
CSC2/452 Computer Organization
Introduction

Sreepathi Pai

URCS

August 28, 2019

Outline

Introduction

The Long Journey to an Executable

Running a Program

What about Python, Java and JavaScript?

Administrivia

Outline

Introduction

The Long Journey to an Executable

Running a Program

What about Python, Java and JavaScript?

Administrivia

Behold, a Program

\#include <stdio.h>

int main(void) {
float PI = 3.1415926535897932384626433832;

printf("Hello, the value of pi is %f\n", PI);

return 0;
}

Compile and Run It

To compile the code:

$ gcc -g hellopi.c

(The $ indicates the Unix shell prompt and is not part of the
command.)
The output is an executable binary. You can run it as:

$./a.out
Hello, the value of pi is 3.141593

Inside a.out

$ hexdump -C a.out

...
00000690 20 00 55 48 8d 2d 26 07 20 00 53 41 89 fd 49 89 | .UH.-&. .SA..I.|
000006a0 f6 4c 29 e5 48 83 ec 08 48 c1 fd 03 e8 3f fe ff |.L).H...H....?..|
000006b0 ff 48 85 ed 74 20 31 db 0f 1f 84 00 00 00 00 00 |.H..t 1.........|
000006c0 4c 89 fa 4c 89 f6 44 89 ef 41 ff 14 dc 48 83 c3 |L..L..D..A...H..|
000006d0 01 48 39 dd 75 ea 48 83 c4 08 5b 5d 41 5c 41 5d |.H9.u.H...[]A\A]|
000006e0 41 5e 41 5f c3 90 66 2e 0f 1f 84 00 00 00 00 00 |A^A_..f.........|
000006f0 f3 c3 00 00 48 83 ec 08 48 83 c4 08 c3 00 00 00 |....H...H.......|
00000700 01 00 02 00 48 65 6c 6c 6f 2c 20 74 68 65 20 76 |....Hello, the v|
00000710 61 6c 75 65 20 6f 66 20 70 69 20 69 73 20 25 66 |alue of pi is %f|
...

This is a hexdump, a convenient way of viewing binary data. Four
columns on each line:

I Offset (in file, 0: beginning)

I 8 bytes of data in hexadecimal

I 8 bytes of data in hexadecimal

I 16 bytes of data, printable as-is, while non-printable is ‘.’

Outline

Introduction

The Long Journey to an Executable

Running a Program

What about Python, Java and JavaScript?

Administrivia

gcc

I gcc is a compiler driver
I It orchestrates the execution

of many programs:
I the C preprocessor (cpp)
I the C compiler proper

(cc)
I the assembler (as)
I the (static) linker (ld)

I You can invoke these
programs individually
I But it’s more convenient

to let gcc drive them

input.c

cpp

cc

as

ld

a.out

The Preprocessor (for C programs)

$ cpp hellopi.c > hellopi.i

... some 700+ lines not shown ...

int main(void) {
float PI = 3.1415926535897932384626433832;

printf("Hello, the value of pi is %f\n", PI);

return 0;
}

I The preprocessor handles lines starting with # (e.g.
#include).

I Output is a C file without #include
I and other preprocessor directives

I The 700 plus lines not shown above come from #include

<stdio.h>

The Compiler

$ cc -S hellopi.c

(The -S forces cc to produce assembly code instead of a binary)
.file "hellopi.c"
.text
.section .rodata

.LC1:
.string "Hello, the value of pi is %f\n"
.text
.globl main
.type main, @function

main:
.LFB0:

pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
movss .LC0(%rip), %xmm0
movss %xmm0, -4(%rbp)
cvtss2sd -4(%rbp), %xmm0
leaq .LC1(%rip), %rdi
movl $1, %eax
call printf@PLT
movl $0, %eax
leave
ret
.section .rodata
.align 4

.LC0:
.long 1078530011

How to Read Assembly Language Programs

I Assembly language programs are line-based

I Lines beginning with a ’.’ are assembler directives.

.file "hellopi.c"

.text

.section .rodata
.LC1:

.string "Hello, the value of pi is %f\n"

I Lines ending with a ‘:’ are convenience labels for addresses
(e.g. .LC1: above)
I I.e. the assembler converts them to addresses so you don’t

have to
I Note that directives DO NOT end with a ‘:’, nor do labels

have to start with a ‘.’ (e.g. main)

I All other lines specify instructions

Instructions in x86 assembly

I Different assemblers have different syntax for the same CPU
instruction

I as uses AT&T syntax
I Source operands are at beginning
I Destination operands are at end

subq $16, %rsp
movss .LC0(%rip), %xmm0

I Operands follow
I Constant operands: $16
I Register operands: %rsp, %xmm0, %rip
I Address operands: .LCO(%rip)

I Different processors will have different instruction sets
I x86, ARM, PowerPC, RISC-V, etc.
I Assembly program for one processor will not run on another

processor

The Assembler

I The assembler converts the output of the compiler to an
object file (machine code).
I Object files are not directly executable

I Not very friendly to view, so let’s look at a listing file
I Obtained using as -adhln hellopi.s

An assembly listing for hellopi.c

1 .file "hellopi.c"
2 .text
3 .section .rodata
4 .LC1:
5 0000 48656C6C .string "Hello, the value of pi is %f\n"
5 6F2C2074
5 68652076
5 616C7565
5 206F6620
6 .text
7 .globl main
9 main:

10 .LFB0:
11 0000 55 pushq %rbp
12 0001 4889E5 movq %rsp, %rbp
13 0004 4883EC10 subq $16, %rsp
14 0008 F30F1005 movss .LC0(%rip), %xmm0
14 00000000
15 0010 F30F1145 movss %xmm0, -4(%rbp)
15 FC
16 0015 F30F5A45 cvtss2sd -4(%rbp), %xmm0
16 FC
17 001a 488D3D00 leaq .LC1(%rip), %rdi
17 000000

...

Object files

I Usually an object file correspond to a single C file
I Multiple C files lead to multiple object files

I Object files are incomplete
I One: some data addresses are unknown

I The 000000 indicate space left for an address to be filled in
later

I Final executable binary decides placement of multiple object
files

14 0008 F30F1005 movss .LC0(%rip), %xmm0
14 00000000

I Two: Some functions may live in different C files and so their
addresses are unknown

23 0026 E8000000 call printf@PLT
23 00

The (Static) Linker

$ ld hellopi.o ...

I The static linker combines all the object files to form a single
binary
I static means compile-time
I there is also a dynamic linker which is used at run-time

I It fills in nearly all addresses
I the ones it leaves unfilled are filled by the dynamic linker and

loader just before the program runs
I this happens if a function is in a shared object (similar to

Windows DLLs)

I Shared objects are objects that are common to all programs
on the system
I you can avoid shared objects, but your binary size will increase

Disassembler

$ objdump -S a.out

...
000000000000064a <main>:
64a: 55 push %rbp
64b: 48 89 e5 mov %rsp,%rbp
64e: 48 83 ec 10 sub $0x10,%rsp

652: f3 0f 10 05 ca 00 00 movss 0xca(%rip),%xmm0
659: 00
65a: f3 0f 11 45 fc movss %xmm0,-0x4(%rbp)

65f: f3 0f 5a 45 fc cvtss2sd -0x4(%rbp),%xmm0
664: 48 8d 3d 99 00 00 00 lea 0x99(%rip),%rdi
66b: b8 01 00 00 00 mov $0x1,%eax
670: e8 ab fe ff ff callq 520 <printf@plt>

675: b8 00 00 00 00 mov $0x0,%eax
67a: c9 leaveq

67b: c3 retq
...

Outline

Introduction

The Long Journey to an Executable

Running a Program

What about Python, Java and JavaScript?

Administrivia

The (Dynamic) Linker and Loader

$./a.out

I After you type ./a.out but before it starts running:
I it must be loaded into memory
I all shared objects must be linked in
I the processor must be instructed where to start executing

I This is the job of the dynamic linker and loader
I Usually one program on Linux, ld.so

Memory Layout of a Program

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data

Read-only code and data

Loaded from the
hello

printf function

Program
start

The Processor

I For now, we’ll treat the
processor as box

I It reads instructions and
data from memory (also a
box)

I Performs operations on data
specified by the instructions

I Stores the data back into
memory

I This is the “von Neumann”
model of computation
I After John Von Neumann

who wrote a report about
it in 1945

I We will read this report!

CPU

RAM

https://history-computer.com/Library/edvac.pdf

The Operating System

I There are many programs running on your computer
I Each “believes” it is running alone
I Illusion of having CPU and RAM to itself

I This illusion is created by the CPU and managed by the
operating system
I Loosely speaking, Linux, Windows, macOS X are all operating

systems

I The operating system is responsible for:
I Mediating access to the hardware (through drivers)
I Protecting programs from each other
I Protecting users from each other
I Managing resources such as disks, memory, etc.
I Lots of other responsibilities (sign up for CSC256)

What did the CPU do?

$ perf stat -e instructions ./a.out
Hello, the value of pi is 3.141593

Performance counter stats for ’./a.out’:

662,172 instructions

0.001168841 seconds time elapsed

I The Linux perf command gives you lots of statistics about
CPUs and programs (called performance counters)

I main was about 10 instructions, where did more than
half-a-million instructions come from?

I How fast is this processor (instructions/second)?

Thinking about System Design

I Why build separate programs (cc, as, ld)?
I Think about which programs need to change if the processor

changes

I Are there other designs other than von Neumann computers?
I Yes, I research them

I Why do we have different processors?
I Intel/AMD for desktops/laptops
I ARM for mobile phones

I Why was Unix such a success?
I Turing Award in 1983!
I Still being used nearly 50 years later!

The Big Picture for this Course

Program

Processor

Operating SystemSystem Software

Part I

Part II

What next?

Program

Processor

Operating SystemSystem Software

CSC251 Advanced Computer Architecture
ECE112 Logic Design

CSC256 OSCSC255 Compilers

CSC257 Networks

Outline

Introduction

The Long Journey to an Executable

Running a Program

What about Python, Java and JavaScript?

Administrivia

Interpreted Languages

I Some languages do not compile to a binary
I No assembler
I Language-specific linkers and loader (but these are usually

absent)

I Interpreters
I “CPUs in software” (sometimes called virtual machines)
I It’s very easy to write an interpreter...

I Three notable languages that do this:
I Python (compiles to a stack machine bytecode)
I Java (also compiles to bytecode)
I JavaScript (originally not compiled, but nearly all browsers do

just-in-time (JIT) compilation)

I Not our focus in this course
I But may talk about Just-in-Time compiling if we have time

Why focus on C?

I Old systems language
I Invented in 1972 at AT&T Bell Labs
I Used to write the Unix kernel (the core of the operating

system)

I Low-level language
I But not as low-level as assembler

I “Portable” assembler (not specific to a processor)
I Usually straightforward mapping to assembler
I (Mostly) easy to understand how the translation from C to

assembler is done

I Tremendous impact
I Both positive and negative
I Should you write new programs in C?

Outline

Introduction

The Long Journey to an Executable

Running a Program

What about Python, Java and JavaScript?

Administrivia

People

I Instructor: Dr. Sreepathi Pai
I E-mail: sree@cs.rochester.edu
I Office: Wegmans 3409
I Office Hours: Mondays and Wednesdays 16:40 to 17:45 (i.e.

after class)

I TAs:
I Yu Feng
I Yiming Gan
I Daniel Busaba
I Benned Hedegaard
I Olivia Morton
I Max Kimmelman
I Daniel Ro

Places

I Class: Wegmans 1400
I M,W 1525–1640

I Course Website
I https://cs.rochester.edu/~sree/courses/

csc-252-452/fall-2019/

I Blackboard
I Announcements, Assignments, etc.

I Piazza
I Link accessible through Blackboard

I Sign up for a CSUG Account if you don’t have one:
I https://accounts.csug.rochester.edu/
I Required for assignments!

https://cs.rochester.edu/~sree/courses/csc-252-452/fall-2019/
https://cs.rochester.edu/~sree/courses/csc-252-452/fall-2019/
https://accounts.csug.rochester.edu/

References

I One textbook
I Computer Systems: A Programmers Perspective, 3/ed, Bryant

and O’Hallaron

I This course requires a lot of reading!
I Books have been placed on reserve
I Online materials will be linked throughout course

I See Blackboard for information on accessing Reserves

Defined Readings

I Required by The College for 2xx courses

I An hour per week of independent reading
I I will assign material that are not textbooks

I Manuals
I Papers
I Articles

I These will make you a better systems programmer and
computer scientist

I I will assume you have read these – you will need them for
your assignments

Grading

I Participation: 5%

I Homeworks: 5%

I Assignments: 55% (4–6)

I Exam: 15% (midterm) + 20% (final)

I Graduate students should expect to read a lot more, and work
on harder problems.

There is no fixed grading curve. Assume absolute grading. Course
website has details.
See course website and syllabus for other details.

Academic Honesty

I Unless explicitly allowed (e.g. teams), you may not show your
code to other students

I You may discuss, brainstorm, etc. with your fellow students
but all submitted work must be your own

I All help received must be acknowledged in writing when
submitting your assignments and homeworks

I All external code you use must be clearly marked as such in
your submission
I Use a comment and provide URL if appropriate

I If in doubt, ask the instructor

All violations of academic honesty will be dealt with strictly as per
UR’s Academic Honesty Policy.

https://www.rochester.edu/college/honesty/

References and Next Week

I Read chapter 1 of the textbook for today’s lecture

I Read chapter 2 of the textbook for next week’s lecture
I Acknowledgements:

I Program memory layout figures from the textbook

	Introduction
	The Long Journey to an Executable
	Running a Program
	What about Python, Java and JavaScript?
	Administrivia

