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Announcements

I Homework #1 grades are out
I Regrade requests due in a week
I Submit Regrade Requests on Gradescope ONLY.

I Homework #2 is out
I Due this Wednesday IN CLASS.

I Assignment #1 out later today
I Due next week, Friday Sep 27.
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Real Numbers

I R
I infinite (just like integers)
I but they are different infinity (uncountable)

I There are infinite real numbers between any two real numbers
I How do we represent these using a finite, fixed number of

bits?
I Say, 32 bits



The problem

I Assume 5 bits are available

I Consider 17: 10001

I Consider 18: 10010
I Where shall we put 17.5?

I No bit pattern ”halfway” between 10001 and 10010



One option

I Consider only deltas of 0.25, 0.5, 0.75
I Then

I 17.00: 10001
I 17.25: 10010
I 17.50: 10011
I 17.75: 10100
I 18.00: 10101

I This is the basis of the idea of fixed point
I Can’t represent all numbers
I Fixed accuracy

I Used widely in tiny computers



Representing Real Numbers

I We cannot represent real numbers accurately using a finite,
fixed number of bits
I But do we need infinite accuracy?

I How many (decimal) digits of precision do we use?
I In our bank accounts (before and after the decimal point?)
I In engineering?
I In science?



On magnitudes

I Smallest length
I Planck length, on the order of 10−35 (would require 35 decimal

digits)

I Smallest time
I Planck time, on the order of 10−44

I Width of visible universe
I On the order of 1024

I Lower bound on radius of universe: 1027



On precision

I Avogadro’s number: 6.02214076× 1023

I So, actually: 602214076000000000000000

I π = 3.1415...× 100

I NASA requires about 16 decimal digits of π1

I We know about a trillion

1https://blogs.scientificamerican.com/observations/

how-much-pi-do-you-need/

https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/
https://blogs.scientificamerican.com/observations/how-much-pi-do-you-need/


Scientific notation for numbers

I The scientific notation allows us to represent real numbers as:

significand× baseexponent

I For Avogadro’s number:
I Significand: 6.02214076
I Significand is scaled so always only one digit before the

decimal point
I Base: 10
I Exponent: 23



Binary Scientific Notation

I We can use scientific notation for binary numbers too:

1.011× 23

I Here, the number is:
I (1× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3)× 23

I (1× 23 + 0× 22 + 1× 21 + 1× 20) = 1110

I Components:
I Significand: 1.011
I Base: 2
I Exponent: 3



Binary Scientific Notation: Example #2

I Now with a negative exponent:

1.011× 2−3

I Here, the number is:
I (1× 20 + 0× 2−1 + 1× 2−2 + 1× 2−3)× 2−3

I (1× 2−3 + 0× 2−4 + 1× 2−5 + 1× 2−6)
I (0.12510 + 0 + 0.062510 + 0.0312510) = 0.171875

I Components:
I Significand: 1.011
I Base: 2
I Exponent: -3



Some design notes

I Significand contains a radix point (i.e. decimal point or binary
point)
I But it’s position is fixed: only one digit before the radix point
I In binary scientific notation, this is always 1 (why?)
I We don’t need to store the radix point
I So significand can be treated as an integer with an implicit

radix point

I Base is always 2 for binary numbers
I No need to store this

I Exponent is also an integer
I Could be negative or positive or zero



Design notes (continued)

I So (binary) real numbers can be expressed as a combination
of two fields:
I significand (possibly a large number, say upto 10 decimal

digits)
I exponent (possibly a smallish number, say upto 4410)
I would allow us to store numbers with at least 10 decimal digits

of precision, upto 44 decimal digits long

I We’ll also need to store sign information for the significand
and the exponent

I How many bits?
I for 10 significant decimal digits? e.g. 9,999,999,999
I for max. exponent 5010?
I plus two bits for sign (one for significand, one for exponent)



Design notes (continued)

I How many bits?
I for 10 significant decimal digits? e.g. 9,999,999,999: about 34

bits
I for max. exponent 50? about 6 bits
I plus two bits for sign (one for significand, one for exponent)

I Total: 34 + 6 + 2 = 42 bits
I Could be implemented as a bitfield
I But 42 is between 32 and 64, not efficient to manipulate

I What format should we use to store negative significands and
exponents?
I sign/magnitude
I one’s complement
I two’s complement
I other?



Bitfield Design Constraints

I Ideally should fit sign, significand and exponent in 32 bits or
64 bits
I Easier to manipulate on modern systems

I Arithmetic operations should be fast and “easy”
I Comparison operations should be fast and “easy”

I e.g. should not need to extract fields and compare separately
I useful for sorting numbers

I Should satisfy application requirements
I esp. with accuracy, precision and rounding
I should probably be constraint #1
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IEEE 754 32-bit floating point standard

I Total size: 32-bits
I Also called “single-precision”
I On most systems, the C type float is single-precision

I Significand: 24 bits, roughly 7 significant (decimal) digits of
accuracy
I Sometimes called (wrongly) the Mantissa

I Exponent: 8 bits, from 2−126 to 2127 (roughly 10−38 to 1038

(decimal))
I Sign bit: 1 sign bit for the significand

I What about sign bit for the exponent?

I Also supports special representations:
I for +∞ and −∞
I For “not-a-number“ NaN, e.g. for representing (0/0)
I “denormals”

I Note: 24 + 8 + 1 = 33, not 32



Representing the significand

1.100 1001 0000 1111 1101 1011

I 24 bits of significand
I Normalized form, only one digit before the radix point

I Change the exponent until this is achieved (normalization)
I That digit must be non-zero
I Always 1

I Hence, do not need to store it!
I Only use 23 bits for the magnitude
I In example, only 100 1001 0000 1111 1101 1011 is stored

I Uses sign/magnitude notation (not one’s or two’s
complement)
I 1 bit for sign (0 for +, 1 for −)
I 23 bits for magnitude + one always 1 implicit bit (not stored)



Appreciating Precision

One weird trick to make money from banks:

#include <stdio.h>

int main(void) {
float f;
int i;

f = 16777216.0;
f = f + 3.0;

printf("%f\n", f);
}

I Note that 16777216 is 224

I What is the value of f that is printed?
I A: 16777216.0
I B: 16777219.0
I C: 16777220.0
I D: something else
I E: undefined



More Surprises

#include <stdio.h>

int main(void) {
float f;
int i;

f = 16777216.0;

for(i = 0; i < 2000; i++) {
f = f + 1.0;
// printf("%f\n", f) // uncomment to see what is happening

}

printf("%f\n", f);
}

I What is the value of f that is printed?
I A: 16777216.0
I B: 16779216.0
I C: something else
I D: undefined



Rounding

I IEEE floating point rounds numbers that cannot be exactly
represented

I For an operation ⊕ (where ⊕ could be any of mathematical
+,−, /,×)
I the standard says x ⊕ y → Round(x ⊕ y)

I Four rounding modes
I Round to nearest (also known as round to even, and default)
I Round to zero
I Round to +∞
I Round to −∞



What’s happening

I 16777216.0 + 1.0 is unrepresentable
I By default, rounding mode is round to nearest
I Nearest is 16777216.0
I No change!

I Why it is also called round to even
I If an unrepresentable value is equidistant between two

representable values
I It is not possible to say which is “nearest”
I IEEE standard picks the even value between the two

representable values

I This makes floating point arithmetic non-associative
I (a + b) + c 6= a + (b + c)
I ((a + 1.0) + 1.0) 6= (a + (1.0 + 1.0))



Representing the Exponent

I 8-bit wide bitfield
I Can store 256 values
I Must store values from -126 to 127 (that’s 254 values)

I Uses biased representation
I To store x , we actually store x + 127 in 8 bits
I So 127 is stored as 254
I And −126 is stored as 1
I No sign bit required!
I So field actually contains values from 1 to 254 to represent
−126 to 127

I The biased values 0 and 255 are used to indicate special
numbers



Why biased? Comparing exponents

Which is greater?

1.011× 2−3

Or:

1.011× 2+3

I Note -3 in biased notation is −3 + 127 = 124 = 0111 11002
I Note 3 in biased notation is +3 + 127 = 130 = 1000 00102



Putting it altogether

I Three bit fields
I s: Significand Sign (1 bit)
I M: Significand (23 bits)
I E : Biased Exponent (8 bits)

I 6 possible ways to order them
I s,M,E
I s,E ,M
I M, s,E
I M,E , s
I E , s,M
I E ,M, s

I Out of familiarity, let’s only consider those where s occupies
higher bits than M



Comparing Three Formats

I Suppose you have two numbers:
I a = 1.100...× 23

I b = 1.010...× 25

I Which is greater?

I Representation
I Significand: 100...2 for a and 010..2 for b
I Exponent: 3 + 127 = 130 = 1000 00102 and

5 + 127 = 132 = 1000 01002

I Sign is 0 for both



Comparing Three formats (contd.)

I s,M,E
I 0 | 100 000 ... | 1000 0010
I 0 | 010 000 ... | 1000 0100

I s,E ,M
I 0 | 1000 0010 | 100 000 ...
I 0 | 1000 0100 | 010 000 ...

I E , s,M
I 1000 0010 | 0 | 100 000 ...
I 1000 0100 | 0 | 010 000 ...



IEEE 754 Single Precision Format

I Uses s,E ,M format
I If a number x > y , then its bitwise representation x > y

I When sign bit is same, scan from bit 30 to 0, looking for first
different bit

I When sign bit is different, 1 in sign bit indicates less than 0
(exceptions +0 and -0)

I Can thus compare floating point numbers without having to
extract bitfields!



Representing Zero

0× 2x

I Has no leading 1
I Special representation

I Sign bit can be 0 or 1
I Exponent is all zeroes (i.e. it appears to be −127 stored

biased, hence −126 is lower limit)
I Magnitude is all zeroes

I Hence:
I +0: all 32 bits are zero
I −0: sign bit is 1, but all other bits are zero



The smallest normalized single-precision number

+1.000 0000 0000 0000 0000× 2−126

I In IEEE: 0 | 0000 0001 | 000 0000 0000 0000 0000
I | just for visual separator

I That’s just 2−126

I Approximately, 1.17549435× 10−38

I What should happen if we divide this by two?
I I.e.

(0.0000000000000000000000000000000000000117549435/2)
I (+1.000 0000 0000 0000 0000× 2−126)/2
I (+1.000 0000 0000 0000 0000× 2−127)



Let’s make it zero!

I Default behaviour on many systems before IEEE754
I Underflow to zero

I a = 1.000 0000 0000 0000 0000× 2−126

I b = 1.000 0000 0000 0000 0001× 2−126

I What is a− b?
I Remember, a 6= b

I What would x/(a− b)?



Denormals

I a = 1.000 0000 0000 0000 0000× 2−126

I b = 1.000 0000 0000 0000 0001× 2−126

I a− b = 0.111 1111 1111 1111 1111× 2−126

I Numbers of this form are called denormals or subnormals
I They have a 0 before the radix point

I IEEE 754 specifies how to store denormals:
I s, sign as usual
I E , exponent is zero
I M, the significand is non-zero

I This allows “gradual underflow” to zero
I Some systems detect denormals and perform arithmetic in

software
I Slow!



Representing Infinities

0 1111 1111 000 0000 0000 0000 0000

I In the above representation,
I Sign: 0
I Exponent: 255
I Significand: 0

I Exponent
I 0 indicates either zero or a subnormal
I 1 to 254 indicates normalized exponent -126 to 127
I 255 indicates either infinity or NaN

I With significand zero:
I Exponent 255 indicates +∞ or −∞ (depending on sign)
I −∞ < x < +∞ where x is any representable number



Representing NaNs

0 1111 1111 xxx xxxx xxxx xxxx xxxx

I In the above representation,
I Sign: 0
I Exponent: 255
I Significand: 6= 0 (i.e. the x bits are not all zero)

I With significand non-zero:
I Exponent 255 indicates NaN (not-a-number)
I Produced by operations like 0/0, ∞/∞, etc.

I NaNs propagate:
I Any operation involving a NaN results in a NaN



Addition in Floating Point

Add

a = 1.000 0000 0000 0000 0000× 23

to:

b = 1.000 0000 0000 0000 0000× 24



Equalizing exponents

I Exponents for a and b are different, so equalize them
I Shift one of them
I The shifted representation is internal
I Only the result after addition is visible

I b = 10.00 0000 0000 0000 0000× 23

I a + b = 11.00 0000 0000 0000 0000× 23

I Normalized, 1.100 0000 0000 0000 0000× 24



Double-precision

I 64-bit floating point format
I Significand: 53 bits (52 stored), around 17 decimal digits of

precision
I Exponent: 11 bits (biased by 1023)
I Sign: 1 bit

I In C, usually double

I Range: 2−1022 to 21023 for normalized numbers
I Roughly 10−308 to 10308



A Programmer’s View of Floating Point

I When translating algorithms from math to code, be wary
I Computers use floats, not real numbers!

I Two major problems:
I Non-termination (usually because exact == is not possible)
I Numerical instability (approximation errors are “magnified”)

I If you deal with computational science or use numerics
extensively, educate yourself
I Resources at the end
I Or take a Numerical Analysis class (primer at the end)



How the machine supports floating point

I A math co-processor called
the “floating point unit”
I Back in the day, a

separate processor
I The Intel 387 is a classic

I For machines without a
coprocessor, everything was
done in software
I Sometimes called

“softfloat”
I Still used to handle

denormals on some
processors

I These days, integrated into
the CPU as FPUs

CPU

RAM

ALUALU FPU
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Python Integers

I Python only has signed integers (like Java)

v = 1
for i in range(256):

v = v * 2

print(v)

I What is the value of v that is printed?
I A: Undefined
I B: 2256 mod 264 (assuming 64-bit integers)
I C: 2256

I Reference: Python Numeric Types

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex


Arbitrary Precision Floating Point

The bc calculator in Linux:

bc 1.07.1
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
16777216.0+1.0
16777217.0

16777216.0+3.0
16777219.0

f = 16277216.0
for(i = 0; i < 2000; i++) { f += 1.0; }

f
16279216.0



Summary

I Take away: floating point numbers are NOT real numbers

I Reference: Chapter 2

For further study:

I Link to An Interview with the Old Man of Floating-Point
I IEEE754 won William Kahan the Turing Award

I Definitely read:
I Goldberg, What Every Computer Scientist should Know about

Floating-Point Arithmetic, ACM 1991
I Stadherr, High Performance Computing, Are we just getting

wrong answers faster?
I Trefethen, Numerical Analysis

https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html
https://dl.acm.org/citation.cfm?id=103163
https://dl.acm.org/citation.cfm?id=103163
https://www3.nd.edu/~markst/cast-award-speech.pdf
https://www3.nd.edu/~markst/cast-award-speech.pdf
https://people.maths.ox.ac.uk/trefethen/NAessay.pdf
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