CSC2/452 Computer Organization
Assembly Language

Sreepathi Pai
URCS

September 23, 2019

Outline

Administrivia

Recap

x86-64 assembly

Programming in Assembly

Outline

Administrivia

Assignments and Homeworks

> Assigment #1 due this Friday
» Use the autograder to test your assignments
» No penalties for incorrect submissions before deadline
» Unlimited submissions before deadline
» Homework #3 out tomorrow
» Switching to a Tuesday—Monday schedule, instead of a
Thu-Wed schedule
» Homework #3 will be due next Monday (Sep 30) in CLASS as
usual

Outline

Recap

Previously

> Integers
» Floats

» Addresses
>

>

Instructions
The Instruction Set Architecture
» The programmer'’s interface to the processor

Addresses: Summary

» Unsigned integers from 0 to 2" — 1 where n is size of address
in bits

» Usually n = 64 on modern systems

» Labels are addresses

» Addresses can be loaded into registers
» leaq instruction on Intel 64 machines

> Effective addresses (the final address after any computations
used to access memory) may be specified:
» Directly (Absolute) e.g., 0x7£08e678d000
» Indirect e.g., mov (%rbx, %rsi, 1), 1
> Relative e.g., jmp
» Implicit e.g., push

Instruction Encoding

» Instructions are encoded as multiword bitfields
» On Intel 64, they can occupy more than 64 bits
» Instruction encodings vary by processor
P> They convey to the processor:
» What operation to perform
> What the operands (i.e. inputs and outputs) to that operation
are
» Operands can be registers, memory or constants
» In the Intel ISA, not all combinations of operands are valid
» |t is not fully orthogonal

Outline

x86-64 assembly

Nomenclature

» Intel Processors have traditionally been known as x86
> 8086 (their first 16-bit processor)
> 80186, 80286
> 80386, 80486 (their 32-bit processors)
» 80586 became the Pentium, and Intel dropped the numbering
scheme
> also 32-bit
» Courts said you couldn’t trademark numbers
» The ISA for this was usually called ‘x86" by everybody or
[A-32 (by Intel)

Going to 64-bits

» The first 64-bit version of the x86 was made by AMD

» Was a new ISA based on x86 (much nicer!)
» Therefore sometimes called ‘amd64’
» Also referred to as ‘x86-64"'
» Intel calls their version (which is not exactly the same) ‘Intel
64
» Sometimes you will see 'x64" to refer to this architecture
> Intel's original proposal for a 64-bit processor was called

Itanium
> ‘|A-64’, but the ISA was not widely adopted (sells about 250K
each year)

» Don’t confuse IA-32 and |A-64 — they're not related at all!

An overview of the Intel Manuals

» Volume 1: Basic Architecture

» Overview of all the data types, instructions, etc. that a
programmer needs to know (500 pages)
» Recommend reading this

» Volume 2: Instruction Set Reference

» Describes every instruction, its operands, its encoding, and
semantics (2242 pages)
» Look this up when you have to

» Volume 3: System Programming Guide
> If you're writing an OS or compiler or linker or assembler (1700
pages)
> Volume 4: Model-specific registers

> MSRs allow you to control processors (500 pages)
» Put them to sleep, set their operating mode, etc.

» You could order paper copies from Intel for free in the past
» You still can, though not for free

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-2a-2b-2c-and-2d-instruction-set-reference-a-z
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-4-model-specific-registers

Recall: Intel Instruction Format

B.1 MACHINE INSTRUCTION FORMAT

All Intel Architecture instructions are encoded using subsets of the general machine instruction format shown in
Figure B-1. Each instruction consists of:

® an opcode

* aregister and/or address mode specifier consisting of the ModR/M byte and sometimes the scale-index-base
(SIB) byte (if required)

* adisplacement and an immediate data field (if required)

76543210 76543210 76543210
Legacy Prefixes ‘ REX Prefixes ‘TTTTTTTT ‘TTTTTTTT ‘TTTTTTTT ’7
Grp 1,Grp 2, (optional)
Grp 3,Grp 4 1, 2, or 3 Byte Opcodes (T = Opcode

76 53 20 76 53 20
|—> Mod Reg* R/M d32116|8|None 32| 168 | None
~—_——— ~——
ModR/M Byte SIBByte Address Displacement Immediate Data
~— (4, 2,1 Bytes or None) (4,2,1 Bytes or None)
Register and/or Address NOTE:
Mode Specifier)
* The Reg Field may be used as an
opcode extension field (TTT) and as a
way to encode diagnostic registers
(eee).

Figure B-1. General Machine Instruction Format

Source: Intel 64 and 1A-32 Architectures: Software Developers
Manual, Volume 2, Instruction Set Reference (A-Z), pg. 2095

The pushq instruction

11 0000 55 pushq Y%rbp

» Line 11, address 0000 of main
» pushq ’%rbp is encoded as 0x55

The PUSH instruction

PUSH—Push Word, Doubleword or Quadword Onto the Stack

Opcode* nstruction Op/ [64-Bit |Compat/ | Description
€n |Mode |LegMode
I PUSH /16 M |[Vaid [Vaid |Push/mi6,
FF 16 PUSH r/m32 M NE. Valid Push r/m32.
G PUSH r/m64 M [Vaild |NE Push /64,
0w PUSH 16 0 [Vaid |Vald [PushriG.
S0vd PUSH 32 o [NE Vald [Push 32
S07rd PUSH 64 o Ve [NE PUsh 162,
B PUSH immé T [Vaid [Vaid |Pushimmé.
0 . - - 8w PUSH imm16 T [Vaid [Vald |Pushimmi.
> Arbp IS a 64‘ b It regi ster &8 PUSH imm32 T [Vaid [Vald |Pushimm3z.
3 PUSHCS 70 [ivaid [Vaid [PushCS.
» That has Opcode 50+rd G PUSHSS 20 [iald |Vaid |Pushss
i PUSHDS 70 [ivaid |Vaid |PushDS.
y 0% PUSHES 70 [invaid |Vaid |Pushes.
» That's OXSO, and the 0 |wmo PUSHFS 70 [Vaid |Vald [PushFS.
oF A8 PUSHGS 20 [Vaid |Vaid |PushGs.
format NOTES:
* See IA-32 Architecture Compatibilty section below
> Page 11 75 in VOI 2 Instruction Operand Encoding
op/en Operand 1 Operand 2 Operand 3 Operand 4
M ModRM/m (1 NA NA NA
0 opcode +rd (1) NA NA NA
I imm8/16/32 NA NA NA
20 NA NA NA NA
Description

Decrements the stack pointer and then stores the source operand on the top of the stack. Address and operand

sizes are determined and used as follows:

What's +rd?

+rb, +rw, +rd, +ro — Indicated the lower 3 bits of the opcode byte is used to encode the register operand
without a modR/M byte. The instruction lists the corresponding hexadecimal value of the opcode byte with low
3 bits as 000b. In non-64-bit mode, a register code, from 0 through 7, is added to the hexadecimal value of the
opcode byte. In 64-bit mode, indicates the four bit field of REX.b and opcode([2:0] field encodes the register
operand of the instruction. “+ro” is applicable only in 64-bit mode. See Table 3-1 for the codes.

+i — Anumber used in floating-point instructions when one of the operands is ST(i) from the FPU register stack.

The number i (which can range from 0 to 7) is added to the hexadecimal byte given at the left of the plus sign
to form a single opcode byte.

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)
o = o o - © - o
2 @ @ 2 © @ e] @ 2 @ @
-2 b o .2 ko o .2 < o .2 > o
: B g g FE g o2 B g g E
AC None |0 AX None | 0 EAX None | O RAX | None | O
[None |1 o None | 1 X None | 1 RCX None | 1
DL None |2 [None |2 DX None | 2 ROX None | 2
BL None |3 BX None |3 €BX None |3 RBX None |3
AR Not Z 3 None | 4 P None | 4 N/A WA WA
encodab
le (NE)
(] NE 5 B None |5 E None |5 NA NA WA
DH NE. 6 SI None 6 ESI None 6 N/A N/A N/A
BH NE. 7 oI None |7 €Dl None |7 N/A N/A NA
SPL | Yes 7 3 None | 4 3 None | 4 RSP None | 4
BPL | Ves 5 B None |5 G None |5 RBP None |5
3-2 Vol.2A

» +rd indicates EBP is b
> But EBP is 32-bits!

> Page 104 of Vol 2

In 64-bit Mode ...

2.21.7 Default 64-Bit Operand Size

In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do not need a REX prefix for this
operand size). These are:

® Near branches.
® Allinstructions, except far branches, that implicitly reference the RSP.

» Since PUSH implicitly references register RSP, this makes 0x55
reference %rbp, not %ebp
» In 64-bit mode, you can't push EBP.
» The REX prefix of 0x48 tells the processor to use 64-bit
registers
> 12 0001 4889E5 movq %rsp, %rbp
» It is not needed for PUSH

> Page 46 of Vol 2

CPU: The Decode Unit

CPU

|Fetch]|

IDecode|

AGU L/SU

ALU | | FPU

h

RAM

Outline

Programming in Assembly

Features of High-level Languages (HLL)

vy

vvyyy

Variables
Arrays

Complex Expressions (large number of operands)
» Arithmetic Operations, Logical Operations, etc.

Block structure - { and } in C-like languages
Conditionals if-then-else
Loops while, for

Functions

Features of Assembly Languages

vy

vvyYyy

Memory

Registers
Expressions are very simple, maybe up to 3 operands
» Need to break up complex expressions into simple expressions

No block structure
No direct equivalent for conditionals
No direct equivalent for loops

Limited support for functions

Translating Variables

» Typically variables in programs like C end up in either:
> Memory
> Registers
> Memory can be seen as two logical regions — heap, and stack
» Heap usually stores global variables and data
» Stack usually stores (function) local variables
P In assembly language, a variable is in:
> a register, if instruction uses a register operand, e.g. %rax (or
any other register),
» heap, if instruction uses an indirect memory operand, e.g.
(%rbx)
P stack, if an instruction uses an indirect memory operand
relative to %rbp or Jrsp, e.g. -4 (%rbp)
» Since accessing memory is slow, a variable may be loaded
from memory into a register before operating on it
» In which case, for some time, it exists in both memory and
registers

Example

int sum(int a, int b) {

int ¢ = 0;
c =a+ b;
return c;

}

0000000000000000 <sum>:
0: 55 push
1: 48 89 e5 mov
4: 89 7d ec mov
7: 89 75 e8 mov
a: c7 45 fc 00 00 00 00 movl
11: 8b 55 ec mov
14: 8b 45 e8 mov
17: 01 4o add
19: 89 45 fc mov
1c: 8b 45 fc mov
1f: 5d pop
20: c3 retq

%rbp

%hrsp, hrbp
%edi,-0x14(%rbp)
%esi,-0x18(%rbp)
$0x0,-0x4 (%rbp)
-0x14 (%rbp) , hedx
-0x18(%rbp) ,heax
%edx , heax
%heax,-0x4 (%rbp)
-0x4 (%rbp) , %heax
%rbp

> r->s, register to stack. s->r, stack to register

» rval, return value (must be stored in %eax)

A
B
C
A
B
A
s
C

r->s

r->s

s

s=>r

s=->r

+ B
tore into C
s->r (rval)

Translating Expressions

» Most instructions accept only 1, 2 or 3 operands
» Example: ADD instruction takes two operands
> ADD %rl, %r2
> Jr2 = Yrl + %r2
» An expression like s = a + b + c needs to be broken down
to fit this instruction

» Do this by introducing temporaries
tmp = a + b;
tmp
s = tmp;

Translating Expressions: Example

0000000000000000 <sum3>:

int sum3(int a, int b, int c) {

0 55

1 48 89

4 89 7d

7: 89 75

a 89 55
int s = 0;

d c7 45
s=(a+b+
14 8b 55
17 8b 45
la 01 c2
1c: 8b 45
1f: 01 do
21: 89 45
return s;
24: 8b 45

}
27: 5d
28: c3

eb
ec
e8
el
fc 00 00 00 00
c);
ec
e8
el

fc

fc

push
mov
mov
mov
mov

movl

mov
mov
add
mov
add
mov

mov

pop
retq

%rbp

%rsp, hrbp
%edi,-0x14 (%rbp)
%esi,-0x18(%rbp)
%edx ,-0x1c (Yrbp)

$0x0,-0x4 (%rbp)

-0x14 (%rbp) , hedx
-0x18(%rbp) , %heax
Yheax, hedx
-0x1c(%rbp) ,%eax
Yhedx , heax
%heax,-0x4 (Yrbp)

-0x4 (%rbp) ,heax

%rbp

QW=

J%edx = A + B

C + %edx
store into S

Translating Conditionals

int max(int a, int b) {

if(a > b) {
return a;

} else {
return b;

}

Assembly Language Conditionals: Three components

» Comparison functions
» Conditional jumps

» Unconditional jumps

Disassembly of max

0000000000000000 <max>:

ap NbROo

10:

15:
17:
la:
1b:

55
48
89
89
8b
3b
Te
8b
eb
8b
5d
c3

89
7d
75
45
45
05
45
03
45

push
mov
mov
mov
mov
cmp
jle
mov
jmp
mov
pop
retq

%rbp

%rsp, hrbp
%edi,-0x4 (%rbp)
%esi,-0x8(%rbp)
-0x4 (%rbp) ,heax
-0x8(%rbp) , heax
17 <max+0x17>
-0x4 (%rbp) , heax
la <max+0xla>
-0x8(%rbp) , heax
%rbp

COMPARISON
COND. JUMP

UNCOND. JUMP

Comparison

a: 8b 45 fc
d: 3b 45 £8
10: 7e 05

17: 8b 45 £8

mov
cmp
jle

mov

-0x4 (%rbp) , heax
-0x8 (%rbp) ,heax
17 <max+0x17>

-0x8(%rbp) , heax

> We know a is on the stack at -0x4 (%rbp)
» We know b is on the stack at -0x8 (%rbp)
» The cmp instruction compares b with %eax (which contains a)

» For cmp x, y, the cmp instruction calculates y - x
» The results of the cmp operation are stored in the EFLAGS

register. Of relevance to jle:
» ZF: Zero flag: setto lif y - x ==

COMPARISON
COND. JUMP

RETURN B

» OF: Overflow flag: set to 1 if y = x underflowed or overflowed
> SF: Sign flag: set to sign bit of y - x

jle

v

vy

Part of the family of jcc instructions
» cc is conditional code

Jump If Less Or Equal

If ZF is 0, then y = x.
If OF # SF then, y < x
» To understand this, work out all cases of y < x where they are
+/+ /-t
» Note that at machine level, two's complement integers
“wrap-around” on overflow and underflow

Here, the conditional jump to max+0x17 occurs if a <= b
» Otherwise control “falls through” to the next instruction

Conditionals: Full translation

» Evaluate the condition and jump to the Else part

» Or fall through to the Then part

a 8b 45 fc mov
d: 3b 45 f8 cmp
10: Te 05 jle

» The Then Part

12: 8b 45 fc mov
15: eb 03 jmp

» The Else Part
17: 8b 45 £8 mov

> Code immediately after Else
la: 5d pop

-0x4 (%rbp) ,heax
-0x8 (%rbp) ,heax
17 <max+0x17>

-0x4 (%rbp) ,heax
la <max+0xla>

-0x8(%rbp) , heax

%rbp

COMPARISON
COND. JUMP

UNCOND. JUMP

Loops

int div(int a, int b) {
int q = 0;
while(a - b > 0) {
a=a-b;
a=9q+1;
¥

return q;

}

(Ignore what this function is trying to do)

Loops: Removing Structure

int div2(int a, int b) {
int q = 0;

goto loop_test;

loop_body:
a=a-b;
a=9q+1;
loop_test:
if((a - b > 0))
goto loop_body;
loop_exit: /* not required, for clarity only */
return q;

}

» We can convert a while loop into unstructured form using
goto and if

Unstructured Loop Translation

> goto is an unconditional jmp

» The if (cond) goto form is just a conditional jump

Translation

000000000000002¢ <div2>:

3d: eb Ob Jjmp 4a <div2+0Oxle> # goto loop_test
3f: 90 nop # loop_body:

40: 8b 45 e8 mov -0x18(%rbp) , %eax

43: 29 45 ec sub %eax,-0x14 (%rbp)

46: 83 45 fc 01 addl $0x1,-0x4 (%rbp)

4a: 8b 45 ec mov -0x14 (%rbp) , heax # loop_test: a - b
4d: 2b 45 e8 sub -0x18(%rbp) , %heax

50: 85 c0 test Jeax,%eax # is a - b > 07
52: 7f eb j& 3f <div2+0x13> # jump if greater
54: 90 nop

55: 8b 45 fc mov -0x4 (%rbp) ,heax

58: bd pop %rbp

59: c3 retq

> test performs a logical and of its two operands and sets ZF
and SF

» sub sets the OF flag
» jg jumps if ZF=0 and SF=0OF

Translating for loops

int iter(int a, int b) {

int i;

for(i = 0; i < 10; i++) {
a =a + b;

}

return i;

De-structuring for loops

int iter2(int a, int b) {
int i;

loop_head:
i=0;
goto loop_test;

loop_body:
a =a + b;

i++; /% loop update */
loop_test:
if(i < 10)
goto loop_body;

loop_exit:

return i;

}

Translating for loops

0000000000000028 <iter2>:

32:
39:

c7 45 fc 00 00 00 00
eb Ob

8b 45 e8
01 45 ec
83 45 fc 01

83 7d fc 09
Te ef

movl
Jjmp
nop
mov
add
addl
cmpl
jle

nop

$0x0,-0x4 (%rbp)
46 <iter2+0Oxle>

-0x18(%rbp) , heax
%eax,-0x14 (%rbp)
$0x1,-0x4 (%rbp)

$0x9,-0x4 (%;rbp)
3b <iter2+0x13>

i

#

*

#
#

i=0
goto loop_test

loop_body:

a=a+b
i++

loop_test:
if(i < 10) goto loop_body

Basics of translating HLLs to Assembly (so far)

» Simplify expressions
» Find locations for variables
» Destructure loops
» Use conditional and unconditional jumps

Handling Function Calls

» How to pass arguments to function?

» How to jump to a function?
» How to come back to just after call location?
» How does ret know where to return to?

» How to receive the return value from a function?

References

» Read Chapter 3 of the textbook
» Esp. the Figure detailing all the registers

	Administrivia
	Recap
	x86-64 assembly
	Programming in Assembly

