
CSC2/452 Computer Organization
Assembly Language

Sreepathi Pai

URCS

September 23, 2019

Outline

Administrivia

Recap

x86-64 assembly

Programming in Assembly

Outline

Administrivia

Recap

x86-64 assembly

Programming in Assembly

Assignments and Homeworks

I Assigment #1 due this Friday
I Use the autograder to test your assignments
I No penalties for incorrect submissions before deadline
I Unlimited submissions before deadline

I Homework #3 out tomorrow
I Switching to a Tuesday–Monday schedule, instead of a

Thu–Wed schedule
I Homework #3 will be due next Monday (Sep 30) in CLASS as

usual

Outline

Administrivia

Recap

x86-64 assembly

Programming in Assembly

Previously

I Integers

I Floats

I Addresses

I Instructions
I The Instruction Set Architecture

I The programmer’s interface to the processor

Addresses: Summary

I Unsigned integers from 0 to 2n − 1 where n is size of address
in bits
I Usually n = 64 on modern systems

I Labels are addresses
I Addresses can be loaded into registers

I leaq instruction on Intel 64 machines

I Effective addresses (the final address after any computations
used to access memory) may be specified:
I Directly (Absolute) e.g., 0x7f08e678d000
I Indirect e.g., mov (%rbx, %rsi, 1), 1
I Relative e.g., jmp
I Implicit e.g., push

Instruction Encoding

I Instructions are encoded as multiword bitfields
I On Intel 64, they can occupy more than 64 bits
I Instruction encodings vary by processor

I They convey to the processor:
I What operation to perform
I What the operands (i.e. inputs and outputs) to that operation

are
I Operands can be registers, memory or constants

I In the Intel ISA, not all combinations of operands are valid
I It is not fully orthogonal

Outline

Administrivia

Recap

x86-64 assembly

Programming in Assembly

Nomenclature

I Intel Processors have traditionally been known as x86
I 8086 (their first 16-bit processor)
I 80186, 80286
I 80386, 80486 (their 32-bit processors)

I 80586 became the Pentium, and Intel dropped the numbering
scheme
I also 32-bit
I Courts said you couldn’t trademark numbers

I The ISA for this was usually called ‘x86’ by everybody or
IA-32 (by Intel)

Going to 64-bits

I The first 64-bit version of the x86 was made by AMD
I Was a new ISA based on x86 (much nicer!)
I Therefore sometimes called ‘amd64’
I Also referred to as ‘x86-64’
I Intel calls their version (which is not exactly the same) ‘Intel

64‘
I Sometimes you will see ’x64’ to refer to this architecture

I Intel’s original proposal for a 64-bit processor was called
Itanium
I ‘IA-64’, but the ISA was not widely adopted (sells about 250K

each year)
I Don’t confuse IA-32 and IA-64 – they’re not related at all!

An overview of the Intel Manuals

I Volume 1: Basic Architecture
I Overview of all the data types, instructions, etc. that a

programmer needs to know (500 pages)
I Recommend reading this

I Volume 2: Instruction Set Reference
I Describes every instruction, its operands, its encoding, and

semantics (2242 pages)
I Look this up when you have to

I Volume 3: System Programming Guide
I If you’re writing an OS or compiler or linker or assembler (1700

pages)

I Volume 4: Model-specific registers
I MSRs allow you to control processors (500 pages)
I Put them to sleep, set their operating mode, etc.

I You could order paper copies from Intel for free in the past
I You still can, though not for free

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-2a-2b-2c-and-2d-instruction-set-reference-a-z
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-4-model-specific-registers

Recall: Intel Instruction Format

Source: Intel 64 and IA-32 Architectures: Software Developers
Manual, Volume 2, Instruction Set Reference (A–Z), pg. 2095

The pushq instruction

11 0000 55 pushq %rbp

I Line 11, address 0000 of main

I pushq %rbp is encoded as 0x55

The PUSH instruction

I %rbp is a 64-bit register
I That has Opcode 50+rd

I That’s 0x50, and the O

format

I Page 1175 in Vol 2

What’s +rd ?

I +rd indicates EBP is 5
I But EBP is 32-bits!

I Page 104 of Vol 2

In 64-bit Mode ...

I Since PUSH implicitly references register RSP, this makes 0x55
reference %rbp, not %ebp
I In 64-bit mode, you can’t push EBP.

I The REX prefix of 0x48 tells the processor to use 64-bit
registers
I 12 0001 4889E5 movq %rsp, %rbp
I It is not needed for PUSH

I Page 46 of Vol 2

CPU: The Decode Unit

RAM

CPU

ALUALU FPU

AGU L/SU
Fetch Decode

Outline

Administrivia

Recap

x86-64 assembly

Programming in Assembly

Features of High-level Languages (HLL)

I Variables

I Arrays
I Complex Expressions (large number of operands)

I Arithmetic Operations, Logical Operations, etc.

I Block structure - { and } in C-like languages

I Conditionals if-then-else

I Loops while, for

I Functions

Features of Assembly Languages

I Memory

I Registers
I Expressions are very simple, maybe up to 3 operands

I Need to break up complex expressions into simple expressions

I No block structure

I No direct equivalent for conditionals

I No direct equivalent for loops

I Limited support for functions

Translating Variables

I Typically variables in programs like C end up in either:
I Memory
I Registers

I Memory can be seen as two logical regions – heap, and stack
I Heap usually stores global variables and data
I Stack usually stores (function) local variables

I In assembly language, a variable is in:
I a register, if instruction uses a register operand, e.g. %rax (or

any other register),
I heap, if instruction uses an indirect memory operand, e.g.

(%rbx)
I stack, if an instruction uses an indirect memory operand

relative to %rbp or %rsp, e.g. -4(%rbp)

I Since accessing memory is slow, a variable may be loaded
from memory into a register before operating on it
I In which case, for some time, it exists in both memory and

registers

Example

int sum(int a, int b) {
int c = 0;

c = a + b;

return c;
}

0000000000000000 <sum>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 89 7d ec mov %edi,-0x14(%rbp) # A r->s
7: 89 75 e8 mov %esi,-0x18(%rbp) # B r->s
a: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) # C s

11: 8b 55 ec mov -0x14(%rbp),%edx # A s->r
14: 8b 45 e8 mov -0x18(%rbp),%eax # B s->r
17: 01 d0 add %edx,%eax # A + B
19: 89 45 fc mov %eax,-0x4(%rbp) # store into C
1c: 8b 45 fc mov -0x4(%rbp),%eax # C s->r (rval)
1f: 5d pop %rbp
20: c3 retq

I r->s, register to stack. s->r, stack to register

I rval, return value (must be stored in %eax)

Translating Expressions

I Most instructions accept only 1, 2 or 3 operands
I Example: ADD instruction takes two operands

I ADD %r1, %r2
I %r2 = %r1 + %r2

I An expression like s = a + b + c needs to be broken down
to fit this instruction
I Do this by introducing temporaries

tmp = a + b;
tmp = tmp + c;
s = tmp;

Translating Expressions: Example

0000000000000000 <sum3>:
int sum3(int a, int b, int c) {

0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 89 7d ec mov %edi,-0x14(%rbp) # A
7: 89 75 e8 mov %esi,-0x18(%rbp) # B
a: 89 55 e4 mov %edx,-0x1c(%rbp) # C

int s = 0;
d: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) # S

s = (a + b + c);
14: 8b 55 ec mov -0x14(%rbp),%edx
17: 8b 45 e8 mov -0x18(%rbp),%eax
1a: 01 c2 add %eax,%edx # %edx = A + B
1c: 8b 45 e4 mov -0x1c(%rbp),%eax
1f: 01 d0 add %edx,%eax # C + %edx
21: 89 45 fc mov %eax,-0x4(%rbp) # store into S

return s;
24: 8b 45 fc mov -0x4(%rbp),%eax

}
27: 5d pop %rbp
28: c3 retq

Translating Conditionals

int max(int a, int b) {

if(a > b) {
return a;

} else {
return b;

}

}

Assembly Language Conditionals: Three components

I Comparison functions

I Conditional jumps

I Unconditional jumps

Disassembly of max

0000000000000000 <max>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 89 7d fc mov %edi,-0x4(%rbp)
7: 89 75 f8 mov %esi,-0x8(%rbp)
a: 8b 45 fc mov -0x4(%rbp),%eax
d: 3b 45 f8 cmp -0x8(%rbp),%eax # COMPARISON

10: 7e 05 jle 17 <max+0x17> # COND. JUMP
12: 8b 45 fc mov -0x4(%rbp),%eax
15: eb 03 jmp 1a <max+0x1a> # UNCOND. JUMP
17: 8b 45 f8 mov -0x8(%rbp),%eax
1a: 5d pop %rbp
1b: c3 retq

Comparison

a: 8b 45 fc mov -0x4(%rbp),%eax
d: 3b 45 f8 cmp -0x8(%rbp),%eax # COMPARISON

10: 7e 05 jle 17 <max+0x17> # COND. JUMP
...
17: 8b 45 f8 mov -0x8(%rbp),%eax # RETURN B

I We know a is on the stack at -0x4(%rbp)

I We know b is on the stack at -0x8(%rbp)
I The cmp instruction compares b with %eax (which contains a)

I For cmp x, y, the cmp instruction calculates y - x

I The results of the cmp operation are stored in the EFLAGS
register. Of relevance to jle:
I ZF: Zero flag: set to 1 if y - x == 0
I OF: Overflow flag: set to 1 if y - x underflowed or overflowed
I SF: Sign flag: set to sign bit of y - x

jle

I Part of the family of jcc instructions
I cc is conditional code

I Jump If Less Or Equal

I If ZF is 0, then y = x .
I If OF 6= SF then, y < x

I To understand this, work out all cases of y < x where they are
+/+,-/-,+/-,-/+

I Note that at machine level, two’s complement integers
“wrap-around” on overflow and underflow

I Here, the conditional jump to max+0x17 occurs if a <= b
I Otherwise control “falls through” to the next instruction

Conditionals: Full translation

I Evaluate the condition and jump to the Else part
I Or fall through to the Then part

a: 8b 45 fc mov -0x4(%rbp),%eax
d: 3b 45 f8 cmp -0x8(%rbp),%eax # COMPARISON

10: 7e 05 jle 17 <max+0x17> # COND. JUMP

I The Then Part

12: 8b 45 fc mov -0x4(%rbp),%eax
15: eb 03 jmp 1a <max+0x1a> # UNCOND. JUMP

I The Else Part

17: 8b 45 f8 mov -0x8(%rbp),%eax

I Code immediately after Else

1a: 5d pop %rbp

Loops

int div(int a, int b) {
int q = 0;

while(a - b > 0) {
a = a - b;
q = q + 1;

}

return q;
}

(Ignore what this function is trying to do)

Loops: Removing Structure

int div2(int a, int b) {
int q = 0;

goto loop_test;

loop_body:
a = a - b;
q = q + 1;

loop_test:
if((a - b > 0))
goto loop_body;

loop_exit: /* not required, for clarity only */

return q;
}

I We can convert a while loop into unstructured form using
goto and if

Unstructured Loop Translation

I goto is an unconditional jmp

I The if(cond) goto form is just a conditional jump

Translation

000000000000002c <div2>:
...
3d: eb 0b jmp 4a <div2+0x1e> # goto loop_test
3f: 90 nop # loop_body:
40: 8b 45 e8 mov -0x18(%rbp),%eax
43: 29 45 ec sub %eax,-0x14(%rbp)
46: 83 45 fc 01 addl $0x1,-0x4(%rbp)
4a: 8b 45 ec mov -0x14(%rbp),%eax # loop_test: a - b
4d: 2b 45 e8 sub -0x18(%rbp),%eax
50: 85 c0 test %eax,%eax # is a - b > 0?
52: 7f eb jg 3f <div2+0x13> # jump if greater
54: 90 nop
55: 8b 45 fc mov -0x4(%rbp),%eax
58: 5d pop %rbp
59: c3 retq

I test performs a logical and of its two operands and sets ZF
and SF
I sub sets the OF flag

I jg jumps if ZF=0 and SF=OF

Translating for loops

int iter(int a, int b) {
int i;

for(i = 0; i < 10; i++) {
a = a + b;

}

return i;

}

De-structuring for loops

int iter2(int a, int b) {
int i;

loop_head:
i = 0;
goto loop_test;

loop_body:
a = a + b;

i++; /* loop update */

loop_test:
if(i < 10)
goto loop_body;

loop_exit:

return i;
}

Translating for loops

0000000000000028 <iter2>:
...
32: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp) # i = 0
39: eb 0b jmp 46 <iter2+0x1e> # goto loop_test

3b: 90 nop # loop_body:
3c: 8b 45 e8 mov -0x18(%rbp),%eax
3f: 01 45 ec add %eax,-0x14(%rbp) # a = a + b
42: 83 45 fc 01 addl $0x1,-0x4(%rbp) # i++

46: 83 7d fc 09 cmpl $0x9,-0x4(%rbp) # loop_test:
4a: 7e ef jle 3b <iter2+0x13> # if(i < 10) goto loop_body

4c: 90 nop
...

Basics of translating HLLs to Assembly (so far)

I Simplify expressions

I Find locations for variables
I Destructure loops

I Use conditional and unconditional jumps

Handling Function Calls

I How to pass arguments to function?

I How to jump to a function?
I How to come back to just after call location?

I How does ret know where to return to?

I How to receive the return value from a function?

References

I Read Chapter 3 of the textbook
I Esp. the Figure detailing all the registers

	Administrivia
	Recap
	x86-64 assembly
	Programming in Assembly

