CSC2/452 Computer Organization
Introduction

Sreepathi Pai
URCS

August 28, 2019

Outline

Introduction

The Long Journey to an Executable

Running a Program

What about Python, Java and JavaScript?

Administrivia

Outline

Introduction

Behold, a Program

\#include <stdio.h>

int main(void) {
float PI = 3.1415926535897932384626433832;

printf("Hello, the value of pi is %f\n", PI);

return O;

}

Compile and Run It

To compile the code:
$ gcc -g hellopi.c
(The $ indicates the Unix shell prompt and is not part of the

command.)
The output is an executable binary. You can run it as:

$./a.out
Hello, the value of pi is 3.141593

Inside a.out

$ hexdump -C a.out

00000690 20 00 55 48 84 2d 26 07 20 00 53 41 89 fd 49 89
00000620 £6 4c 29 5 48 83 ec 08 48 cl fd 03 e8 3f fe ff

|
000006b0 ff 48 85 ed 74 20 31 db Of 1f 84 00 00 00 00 00 |.H..t 1......... |
000006c0 4c 89 fa 4c 89 f6 44 89 ef 41 ff 14 dc 48 83 c3 |L..L..D..A...H..
000006d0 01 48 39 dd 75 ea 48 83 c4 08 5b 5d 41 5¢c 41 5d |.H9.u.H...[1A\A]
000006e0 41 5e 41 5f c3 90 66 2¢ Of 1f 84 00 00 00 00 00 [|A~A_..f.........
000006£f0 £3 c3 00 00 48 83 ec 08 48 83 c4 08 ¢3 00 00 00 |....H...H.......

|
00000700 01 00 02 00 48 65 6¢c 6c 6f 2c 20 74 68 65 20 76 |....Hello, the v|
00000710 61 6¢c 75 65 20 6f 66 20 70 69 20 69 73 20 25 66 |alue of pi is %fl

This is a hexdump, a convenient way of viewing binary data. Four
columns on each line:

» Offset (in file, 0: beginning)

» 8 bytes of data in hexadecimal

> 8 bytes of data in hexadecimal

> 16 bytes of data, printable as-is, while non-printable is ‘.

Outline

The Long Journey to an Executable

gcc

input.c

» gcc is a compiler driver
» It orchestrates the execution
of many programs:
» the C preprocessor (cpp)
» the C compiler proper
(cc)
> the assembler (as)
> the (static) linker (1d)
» You can invoke these
programs individually

> But it's more convenient
to let gce drive them

a.out

The Preprocessor (for C programs)

$ cpp hellopi.c > hellopi.i

. some 700+ lines not shown ...

int main(void) {
float PI = 3.1415926535897932384626433832;

printf("Hello, the value of pi is %f\n", PI);

return O;

}

» The preprocessor handles lines starting with # (e.g.
#include).

» Output is a C file without #include
» and other preprocessor directives

» The 700 plus lines not shown above come from #include
<stdio.h>

The Compiler

$ cc -S hellopi.c

(The -8 forces cc to produce assembly code instead of a binary)

.file "hellopi.c"

.text
.section .rodata
.LC1:
.string "Hello, the value of pi is %f\n"
.text
.globl main
.type main, @function
main:
.LFBO:
pushq %rbp
movq %rsp, %rbp
subq $16, hrsp
movss .LCO(%rip), %xmmO
movss %xmmO, -4(%rbp)
cvtss2sd -4(%rbp), %xmm0
leaq .LC1(%rip), Y%rdi
movl $1, Y%eax
call printf@PLT
movl $0, Y%eax
leave
ret
.section .rodata
align 4
.LCO:

.long 1078530011

How to Read Assembly Language Programs

» Assembly language programs are line-based
P Lines beginning with a '." are assembler directives.

.file "hellopi.c"
.text
.section .rodata
.LC1:
.string "Hello, the value of pi is %f\n"

» Lines ending with a “:" are convenience labels for addresses
(e.g. .LC1: above)
P |.e. the assembler converts them to addresses so you don’t
have to
> Note that directives DO NOT end with a “:’, nor do labels

have to start with a '." (e.g. main)

» All other lines specify instructions

Instructions in x86 assembly

» Different assemblers have different syntax for the same CPU

instruction
> as uses AT&T syntax
» Source operands are at beginning
» Destination operands are at end

subq $16, %rsp
movss .LCO(%rip), %xmmO

» Operands follow
» Constant operands: $16
> Register operands: %rsp, %xmmO, %rip
» Address operands: .LCO(%rip)
» Different processors will have different instruction sets

> x86, ARM, PowerPC, RISC-V, etc.
» Assembly program for one processor will not run on another

processor

The Assembler

» The assembler converts the output of the compiler to an
object file (machine code).

» Object files are not directly executable
> Not very friendly to view, so let’s look at a listing file
» Obtained using as -adhln hellopi.s

An assembly listing for hellopi.c

1 .file "hellopi.c"

2 .text

3 .section .rodata
4 .LC1:

5 0000 48656C6C .string "Hello, the value of pi is %f\n"
5 6F2C2074

5 68652076

5 616C7565

5 206F6620

6 .text

7 .globl main

9 main:
10 .LFBO:

11 0000 55 pushq %rbp
12 0001 4889E5 movq %rsp, hrbp

13 0004 4883EC10 subq $16, ’%rsp
14 0008 F30F1005 movss .LCO(%rip), %xmmO
14 00000000

15 0010 F30F1145 movss %xmm0, -4 (%rbp)
15 FC

16 0015 F30F5A45 cvtss2sd -4 (%rbp), %xmmO
16 FC

17 001a 488D3D00 leaq .LC1(Yrip), Y%rdi

17 000000

Object files

» Usually an object file correspond to a single C file
» Multiple C files lead to multiple object files
» Object files are incomplete
» One: some data addresses are unknown
» The 000000 indicate space left for an address to be filled in

later
» Final executable binary decides placement of multiple object
files
14 0008 F30F1005 movss .LCO(Y%rip), %xmmO
14 00000000

> Two: Some functions may live in different C files and so their
addresses are unknown

23 0026 E8000000 call printfQ@PLT
23 00

The (Static) Linker

$ 1d hellopi.o ...

» The static linker combines all the object files to form a single
binary
P static means compile-time
P there is also a dynamic linker which is used at run-time
» It fills in nearly all addresses

» the ones it leaves unfilled are filled by the dynamic linker and
loader just before the program runs

» this happens if a function is in a shared object (similar to
Windows DLLs)

» Shared objects are objects that are common to all programs
on the system

» you can avoid shared objects, but your binary size will increase

Disassembler

$ objdump -S a.out

000000000000064a <main>:

64a:
64b:
64e:

652:
659:
65a:

65f:
664 :
66b:
670:

675:
67a:

67b:

55
48
48

89
83

of
Oof
of
8d
01
ab

00

eb
ec

10
11
b5a
3d
00
fe

00

10
05
45
45
99
00
ff

00

ca
fc
fc
00
00
ff

00

00 00

00 00

push Yrbp
mov hrsp, hrbp
sub $0x10,%rsp

movss Oxca(lrip) ,%xmmO
movss %xmmO,-0x4 (%rbp)
cvtss2sd -0x4 (%rbp) , %xmmO
lea 0x99 (%rip) ,%rdi
mov $0x1,%eax

callg 520 <printf@plt>

mov $0x0, %eax
leaveq

retq

Outline

Running a Program

The (Dynamic) Linker and Loader

$./a.out

> After you type ./a.out but before it starts running:

» it must be loaded into memory
» all shared objects must be linked in
> the processor must be instructed where to start executing

» This is the job of the dynamic linker and loader
» Usually one program on Linux, 1d.so

Memory Layout of a Program

Program
start —>

0

Kernel virtual memory

User stack
(created at runtime)

!
?

Memory mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Read/write data

Read-only code and data

I

Memory
invisible to
user code

printf function

Loaded from the
hello executable file

The Processor

| 2

| 2

For now, we'll treat the
processor as box

It reads instructions and
data from memory (also a
box)

Performs operations on data
specified by the instructions

Stores the data back into
memory
This is the “von Neumann”
model of computation
» After John Von Neumann
who wrote a report about
it in 1945
> We will read this report!

CPU

https://history-computer.com/Library/edvac.pdf

The Operating System

P> There are many programs running on your computer
» Each "believes” it is running alone
» lllusion of having CPU and RAM to itself
» This illusion is created by the CPU and managed by the
operating system
» Loosely speaking, Linux, Windows, macOS X are all operating
systems

» The operating system is responsible for:

> Mediating access to the hardware (through drivers)
Protecting programs from each other

Protecting users from each other

Managing resources such as disks, memory, etc.

>
| 2
| 2
> Lots of other responsibilities (sign up for CSC256)

What did the CPU do?

$ perf stat -e instructions ./a.out
Hello, the value of pi is 3.141593

Performance counter stats for ’./a.out’:
662,172 instructions

0.001168841 seconds time elapsed

» The Linux perf command gives you lots of statistics about
CPUs and programs (called performance counters)

» main was about 10 instructions, where did more than
half-a-million instructions come from?

» How fast is this processor (instructions/second)?

Thinking about System Design

» Why build separate programs (cc, as, 1d)?
» Think about which programs need to change if the processor
changes
» Are there other designs other than von Neumann computers?
» Yes, | research them
> Why do we have different processors?

» Intel/AMD for desktops/laptops
» ARM for mobile phones

» Why was Unix such a success?

» Turing Award in 1983!
» Still being used nearly 50 years later!

The Big Picture for this Course

gram

Operating System

Part Il

[m] [l = = = o>

What next?

CSC257 Networks

CSC256 0OS

Operating System

CSC251 Advanced Computer Architecture
ECE112 Logic Design

o>

Outline

What about Python, Java and JavaScript?

Interpreted Languages

» Some languages do not compile to a binary
» No assembler
> Language-specific linkers and loader (but these are usually
absent)
> Interpreters
» “CPUs in software” (sometimes called virtual machines)
P [t's very easy to write an interpreter...
» Three notable languages that do this:
» Python (compiles to a stack machine bytecode)
> Java (also compiles to bytecode)
» JavaScript (originally not compiled, but nearly all browsers do
just-in-time (JIT) compilation)
» Not our focus in this course
» But may talk about Just-in-Time compiling if we have time

Why focus on C?

» Old systems language
» Invented in 1972 at AT&T Bell Labs
» Used to write the Unix kernel (the core of the operating
system)
> Low-level language
» But not as low-level as assembler
> “Portable” assembler (not specific to a processor)
» Usually straightforward mapping to assembler
> (Mostly) easy to understand how the translation from C to
assembler is done
» Tremendous impact

» Both positive and negative
» Should you write new programs in C?

Outline

Administrivia

People

» Instructor: Dr. Sreepathi Pai

» E-mail: sree@cs.rochester.edu

» Office: Wegmans 3409

» Office Hours: Mondays and Wednesdays 16:40 to 17:45 (i.e.
after class)

> TAs:

» Yu Feng

» Yiming Gan

» Daniel Busaba

» Benned Hedegaard
» Olivia Morton

» Max Kimmelman
» Daniel Ro

Places

» Class: Wegmans 1400
> M,W 1525-1640
» Course Website

» https://cs.rochester.edu/~sree/courses/
csc-252-452/fal1-2019/

» Blackboard
» Announcements, Assignments, etc.
» Piazza
» Link accessible through Blackboard
» Sign up for a CSUG Account if you don't have one:

> https://accounts.csug.rochester.edu/
» Required for assignments!

https://cs.rochester.edu/~sree/courses/csc-252-452/fall-2019/
https://cs.rochester.edu/~sree/courses/csc-252-452/fall-2019/
https://accounts.csug.rochester.edu/

References

» One textbook

» Computer Systems: A Programmers Perspective, 3/ed, Bryant
and O'Hallaron

» This course requires a lot of reading!

» Books have been placed on reserve
» Online materials will be linked throughout course

» See Blackboard for information on accessing Reserves

Defined Readings

v

Required by The College for 2xx courses
» An hour per week of independent reading

v

| will assign material that are not textbooks

» Manuals

> Papers

> Articles
» These will make you a better systems programmer and
computer scientist

» | will assume you have read these — you will need them for
your assignments

Grading

» Participation: 5%

» Homeworks: 5%

» Assignments: 55% (4-6)

» Exam: 15% (midterm) + 20% (final)

» Graduate students should expect to read a lot more, and work

on harder problems.

There is no fixed grading curve. Assume absolute grading. Course
website has details.
See course website and syllabus for other details.

Academic Honesty

» Unless explicitly allowed (e.g. teams), you may not show your
code to other students

» You may discuss, brainstorm, etc. with your fellow students
but all submitted work must be your own

» All help received must be acknowledged in writing when
submitting your assignments and homeworks

P All external code you use must be clearly marked as such in
your submission
» Use a comment and provide URL if appropriate

» If in doubt, ask the instructor

All violations of academic honesty will be dealt with strictly as per
UR'’s Academic Honesty Policy.

https://www.rochester.edu/college/honesty/

References and Next Week

» Read chapter 1 of the textbook for today's lecture

» Read chapter 2 of the textbook for next week's lecture
» Acknowledgements:
» Program memory layout figures from the textbook

	Introduction
	The Long Journey to an Executable
	Running a Program
	What about Python, Java and JavaScript?
	Administrivia

