
CSC2/452 Computer Organization
Addresses and Instructions

Sreepathi Pai

URCS

September 18, 2019

Outline

Administrivia

Bit-Level Universe: A Recap

Addresses

Instruction Set Architecture

Outline

Administrivia

Bit-Level Universe: A Recap

Addresses

Instruction Set Architecture

Announcements

I Homework #2 due today IN CLASS.
I Assignment #1 out

I Due next week, Friday Sep 27.

I Homework #3 will be out Thursday
I Due next Wed as usual

Outline

Administrivia

Bit-Level Universe: A Recap

Addresses

Instruction Set Architecture

Bits

I Bits: 0 and 1
I Bit operations: AND, OR, NOT, XOR, etc.

I Data structures made of bits
I Bitsets (also called Bitmaps, Bitstrings, Bitvectors, etc.)
I Bitfields
I Bitwise operations: AND, OR, NOT, XOR, ...
I Primary operations: setting bits, extracting bits, shifting bits

I Applications
I Representing integers (bitfield of sign + value)
I Representing floats: single-precision, etc.

What is this bitstring?

1100 0000 1000 1001 0000 1111 1101 1100

I Hexadecimal value: 0xc0890fdb

I A: The 32-bit unsigned integer: 3, 226, 013, 659

I B: The 32-bit signed two’s complement integer:
−1, 068, 953, 637

I C: The 32-bit IEEE754 single-precision float: −3.141593

I D: All of the above

I E: None of the above

Bits are in the eye of the beholder

I If the ALU consumes the bits, it is interpreted an integer
I either signed or unsigned depending on the context (more

later)

I If the FPU consumes the bits, it is interpreted as a float
I Bits themselves do not encode what they mean

I Powerful idea
I Good sometimes, mostly bad?

I High-level languages introduce the notion of type safety to
maintain logical sanity
I Roughly, track what the bits mean and prevent invalid

operations

Basic Machine Level Data “Types”

I Integers

I Floats

I Addresses

I Instructions

Outline

Administrivia

Bit-Level Universe: A Recap

Addresses

Instruction Set Architecture

Addresses

I An address is ultimately an unsigned integer

I It represents a location in memory (i.e. RAM)
I Addresses on a machine are usually of a fixed size

I 16-bit (a long time ago, and in some very small machines these
days)

I 32-bit (remarkably common until about a decade ago)
I 64-bit (most common today)

The Size of an Address

I Addresses run from 0 to 2n − 1 where n is 16, 32, or 64-bit
I 16: 65,536
I 32: 4,294,967,296
I 64: 18,446,744,073,709,551,616

I If machines are byte addressable (as most are), this means the
maximum size of addressable memory is:
I 16: approx. 64 Kilobytes
I 32: approx. 4 Gigabytes
I 64: approx. 18 Exabytes

I Most single computers these days can accommodate upto a
few terabytes
I Intel and AMD 64-bit hardware only supports 48 bits (about

256 Terabytes)

Creating Addresses

I Addresses are just integers at the machine level
I High-level languages try very hard to prevent integers and

addresses from mixing

I Two primary uses of addresses
I Address of code
I Address of data
I No way to distinguish between these uses by looking at only

the address without additional info

I Three primary address consuming units inside a CPU
I The instruction fetch unit treats address as address of code
I The load/store unit treats address as address of data
I The address generation unit performs simple operations on

addresses

Addresses in Assembly: Absolute Addresses

call printf /* printf is an absolute address
of the printf code */

I (Recall that labels are just human-readable addresses)

I Here the address of printf would be filled in by the linker

I It is a full 64-bit address

I This is calling the printf function by providing its address

I In machine code, this is represented as e8 00 00 00 00,
where the zeroes are filled in with the 64-bit address

Addresses in Assembly: Indirect Addresses

call *%rdx

I Here, %rdx is a 64-bit register containing an address
I We’ll talk about registers later, but assume it is a memory

location
I Or, in high-level language terms, it is a variable

I This is calling whatever is at the address contained in %rdx

I In machine code, this is represented as ff d2, note no address

I The *%rdx syntax is AT&T, you may also see call [rdx] in
Intel syntax

Operations on Indirect Address Operands

I An effective address (EA) is the final address formed from an
indirect address and (optional) various indexing and scaling
operations.

Expression Example Meaning
%reg %rdx EA is in %reg

disp(%reg) -4(%rbp) EA is %reg + disp

displacement is a 8/16/32 bit signed integer
(%basereg,

%indexreg, scale)

(%rbx,%rsi,4) EA = %basereg +

%indexreg * scale

scale can only be 1, 2, 4, or 8
disp(%basereg,

%indexreg, scale)

-8(%rbx,%rsi,4) EA = %basereg +

%indexreg * scale +

disp

I These are Intel 64 assembly language addressing modes, represented
in AT&T syntax

Computing on Addresses

.LC1:
.string "Hello, the value of pi is %f\n"

...
leaq .LC1(%rip), %rdi
...

I .LC1 is a label (i.e., an address)
I leaq is Load Effective Address Quadword

I Quadword is 64-bit

I Compute %rip + .LC1 and store it in %rdi
I After assembly, .LC1 is 0x99
I So the machine code looks like leaq 0x99(%rip), %rdi
I During execution, %rdi = %rip + 0x99
I This calculation performed by the address generation unit

(AGU) [not the ALU]

Base, Index, Scale and Displacement

I The disp(%basereg, %indexreg, scale) addressing mode
is most helpful for calculating addresses of array elements

/* pseudocode to find address of array element 5 */
/* array Arr contains doubles, recall doubles are 64-bit*/
array_base = Arr
index = 5
address_of_fifth = array_base + index * 8

I In pseudo-assembly:

/* moving absolute address into %rbx */
leaq Arr, %rbx

movq $5, %rsi

/* compute address of fifth element */
leaq (%rbx, %rsi, 8), %rdx

/* (contd. on next slide */

Loading data using an effective address

/* %rdx has address of fifth element, load it into %rax */

movq (%rdx), %rax

I The mov instruction is the primary way to load or store data
on Intel 64
I Note: It copies data, does not move it

I mov as several forms
I mov %REG1, %REG2, copies data in %REG1 to %REG2
I mov IMM, %REG, copies constant IMMediate to %REG
I mov EA EXPR, %REG, load data from effective address

EA EXPR into %REG
I mov %REG, %EA EXPR, store data from %REG to effective

address computed by EA EXPR

I EA EXPR are all the forms we saw previously: e.g.
0x99(%rip), etc.

I Accesses to memory are performed by the load/store unit

Addresses for data: Data size

I Addresses do not contain information about the size of data
they address

I It is possible to use the same address x to read:
I 1 byte stored at x
I 2 bytes at x and x + 1
I 4 bytes at x , x + 1, x + 2, x + 3
I 8 bytes at x , x + 1, x + 2, x + 3, ..., x + 7

I In AT&T syntax, the size of data is indicated by a suffix on
the instruction:
I movq (quad, 64-bit integer)
I movl (long, 32-bit integer, 64-bit floating point)
I movw (word, 16-bit integer)
I movb (byte, 8-bit byte)
I movs (single, 32-bit float)

Addresses for data: Alignment

I An address is set to be aligned to be x if it is divisible by x
I For example,

I All even addresses are aligned to 2
I Address 0x44 is aligned to 4 (lowest two bits are zero)

I On many machines, data of size n can only be read if it stored
at address x aligned to n
I No such general alignment requirement on Intel/AMD

machines
I Some instructions may have these requirements on Intel/AMD

I Attempting to read misaligned data is
I slower on Intel/AMD
I can cause errors on other processors

Relative Addresses

610: eb 06 jmp 618 <main+0x1e>

I Recall output of objdump -S
I Columns contain: address, machine code, disassembly
I jmp instruction at address 0x610
I encoded as two bytes eb 06
I jmp to address 0x618

I Is address 0x618 stored in the machine code?

Relative Addresses (contd.)

I Some addresses can be expressed as relative to an implicit
register
I usually %rip

I In the previous slide, after reading the jmp instruction
I %rip is 0x612

I The instruction contains an offset (0x6) that is added to %rip

I Sometimes called a short jump or a near jump

Implicit Addressing

pushq %rbp

I Some instructions use implicit indirect addresses
I On x86, notably pushq, popq, leave

I These store values on the function stack in memory

I The address of the function stack is given by register %rsp

I Executing pushq %rbp is equivalent to:

%rsp = %rsp - 8 /* note stack grows towards lower address */
(%rsp) = %rbp /* note (%rsp) is indirect memory address */

Hello Pi, again

.file "hellopi.c"

.text

.section .rodata
.LC1:

.string "Hello, the value of pi is %f\n" LC1 is address of this string

.text

.globl main

.type main, @function
main: main is address of the next instruction
.LFB0: so is .LFB0

pushq %rbp store the value of %rbp at (%rsp)
movq %rsp, %rbp copy (NOT move) the value of %rsp into %rbp
subq $16, %rsp subtract 16 from %rsp
movss .LC0(%rip), %xmm0 load single at .LC0(%rip) into %xmm0
movss %xmm0, -4(%rbp) store single in %xmm0 into -4(%rbp)
cvtss2sd -4(%rbp), %xmm0 convert single at -4(%rbp) into double in %xmm0
leaq .LC1(%rip), %rdi load address of string into %rdi
movl $1, %eax set %eax to 1
call printf@PLT call printf
movl $0, %eax set %eax to 0
leave set %rsp to %rbp, then popq %rbp
ret exit the function
.section .rodata
.align 4 make sure .LC0 is aligned to 4

.LC0:
.long 1078530011 this is 0x40490fdb, i.e. 3.141593

Unexplained stuff (for now)

I Standard x86 function prologue and epilogue
I push %rbp, %rsp (we know what it does, but why?)
I subq $16, %rsp
I leave

I C translation details
I cvtss2sd -4(%rbp), %xmm0 (why convert to double?)
I movl $1, %eax

I Details on these as we study translating C to assembly in later
classes

Food for thought

Why do we need so many ways to specify an address?

The Computer (Updated)

RAM

CPU

ALUALU FPU

AGU L/SU
Fetch

Outline

Administrivia

Bit-Level Universe: A Recap

Addresses

Instruction Set Architecture

Instructions

I “Commands” to the processor (e.g. CPU)
I Part of Instruction Set Architecture

I Programmer’s interface to a processor
I Instructions processor understands
I Data types processor understands
I Other processor services and functionality [later in the course]

Design Questions

I Which instructions should a processor support?

I Where are inputs and outputs for instructions stored?

Functionality

I Bitwise manipulation instructions

I Integer arithmetic

I Floating point arithmetic

I Address manipulation instructions

I Memory load/store instructions

I Function call instructions

I Stack manipulation instructions

I Cryptography instructions?

I Video encoding/decoding instructions?

I ...

CISC vs RISC

I Complex Instruction Set Computer (CISC)
I Supports many instructions

I Reduced Instruction Set Computer (RISC)
I Supports a limited number of instructions

CISC vs RISC (contd.)

CISC RISC
Easier to program by hand Easier for compilers to program
Complex circuit implementation Simpler circuit implementation
Can be made fast Can be made fast (usually easier)
VAX, Intel x86 MIPS (most famous), ARM, RISC-V, ...

I Distinction is somewhat meaningless now

I Unlikely it ever was

I Intel x86 is internally RISC

I Instructions you use are translated into RISC-like
micro-instructions

I ARM (Acorn RISC Machines) is hardly RISC anymore

I Lots of instructions supported

Operands

I Instructions operate on operands
I Operands can be stored in:

I Registers
I Memory

I Should all instructions be allowed to access both kinds of
operands?

Load/Store architectures

I Should all instructions be allowed to access both kinds of
operands?

I Yes
I All instructions can access both memory and register operands
I Mostly CISC

I No
I Only load/store instructions can access memory and registers
I All other instructions can access only registers
I Mostly RISC

I VAX
I Fully orthogonal architecture
I Instructions and operand accesses are independent
I Makes it much easier to program

I x86
I Most instructions can access both memory and registers
I But not orthogonal

Designing a Instruction Encoding

I Consider a load/store architecture processor

I 128 instructions

I Supports 64-bit addresses

I Has 32 registers

Encoding

OP RS1, RS2, RD

I 128 different instructions (i.e. OP can be 0 to 127)
I How many bits?

I Has 32 registers
I RS1, RS2 and RD are all registers
I How many bits?

Encoding (Solutions)

OP RS1, RS2, RD

I 128 different instructions (i.e. OP can be 0 to 127)
I 7 bits

I Has 32 registers
I RS1, RS2 and RD are all registers
I 5 bits + 5 bits + 5 bits = 15 bits

I Can store all the information we need in 22 bits
I Maybe use a 32-bit bitfield?

Instructions as a bitfield

3322222222 22111 11111 11
1098765432|10987|65432|10987|6543210

unused | RD | RS2 | RS1 | opcode

I Top two lines indicate bit positions
I Here is what ADD R0, R1, R2 looks like

I assume ADD is given opcode 00100012

I assume Rx is indicated by x in binary
I i.e. R0 is 000002, R20 is 101002

I set unused bits to 0

3322222222 22111 11111 11
1098765432|10987|65432|10987|6543210

0000000000|00010|00001|00000|0010001

Our Instruction Encoding

I Fixed-width instructions
I All instructions 32-bit

I Not very flexible
I Only register operands
I Does not support advanced addressing modes
I Can’t supply constants (or immediate operands)

Open Design Questions

I How do we encode instructions that take memory addresses?
I Won’t fit in 32 bits

I If an operation takes a memory address, what do we do with
RS1, RS2 and RD fields?

I How do we specify data sizes?

Intel x86 instruction coding

7 .globl main
9 main:
10 .LFB0:
11 0000 55 pushq %rbp
12 0001 4889E5 movq %rsp, %rbp
13 0004 4883EC10 subq $16, %rsp
14 0008 F30F1005 movss .LC0(%rip), %xmm0
14 00000000
15 0010 F30F1145 movss %xmm0, -4(%rbp)
15 FC
16 0015 F30F5A45 cvtss2sd -4(%rbp), %xmm0
16 FC
17 001a 488D3D00 leaq .LC1(%rip), %rdi
17 000000

I Variable-sized

I Registers, Memory, Constants as operands

I Advanced addressing modes

I But also implemented as a bitfield!

Intel Instruction Format

Source: Intel 64 and IA-32 Architectures: Software Developers
Manual, Volume 2, Instruction Set Reference (A–Z), pg. 2095

References

I Chapter 3
I Intel 64 and IA-32 Architectures Software Developer’s

Manuals
I approx. 6000 pages, be sure to read over weekend, quiz next

class :)

https://software.intel.com/en-us/articles/intel-sdm#three-volume
https://software.intel.com/en-us/articles/intel-sdm#three-volume

	Administrivia
	Bit-Level Universe: A Recap
	Addresses
	Instruction Set Architecture

