum
returns?

I main won’t be able to access its locals or arguments!

Prologue and Epilogue on x86

I Prologue:
I callee saves caller’s base pointer on stack: push %ebp
I callee copies caller’s top-of-stack %esp into %ebp to establish

its base pointer: mov %esp, %ebp

I Epilogue
I callee restores caller’s top-of-stack: mov %ebp, %esp
I callee restores caller’s base pointer from stack: pop %ebp
I on x86, a single instruction does both: leave

What happens when sum returns?

sum main
s ebp ? a b c d ? ?
[][][][][][][][][]
^ ^ top of memory->
| |
| |
%esp %ebp

I The ebp labeled location contains the value of main’s %ebp

I Save there by sum executing push %ebp when it begins

How does ret know where to return to?

I The return address is also specific to each function call

I Where should call store the return address?

Complete stack frame

sum main
s ebp1 ret1 a b c d ebp2 ret2
[][][][][][][][][]
^ ^ top of memory->
| |
| |
%esp %ebp

I retX contains the return address specific to each function call

I Pushed to the stack by call

I Value is the address of the instruction after call

The whole story: Calling sum

ret2
[]...

top->
^ ^
| |
| |
%esp %ebp

0000050f <main>:
*50f: 55 push %ebp
510: 89 e5 mov %esp,%ebp
512: 83 ec 10 sub $0x10,%esp
515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
523: e8 c5 ff ff ff call 4ed <sum3>
528: 83 c4 0c add $0xc,%esp

The whole story: Calling sum

ebp ret2
[][]...

top->
^ ^
| |
| |
%esp %ebp

0000050f <main>:
50f: 55 push %ebp
*510: 89 e5 mov %esp,%ebp
512: 83 ec 10 sub $0x10,%esp
515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
523: e8 c5 ff ff ff call 4ed <sum3>
528: 83 c4 0c add $0xc,%esp

The whole story: Calling sum

ebp ret2
[][]...

top->
^
|
|
%esp
%ebp

0000050f <main>:
50f: 55 push %ebp
510: 89 e5 mov %esp,%ebp
*512: 83 ec 10 sub $0x10,%esp
515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
523: e8 c5 ff ff ff call 4ed <sum3>
528: 83 c4 0c add $0xc,%esp

The whole story: Calling sum

ebp ret2
[][][][][][]...

top->
^ ^
| |
| |
%esp %ebp

0000050f <main>:
50f: 55 push %ebp
510: 89 e5 mov %esp,%ebp
512: 83 ec 10 sub $0x10,%esp
*515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
523: e8 c5 ff ff ff call 4ed <sum3>
528: 83 c4 0c add $0xc,%esp

The whole story: Calling sum

d ebp ret2
[][][][0x3][][]...

top->
^ ^
| |
| |
%esp %ebp

0000050f <main>:
50f: 55 push %ebp
510: 89 e5 mov %esp,%ebp
512: 83 ec 10 sub $0x10,%esp
515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
*51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
523: e8 c5 ff ff ff call 4ed <sum3>
528: 83 c4 0c add $0xc,%esp

The whole story: Calling sum

a b c d ebp ret2
[0x1][0x2][0x3][][][][0x3][][]...

top->
^ ^
| |
| |
%esp %ebp

0000050f <main>:
50f: 55 push %ebp
510: 89 e5 mov %esp,%ebp
512: 83 ec 10 sub $0x10,%esp
515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
*523: e8 c5 ff ff ff call 4ed <sum3>
528: 83 c4 0c add $0xc,%esp

The whole story: Calling sum

ret1 a b c d ebp ret2
[528][0x1][0x2][0x3][][][][0x3][][]...

top->
^ ^
| |
| |
%esp %ebp

0000050f <main>:
50f: 55 push %ebp
510: 89 e5 mov %esp,%ebp
512: 83 ec 10 sub $0x10,%esp
515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
523: e8 c5 ff ff ff call 4ed <sum3>

Inside sum: Just before leave

s ebp ret1 a b c
[][]..[][][528][0x1][0x2][0x3]

top->
^ ^ ^ ^ ^ ^
| | | | | |
| | | | | |
%esp -0x4 %ebp +0x8 +0xc +0x10

000004ed <sum3>:
4ed: 55 push %ebp
4ee: 89 e5 mov %esp,%ebp
4f0: 83 ec 10 sub $0x10,%esp
4f3: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%ebp)
4fa: 8b 55 08 mov 0x8(%ebp),%edx
4fd: 8b 45 0c mov 0xc(%ebp),%eax
500: 01 c2 add %eax,%edx
502: 8b 45 10 mov 0x10(%ebp),%eax
505: 01 d0 add %edx,%eax
507: 89 45 fc mov %eax,-0x4(%ebp)
50a: 8b 45 fc mov -0x4(%ebp),%eax
*50d: c9 leave
50e: c3 ret

Inside sum: Just after leave

ret1 a b c
[528][0x1][0x2][0x3]...

top->
^ ^
| |
| |
%esp %ebp

000004ed <sum3>:
4ed: 55 push %ebp
4ee: 89 e5 mov %esp,%ebp
4f0: 83 ec 10 sub $0x10,%esp
4f3: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%ebp)
4fa: 8b 55 08 mov 0x8(%ebp),%edx
4fd: 8b 45 0c mov 0xc(%ebp),%eax
500: 01 c2 add %eax,%edx
502: 8b 45 10 mov 0x10(%ebp),%eax
505: 01 d0 add %edx,%eax
507: 89 45 fc mov %eax,-0x4(%ebp)
50a: 8b 45 fc mov -0x4(%ebp),%eax
50d: c9 leave
*50e: c3 ret

Back in main

a b c
[0x1][0x2][0x3]...

top->
^ ^
| |
| |
%esp %ebp

0000050f <main>:
50f: 55 push %ebp
510: 89 e5 mov %esp,%ebp
512: 83 ec 10 sub $0x10,%esp
515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
523: e8 c5 ff ff ff call 4ed <sum3>
*528: 83 c4 0c add $0xc,%esp

Back in main

d
[][][][]
top->
^ ^
| |
| |
%esp %ebp

0000050f <main>:
50f: 55 push %ebp
510: 89 e5 mov %esp,%ebp
512: 83 ec 10 sub $0x10,%esp
515: c7 45 fc 03 00 00 00 movl $0x3,-0x4(%ebp)
51c: ff 75 fc pushl -0x4(%ebp)
51f: 6a 02 push $0x2
521: 6a 01 push $0x1
523: e8 c5 ff ff ff call 4ed <sum3>
528: 83 c4 0c add $0xc,%esp
* ...

leave and ret

I Recall leave is:
I mov %ebp, %esp
I pop %ebp

I Then, ret just pops off the return address into %eip

Summary: Calling convention

I Function calls setup stack frames
I On x86, delimited by addresses %esp (top) and %ebp (base)

I Arguments are passed on the stack in region shared by caller
and callee

I Return address is stored on the stack as well

I Callee setups up stack frame for local variables by initializing
base pointer to current top of stack

I Callee restores caller’s stack frame on return
I I.e., values of caller’s %ebp and %esp

I Then continues execution at address stored on stack

C Calling Convention (cdecl)

I Arguments pushed on to stack right to left
I Allows varargs functions like printf to work

I printf does not know how many arguments have been pushed
I It reads the format string to figure this out
I Therefore format string must be +8(%ebp) (i.e. pushed last)

I Callee does not know how many arguments have been pushed
I Caller frees stack space for arguments

I Just an addition

Pascal Calling Convention

I Arguments pushed on to stack left to right

I Does not support varargs

I Callee frees stack space for arguments
I Variant: stdcall

I Windows API, pushes right to left like cdecl
I But callee cleans up stack space

Why all %e registers?

I On x86, passing parameters on the stack is used largely by
16-bit and 32-bit code

I Therefore, the 32-bit registers %e*

Outline

Administrivia

Recap

Programming in Assembly: Functions

Parameter Passing in Memory

Parameter Passing in Registers

Passing parameters on the stack can be slow

I Need to access memory

I Need to use indirect addresses to read/write

I Need to manipulate %ebp and %esp

I Why not use registers?
I x86 originally only had 8 general-purpose registers
I but x64 has 16!

The Application Binary Interface

I The ABI is a set of “rules” or conventions on a number of
things

I One of them happens to be parameter passing
I The System V x86-64 ABI describes how to pass registers on

the x86-64
I Different for each processor

I However, return address continues to be on the stack

I Locals may also be on the stack

I A stack frame is still setup for each function

I Reading for this week

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

Ramifications

What happens if you overwrite the return address on the stack?

I It is in memory, and can be written to directly
I mov some-value, 4(%ebp) (assuming 32-bit system)

I Can be done using buffer overflows
I Was used by the Morris Worm in 1988

Functions and Function Instances

I A function is piece of code
I A running function is an function instance

I Function + Stack Frame = Function Instance

References

I Chapter 3 of the textbook
I Next class:

I C Pointers
I Structures, Unions, etc.

	Administrivia
	Recap
	Programming in Assembly: Functions
	Parameter Passing in Memory
	Parameter Passing in Registers

