
CSC2/466, ECE2/406 Par. Comp. using GPUs Assignment 4 Due: December 13, 2017, 7PM

All exercises must be done by yourself. You may discuss questions and potential solutions with your classmates, but
you may not look at their code. If in doubt, ask the instructor.

Acknowledge all sources you found useful.

Your code should compute the correct results.

Partial credit is available, so attempt all exercises.

Submit your answers as a PDF file.

The compressed archive (e.g. ZIP) file you upload to Blackboard should have your name in the filename, e.g.
JRandomStudentA4.zip

Exercise 1

Consider the koggestone program that is supplied. It implements a Kogge–Stone adder to compute a sum using a
tree reduction for arrays of size at most size 32.

You invoke it as:

$ make koggestone # only once
$ ./koggestone 5 1 8 3 2
Read 5 numbers.
Sum of 5 numbers: 19

1. Modify the koggestone program so that it does not use shared memory or syncthreads. Use shfl to
communicate between threads instead. Save this as koggestone shfl.cu.

2. Modify the koggestone program so that it uses shfl up to communicate between threads instead of shfl.
Save this as koggestone up.cu.

3. Read the documentation for syncwarp() at http://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html (Section B.6). Starting from CUDA 9, where will you need to insert syncwarp() in the
answers to 1 and 2 to ensure correct execution?

Exercise 2

I’ve supplied a version of the SSSP NearFar algorithm (a simplification of the delta-stepping SSSP algorithm) to
compute the single source shortest paths for a graph on the GPU. Unfortunately, this code is missing necessary syn-
chronization in the GPU code (although the CPU code is correct) and so it computes incorrect results.

I’ve supplied graphs and their associated correct reference outputs as text files. Use the test.sh script to test for
correctness. This runs diff on the output of sssp nf and reports if it is identical (i.e. correct) or if it differs (i.e.
wrong).

1. Insert the correct synchronization in code so that it computes correct results. Do not change names of any files.
In your report, note your changes and your reasons for inserting the synchronizations.

2. In the worklist class, observe that sz is a plain int whereas ndx is a pointer to int. Explain why. In
particular what would happen if ndx was a plain int? [Hint: Recall C/C++ argument passing semantics or
come by and talk to me]

3. Which arrays in GPUSimpleCSRGraph (inherited from SimpleCSRGraph) are suitable for use as textures
in the SSSP algorithm? Why? [You do not have to implement this. You may not discuss this solution with
people other than the instructors.]

END.

Fall 2017 1

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://en.wikipedia.org/wiki/Shortest_path_problem

