CSC2/452 Computer Organization
Bits and Integers

Sreepathi Pai
URCS

September 3, 2019

Outline

Administrivia

Introduction

Bits, Functions and Boolean Algebra

Machine Data Types

Interpreting Bits as Integers

Outline

Administrivia

Announcements

» Course website has office hours for TAs
» Link to course website announced on Blackboard
» Use Piazza (link from Blackboard)

» | plan to incorporate electronic devices into my lectures
» Cellphones and/or Laptops will be required
» Please be respectful of others around you

> |If you do not want to use cellphones/laptops, please talk to me
after class for options

Outline

Introduction

Real World Data

» Numbers
> Text
> Pictures
> Audio
>

Scents

Most can be encoded as numbers

Building Blocks of the Digital Universe

And most numbers can be encoded as binary digits (or bits),
consisting of the values 0 and 1.

Outline

Bits, Functions and Boolean Algebra

Functions of 1 input (unary functions)

» ZERO (output is always zero)

Input | Output
0 0
1 0

» ONE (output is always one)

Input | Output
0 1
1 1

Functions of 1 input (contd.)

» IDENTITY (output is always equal to input)

Input | Output
0 0
1 1

» INVERSE (or NOT) (output is inverse of input)

Input | Output
0 1
1 0

» There are only four unary bitwise functions (or operations).

» Bitwise functions are also called boolean functions

Functions of 2 inputs (binary functions)

» ZERO
a | b | Output
0|0 0
0|1 0
1|0 0
1)1 0

> ONE
a | b | Output
0|0 1
0|1 1
1|0 1
1)1 1

» Note that ONE is essentially NOT(ZERO(a, b))

Truth Tables and Boolean Functions

» The tables in the previous slides are called “Truth tables”
» the textbook uses a slightly more compact form

» If there are | inputs, a truth table has R = 2! rows
> If the output is a single bit, then there are F = 2R different
outputs
» This is also the total number of boolean functions of / inputs
> eg., I:1—>R:21—>F:222:4
> eg, =23 R=223F=2=16
» Half of these functions can be obtained by inverting the other
half

AND

> AND outputs 1 only when both inputs are 1

a | b | Output
0|0 0
0|1 0
1|0 0
1)1 1

OR

» OR outputs 1 if either input is 1

» hence, “inclusive or”

» not how it is used in English!

a | b | Output
00 0
0|1 1
110 1
11 1

XOR

> XOR, 1 only when exactly one of its input is 1
» hence, “exclusive or”
» pronounced “ecks-or” (i.e. x-or) or “zor”
» | prefer the latter...

a | b | Output
0|0 0
0|1 1
1|0 1
1)1 0

NAND and NOR

> NAND = NOT(AND(a, b))

Output
1

alb
0|0
0|1
1|0
1)1

O | =

> NOR = NOT(OR(a, b))

= =IO OoOlL

b
0
1 0
0
1

» NAND and NOR are universal gates

» Can be used to implement any boolean function

Examples of NAND

» What should ? be in the following examples to make LHS =
RHS?
> NOT(a) = NAND(a,?)
> AND(a, b) = NAND(NAND(a, b),?)
> OR(a, b) =7

Generalizing to inputs longer than one bit

» Inputs longer than one bit are called:

> bit vectors
» bit strings
> or more specific names for particular names (e.g. 8 bits = byte)

by bs bs bya bz by b1 by
0o 1 0 1 1 0 0 1
AND 0 1 1 1 0 1 1 O
0o 1 0 1 0 0 0 O

» Each bit in the first 8-bit input is ANDed to its corresponding
bit in the second input

» The AND operates on each pair of bits separately

Logic and Boolean Algebra

» Logical variables take only values TRUE and FALSE
P Logical operations are operations on these values
> e.g., “Not True = False”
» Systematized by George Boole in 1847
> Later expounded in The Laws of Thought, 1854
» Claude Shannon connected boolean algebra to digital circuit
design
» Originally, to design circuits that used electromechanical relays
as switches

» Now digital circuits use transistors, but principles are the same
» Also coined the word “bit" later...

Outline

Machine Data Types

Bits, Bytes, Words, ...

» Almost no machine allows manipulation of single bits directly

» Bits are handled as aggregations

Size (bits)

Common Name

8
16
32
64

128

byte
word, halfword
word, doubleword

word, doubleword, quadword
?

» A machine word (sometimes the word “machine” is omitted)
is the size (in bits) of data that a machine can manipulate at

once.

» Hence 16-bit machines, 32-bit machines, 64-bit machines, etc.

Reading a byte

b; bg bs b bs by, by by
0 1 1 0 1 1 0 1
27 26 25 o4 23 22 ol 20

» In place-value notation, by = 1 and by =27 = 128
> Hence, thisis 1 x 20 +1x2° +1x234+1x224+1x2°=109
» The grouping of 4 bits together is called a nybble (i.e. half a
byte)
» Primarily improves readability
> But can also be used to easily convert to base-16 (i.e.
hexadecimal)

» by (i.e. rightmost bit) is called the least significant bit (LSB)
> contributes the smallest value (2°)

» by (i.e. leftmost bit) is called the most significant bit (MSB)
> contributes the most value (27)

Hexadecimal

» Numbers in base 16

> 0to9and Ato F
» Usually indicated by a Ox prefix, or a 16 subscript
> e.g., 0xA = A16 = 1010 = 10102

> 109190 = 011011015, = 0x6D
P> Textbook contains a table mapping the 16 nybbles to
hexadecimal symbols
» Hexadecimal is widely used in low-level code
» you'll get plenty of opportunities to practice

Multibyte Data Types and Memory Layout

» The 16-bit value 5199617 has hexadecimal representation
0xCAFE
P |ts binary representation is 110010101111 1110,
» The value 0xCA is its most significant byte
» The value OxFE is its least significant byte
» RAM is byte addressable

» Can read individual bytes of a multibyte value
» How should we order each byte of a multibyte value?

Little and Big-endian

» Storing a 32-bit value 0OXDEADCAFE in memory

» Big endian: Most significant byte at lower addresses

v

Little endian: Least significant byte at lower addresses

address X x+1 x+2 x+3
big-endian O0xDE OxAD O0xCA OxFE
little-endian OxFE OxCA O0xAD O0xDE

» Different machines use different conventions

» Intel/AMD usually little endian
» SPARC/PowerPC usually big endian
> ARM can switch between the two

» Big endian is sometimes called network byte order
» Similar problem: which byte of a word gets on the wire first?

The Interpreter of Bits

» Does the byte 0x55 in memory indicate:
» The integer value 857
» The Intel assembly language instruction push %rbp (as seen in
the previous lecture)?
» There is nothing in 0x55 that can distinguish between these
two interpretations
> Very powerful idea
» Code can be data and data can be code

Outline

Interpreting Bits as Integers

Integers

» The most common interpretation of bytes, words, etc. is that
as “integers”
» Whole numbers (no fractional part)
» Can be positive or negative

> Examples: -3,-2,-1,0,1,2,3

Problem to be solved

» Need to store the magnitude of the integer
> i.e. absolute value (e.g. | —2| = 2)

P> Need to store sign of the integer

How many bits are required?

» The number of bits required to store N distinct values is
[loga(N)]

» i.e. logarithm of N to the base 2
» i.e. find x such that 2 = N, and round it up

» Example #1: There are two possible values for sign, so N = 2
> Jogx(2) = 1, so one bit is required to store sign

> Example #2: If N is 200, then x = log»(200) = 7.644, so 8
bits are required

Stuffing numbers into a byte: Sign-Magnitude

> A byte has 8 bits

» One bit is used for the sign, 7 bits left

» Can store magnitudes from 0 to 27 = 127
> Let MSB be sign bit

P Let other bits store magnitude

» Can store numbers from -127 to +127

b; be bs by by by b1 by

+8919 O 1 0 1 1 0 0 1
-84, 1 1 0 1 1 0 o0 1
010 0O 0 0 O O o 0 O
—019 1 0 0 0O O O 0 o

Stuffing numbers into a byte: One’'s Complement

» Can store magnitudes from 0 to 27 = 127
> Let MSB be sign bit
P Let other bits store magnitude

P except if sign bit is set, magnitude must be complemented
(i.e. inverted) to get actual value

» one's complement of bit value x is 1 — x, i.e. the same as
NOT(x)

» Represents numbers from —127 to +127

b; bs bs by by by b1 by

48919 O 1 0 1 1 0 0 1
-89, 1 0 1 0 0 1 1 0
010 O 0 0 O O o 0 o0
—010 1 1 1 1 1 1 1 1

Stuffing numbers into a byte: Two's Complement

» Can store magnitudes from 0 to 27 = 127

» Let MSB be sign bit
P Let other bits store magnitude
» To negate a number, complement all its bits and add 1

» Can store numbers from -128 to 127

by bs bs ba bz by b1 by

+89p 0 1 0 1 1 0 0 1
-89 1 0 1 0 0 1 1 1
010 0o 0 0 0 o o0 o0 O
—010 0o 0 0o 0 o o0 o0 O
-128,0 1 0 O O O O O O

Integer Representations

» There is more than one way to represent the same integer
» Sign-magnitude
» One's complement
» Two's complement

» Some of them are non-intuitive

» negative and positive zeroes
> asymmetric ranges [-128, 127]

» All of them have different hardware implications
» Addition and subtraction circuits differ

» Generally, most computers you will encounter use
two's-complement arithmetic

Integers in C

» Basic C types:

char a;
short b; /* alternative form: short int */
int c;
long d; /+* alternative form: long int */

long long e;

» C implementations are required to provide a minimum size for
each type
» char must be at least 8 bits
P> int must be at least 16 bits
> long must be at least 32 bits
> long long must be at least 64 bits

» The prefix unsigned (e.g. unsigned char) allows all bits to
be used to store the magnitude (i.e. there is no sign bit).
» char must be able to store [—127,127]
> unsigned char must be able to store [0, 255]
» Note C does not require machines implement two's
complement

Fixed-width Integers in C99

#include <stdint.h>
int8_t a; /* signed 8-bit integer */
uint8_t uwa; /* unsigned 8-bit integer */

int32_t b; /* signed 32-bit integer */
uint32_t ub; /* unsigned 32-bit integer */

» (C99 is the C standard “version” 1999.

» Finally allowed fixed-width types
» Still does not mandate any particular representation

» The variables INT8_MIN and INT8_MAX contain the range for

int8_t
» similarly, UINT8_MIN and UINT8_MAX contain the range
uint8_t

Summary

Bits

Functions operating on bits

Multibit values and machine data types
Storing Integers

C Data Types

vVvYyyvyy

References and Next Class

» Today: Chapter 2 of the textbook
» Next class: Chapter 2 of the textbook

» Data conversions
» Bitwise Operations
> Integer arithmetic

	Administrivia
	Introduction
	Bits, Functions and Boolean Algebra
	Machine Data Types
	Interpreting Bits as Integers

